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Background: Musculoskeletal injuries (MSKIs) are endemic in military

populations. Thus, it is essential to identify andmitigateMSKI risks. Time-to-event

machine learning models utilizing self-reported questionnaires or existing data

(e.g., electronic health records) may aid in creating e�cient risk screening tools.

Methods: A total of 4,222U.S. Army Service members completed a self-report

MSKI risk screen as part of their unit’s standard in-processing. Additionally,

participants’ MSKI and demographic data were abstracted from electronic

health record data. Survival machine learning models (Cox proportional hazard

regression (COX), COX with splines, conditional inference trees, and random

forest) were deployed to develop a predictive model on the training data (75%; n

= 2,963) for MSKI risk over varying time horizons (30, 90, 180, and 365 days) and

were evaluated on the testing data (25%; n = 987). Probability of predicted risk

(0.00–1.00) from the final model stratified Service members into quartiles based

on MSKI risk.

Results: The COX model demonstrated the best model performance over the

time horizons. The time-dependent area under the curve ranged from 0.73 to

0.70 at 30 and 180 days. The index prediction accuracy (IPA) was 12% better at

180 days than the IPA of the null model (0 variables). Within the COX model,

“other” race, more self-reported pain items during the movement screens,

female gender, and prior MSKI demonstrated the largest hazard ratios. When

predicted probability was binned into quartiles, at 180 days, the highest risk bin

had an MSKI incidence rate of 2,130.82 ± 171.15 per 1,000 person-years and

incidence rate ratio of 4.74 (95% confidence interval: 3.44, 6.54) compared to

the lowest risk bin.

Conclusion: Self-reported questionnaires and existing data can be used

to create a machine learning algorithm to identify Service members’

MSKI risk profiles. Further research should develop more granular Service

member-specific MSKI screening tools and create MSKI risk mitigation strategies

based on these screenings.
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Introduction

Musculoskeletal injuries (MSKIs) impose a burden on the

United States (U.S.) Military Healthcare System (MHS). MSKIs

account for more than 2 million medical encounters annually

across the U.S. military (Teyhen et al., 2014) and cost the MHS

more than $500 million dollars per year (Teyhen et al., 2018). More

importantly, MSKIs limit military Service members’ abilities to

train and perform required work duties (Ruscio et al., 2010; Teyhen

et al., 2018). Despite the significant negative impact MSKIs have on

operational readiness and the financial burden on the MHS, there

are few actionable and deployable MSKI risk classification models

that can help inform clinical practice to reduce MSKI risks among

Service members (Rhon et al., 2022b).

Multi-factorial MSKI risk modeling has been the focus of

MSKI risk research for the past decade (Bahr, 2016; Bittencourt

et al., 2016). Commonly, previous MSKI risk modeling research

has discretized variables before modeling [e.g., body mass index

(BMI): underweight, healthy, overweight, and obese] to simplify

a model’s clinical interpretability (Teyhen et al., 2020); however,

discretization is not recommended to optimize model performance

(Carey et al., 2018). MSKI risk assessment models that are

overly simplistic, demonstrate poor model performance, are

not yet validated in a new cohort, or are too complex for

interpretation, which may misguide clinicians (Bullock et al., 2021,

2022). However, validated machine learning models that provide

clinically relevant results are attainable with the correct tools and

proper framework.

Machine learning models, built-in frameworks designed for

modularity (e.g., flexibility in the prediction model and/or variables

included in the model) and scalability (e.g., handling large amounts

of data), may have the greatest opportunity for deployment in

clinical or operational settings. In addition, machine learning

models that are flexible (e.g., random forests) may further

allow for modularity and account for non-linearity in the data

when compared to more traditional statistical approaches (e.g.,

regressions). Machine learning models are typically built across

a specific time horizon (e.g., within 1 year) and do not account

for varying time horizons (i.e., exposure to time), which can limit

their utility in clinical settings (Van Eetvelde et al., 2021). Thus,

other models must be employed to address the complexity of MSKI

risk data.

Time-to-event or survival models estimate the probability

of an event occurring before a specified time horizon (Nielsen

et al., 2019a). Unlike binary classification models (e.g., logistic

regression), which make predictions at a one-time horizon,

survival models predict MSKI risk across a continuous range

of time horizons accounting for censored individuals. The most

common of these survival models is the Cox proportional

hazard model. The major limitation of the Cox model is

that it makes a strong assumption that the hazard functions

between individuals are proportional (Andersen, 2022). Thus,

to account for censoring and to utilize flexible survival models

(e.g., decision trees), it is necessary to look to other fields

deploying survival machine learning techniques for potential

applications for MSKI risk stratification (Wang et al., 2019).

These existing techniques deployed in MSKI risk stratification

may better enable clinicians to estimate survival probability

outcomes (i.e., time-to-MSKI) in a methodologically valid and

flexible framework.

The purpose of this study was to determine if self-reported

questionnaires and existing data sources (e.g., demographics) from

military Service members could be used to create a modular

machine learningmodel for assessingMSKI risk. The use of existing

self-report data is essential to make the models scalable to a large

number of U.S. military Service members [∼1.3 million active-duty

Service members (U.S. Department of Defense, 2022)]. Second,

we will assess varying statistical modeling approaches to provide

guidance for appropriate tools to classify MSKI risk in a machine

learning framework. We hypothesize that a high-throughput self-

report MSKI risk screen, combined with existing data sources, will

provide the data necessary to build a machine learning model with

acceptable model performance in identifying Service members’

MSKI risk levels.

Materials and methods

We conducted a retrospective review of existing self-report

MSKI screen data and electronic medical records to develop

MSKI risk screening models. A total of 4,222 Service members

completed a self-report MSKI risk screen as part of their standard

in-processing to a U.S. Army Airborne Division. Complete datasets

were accessible for 3,950 Service members (female gender:=12.2%,

age: 24.1± 5.6 years, height: 175.4± 8.8 cm, mass: 78.71± 12.0 kg)

and were used for analyses. This retrospective cohort study was

deemed exempt from the Institutional Review Board review by

the Womack Army Medical Center Human Research Protections

Program Office.

Data types and reduction

Military Service members in-processing to a U.S. Army

Airborne Division completed a self-report MSKI risk screen

between December 2020 and March 2022. The self-reported

questionnaire consisted of general health, physical fitness, and

demographic-type questions (Table 1) (Roach et al., 2023).

Additionally, Service members self-reported if they experienced

pain during three movement screens: (1) shoulder clearing

(bilateral), (2) spinal extension clearing, and (3) squat-jump-land.

Pain with either shoulder clearing screen (i.e., left or right) was

documented as one, regardless of whether the pain was experienced

unilaterally or bilaterally. The three movement screen pain items

were summed for a total movement screen pain score (score range

= 0–3) for each Service member. The movement screen assessment

methods have been previously described (Roach et al., 2023).

Occupation codes, age, race, gender, and marital status were

collected via the Defense Enrollment Eligibility Reporting System

(DEERS) within the MHS Management Analysis and Reporting

Tool (MHS MART [M2]) closest to the Service member’s in-

processing date (Table 1). The occupation index codes were

categorized into three groups: (1) combat arms (e.g., infantry

and field artillery); (2) combat support (e.g., artillery repair and

counterintelligence); and (3) combat service support (e.g., medical,

instructors, and transportation) (Teyhen et al., 2018).
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TABLE 1 Model features.

Variable Data
structure

Data
source

Data

Mass Continuous Self-reported Kilograms

Height Continuous Self-reported Centimeters

Sleep Continuous Self-reported Hours

Prior MSKI Factor Self-reported Yes, no∗

Prior surgery Factor Self-reported Yes, no∗

MSKI profile Factor Self-reported Yes, no∗

Stress fracture Factor Self-reported Yes, no∗

Last ACFT pain Factor Self-reported Yes, no∗

Last ACFT failure Factor Self-reported Yes, no∗

Nicotine use Factor Self-reported Yes, no∗

Paygrade Factor Self-reported E1-E4, E5-E10,

Officer∗

Movement screen

pain

Factor Self-reported 0∗ , 1, 2, or 3

Age Continuous DEERS Years

Marital status Factor DEERS Married,

single∗

DoD occupation

code

Factor DEERS Combat

arms∗ , combat

support,

combat

services and

support

Race Factor DEERS White∗ , Asian

or Pacific

Islander, Black,

American

Indian or

Alaskan

native, other,

unknown

Gender Factor DEERS Male∗ , female

Variable: mass, converted from pounds to kilograms; height, converted from inches to

centimeters; sleep, average duration of sleep; prior MSKI, any MSKI within the previous

year; prior surgery, any prior surgery within 2 years requiring physical therapy; MSKI profile,

limited duty profile status within 1 year that resulted in 3 or more days of missed/altered

activity; stress fracture, any stress fracture over a Service member’s lifetime; last ACFT pain,

pain during the last attempted ACFT; last ACFT failure, failing score on any event in the

last attempted ACFT; nicotine use, current or previous nicotine use; movement screen pain,

pain during the included movement screens; DoD occupation code, occupation index codes

categorized into three groups.

Data source: self-reported, self-reported questionnaire administered at the start of the Service

member’s surveillance period start date. DEERS, data extracted fromM2 closest to the Service

member’s surveillance period start date. Referent categories are labeled with an (∗) under the

Data column.

TheMSKI data [International Classification of Diseases - Tenth

Revision (ICD-10 Codes)] were collected via the Comprehensive

Ambulatory Provider Encounter Record (CAPER) within M2 from

the time of the Service member’s in-processing screening date up to

1 year post-screening. The CAPER provides direct care outpatient

encounter records. Thus, any MSKI treated and diagnosed by an

MHS healthcare provider is documented in the CAPER. MSKI

encounters were labeled via an MSKI classification matrix (Hando

et al., 2023) using the ICD-10 Codes extracted from CAPER. Days

until MSKI were calculated as the date of the first MSKI encounter

minus the in-processing date. For analysis, subjects were right-

censored if they did not sustain an MSKI (noMSKI) within 1 year

from their in-processing date, and no duplicate Service members

were present in the analysis.

Data analysis: model performance
measurements

The area under the curve (AUC) is defined as the area under

the receiver operating characteristic (ROC) curve, which quantifies

the discriminative power of a variable or multivariable model

to correctly classify outcome occurrences (e.g., MSKI) across all

probability thresholds. Because MSKI occurrence changes over

time, the time-dependent AUC (t-AUC) is used to evaluate model

discrimination as a function of time (Heagerty et al., 2000).

The t-AUC values range from 0.50 to 1, with 1 being perfect

discrimination and 0.5 being a random guess.

Calibration is a measurement of the agreement between the

predicted probability of the model and the actual risk. A perfectly

calibrated model will have prediction probabilities that exactly

match the actual risk outcomes in the data. When plotting actual

risk (y-axis) against predicted risk (x-axis), perfect calibration is

marked by the line y = x. Any deviation from this line indicates an

over- or under-optimistic model. In survival data with censoring,

the actual risk is not directly observed, so we estimate it using the

Kaplan–Meier estimate (Austin et al., 2020).

The Brier score measures both model discrimination and

calibration in one metric. In the absence of censoring, the Brier

score is the mean-squared error for binary outcomes. In the

presence of right-censoring, the Brier score is weighted with an

inverse probability of censoring. A Brier score of 0 indicates

a perfectly accurate model, a score of 1 indicates a perfectly

inaccurate model, and a score of 0.25 indicates a randomly guessing

model if the incidence was 50%. Because the incidence changes over

time in survival models, the Brier score for a random guess will also

change. To account for this change, the scaled Brier score, or index

prediction accuracy (IPA), is defined as the percent improvement

over random guess, where 0% is an uninformative model and 100%

is a perfectly accurate model (Kattan and Gerds, 2018).

Data analysis: survival models

The missing data were evaluated before analysis and were

determined to be low (pay grade: 5.5%, occupation: 1.0%, race:

0.6%, height: 0.1%). Thus, complete cases (n = 3,950) were used

for analyses. The data were randomly split into training (75%) and

test (25%) sets with an equal proportion of Service members with

MSKI in each set. The Cox proportional hazard regression (COX),

COX with splines (COX-S), conditional inference trees (CTREE),

and random forest (RF) were used to train multiple models on

the training data set. All models accounted for right-censored data
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FIGURE 1

MSKI risk assessment framework in the military; (A) application of MSKI risk assessment (green): collect relevant existing data on service members; (B)

data analysis: machine learning pipeline (blue): data analysis pipeline utilized for the creation of machine learning models in the manuscript. In

application, the Service member’s data would be inputted into the MSKI risk machine learning model for categorization of the risk bin; (C) future

model: in-depth screening and evaluation in the high-performance model (orange): In application, if the service member is flagged in risk bin four,

then further screening assessments are performed to determine if any modifiable risk factors can be addressed by the human performance sta� for

further intervention.

utilizing a survival function, and the models were trained and

tuned individually.

COX generates multivariable survival models that allow

multiple variables (continuous or categorical) to be simultaneously

assessed via survival probability. Hazard ratios were calculated to

provide event rates in one group compared to the other (Deo et al.,

2021). TwoCOXmodels were developed; COX included all features

in their raw format without transformation, while COX-S applied a
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FIGURE 2

(A) Time-dependent area under the curve receiver operator characteristic curve (t-AUC); (B) absolute Brier score, dotted black line denotes null

model; (C) Brier score scaled to the null model (0 variables) or index prediction accuracy (IPA).

restricted cubic spline basis expansion to continuous features where

the number of knots on each predictor was determined by selecting

the model with the lowest Akaike’s information criterion (AIC)

(Rutherford et al., 2015). The number of knots for each predictor

was allowed to take on integer values between 1 and 5.

The CTREE algorithm generates a single binary decision

tree where the split at each node is based on the p-value of

a statistical test. In the case of survival outcomes, the splits

are made using the log-rank test (Hothorn et al., 2015). The

significance criterion hyperparameter for the CTREE model

was selected using 10-fold cross-validation to maximize the t-

AUC at 180 days. The significance criterion hyperparameter

was evaluated at the following values: 0.8, 0.85, 0.9, 0.95,

and 0.99.
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FIGURE 3

Cox proportional hazards regression (COX) model (final model) coe�cients. Red = significant (p < 0.05), Black = non-significant; dots are hazard

ratios with bars signifying a 95% confidence interval.

The RF algorithm creates an ensemble of decision trees that

fit the bootstraps of the data, so predictions are made based on

majority voting across the ensemble (Biau and Scornet, 2016). RF is

extended to survival data by approximating the cumulative hazard

function in each leaf node with the Nelson–Aalen estimator and

splitting nodes based on maximizing the concordance index of the

tree (Ishwaran et al., 2008). The hyperparameters for the RF model

were tuned by maximizing the out-of-bag concordance index over

a grid search for the minimum number of observations per node

(3, 5, 7, and 9) and the number of features to consider at each split

(2, 4, 6, 8, and 10). The final model was trained with these chosen

hyperparameters and an ensemble size of 500 trees.

After tuning model hyperparameters, all models were trained

on the full training set and evaluated on the testing data. Model

performances on the test set were evaluated using the t-AUC and

scaled Brier score for time horizons between 30 and 365 days. The

final model selection was performed by minimizing the Brier score

at 180 days. Based on this criterion, the COX model was selected

for risk stratification.

Data analysis: musculoskeletal injury risk
stratification

The COX model’s calibration curve was binned by quartiles to

create four equal “risk bins” to compare predicted risk to estimated

risk in each bin across different time horizons (30, 90, 180, and

365 days). Calibration was assessed qualitatively by comparing

the mean predicted risk in each group with their Kaplan–Meier

estimate. Incidence rates (IRs) and incidence rate ratios (IRRs)

were used to compare MSKI incidences across risk bins and

time horizons (risk bin 1 served as the reference). Comparisons

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1420210
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Bird et al. 10.3389/frai.2024.1420210

FIGURE 4

Cox proportional hazards regression (COX) model (final model) calibration curves for each time horizon. Dots represent mean calibration within each

risk group bin, with standard error of the counts of subjects across the bin. Histograms represent the distribution of Service member counts in each

risk bin across the predicted risk. Histograms shading represent risk bins: light gray = risk bin 1 … black = risk bin 4.

were made across the risk bins using Fisher’s exact test for

categorical features and the one-way ANOVA for continuous

features. Additional post-hoc comparisons were performed by

comparing risk bin 1 to risk bin 2, risk bin 3, and risk bin 4

with a Holm–Bonferroni adjustment on the p-values. See Figure 1

(data analysis: machine learning pipeline) for our data analysis

framework. R version 4.2 was used for all statistical analysis, namely

packages caret, riskRegression, tidymodels, survival, party, ranger,

dplyr, readr, ggfortify, and gridExtra (R Core Team, 2019). R scripts

are provided in Supplementary material.

Results

The MSKI incidence rates were 780.9 per 1,000 person-years,

785.1 per 1,000 person-years, and 768.3 per 1,000 person-years for

the entire data set (100%), the training data set (75%), and the test

data set (25%), respectively, during the 1 year surveillance period.

The t-AUC performance for COX, COX-S, and RF were similar at

each time horizon, while the CTREE t-AUC was ∼0.05 less at each

time horizon. There was a 0.06 t-AUC decline from 30 to 365 days

averaged across all models (Figure 2A). The absolute Brier score

demonstrated similar performance across each model at each time

horizon, with no models greater than the null model (0 variables;

Figure 2B). The scaled Brier score (i.e., IPA, Figure 2C) was similar

across all models up to 90 days (90 days = 10–12%), while

the CTREE declined over time, and the COX IPA performance

was greater at all time horizons past 90 days compared to the

other models. Overall, the COX model had the best performance

compared to the COX-S, RF, and CTREE when evaluating the t-

AUC and IPA. Based on the criterion at 180 days, the COX model

was chosen as the final model for evaluation (t-AUC = 0.70 and

IPA = 12.4%) and further analysis. The COX model demonstrated

the top five MSKI risk factors were {reported as hazard ratio and
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FIGURE 5

Kaplan–Meier curve, stratified by four risk bins and number of subjects at risk for each time horizon.

95% confidence interval [HR (95% CI)]}: “other” race [3.3 (1.4–

8.2)], three movement pain items [2.2 (1.7–2.9)], two movement

pain items [1.9 (1.6–2.4)], female gender [1.6 (1.3–1.9)], and prior

MSKI [1.5 (1.3–1.8)] (Figure 3).

The COX model calibration curve binned into quartiles

demonstrated four groups of predicted and estimated risk across 30,

90, 180, and 365 days (Figure 4). The estimated risk fell within the

mean predicted risk point estimate and standard error, indicating

good calibration of the COX final model (Figure 4). The median

survival time (95% confidence interval) in risk bin 4 was 119 (85–

142) days, in risk bin 3 was 331 (268-NA) days, and for risk bins 1

and 2 could not be calculated within 1 year (Figure 5).

Risk bin 4 had the highest IR and IRR at each time horizon.

The overall IR was lowest at the time horizon of 365 days when

compared to 30, 90, and 180 days, respective to each risk bin

(Table 2). In risk bin 4, compared to risk bin 1, there were a greater

proportion of female members, enlisted Service members, Service

members with prior MSKIs, Service members with pain during

the Army Combat Fitness Test (ACFT), those in combat service

support occupations, married Service members, non-white Service

members, Service members with an MSKI-related limited duty

profile, those with prior stress fracture, those with prior surgery,

and those with >1 pain across movement screens (Table 3). In

addition, risk bin 4 Service members were shorter in height (bin

4: 173.2± 9.4 cm, bin 1: 176.8± 7.1 cm; p= <0.001), reported less

sleep (bin 4: 6.0 ± 1.1 h, bin 1: 6.6 ± 0.9 h; p < 0.001), and were

older (bin 4: 25.6 ± 6.4 y, bin 1: 22.9 ± 4.5 y; p < 0.001) than risk

bin 1 (Table 3). Risk bin 3 had similar findings as risk bin 4 when

compared to risk bin 1, while risk bin 2 was more comparable to

risk bin 1.

Discussion

Our overall objective was to evaluate if data elements extracted

from self-reported questionnaires and existing data sources in

military Service members could be used to create a predictive

model for assessing MSKI risk. We (1) created a valid and modular

MSKI risk predictive model, (2) determined what key features are

important for MSKI risk modeling, and (3) provided a framework

for MSKI risk stratification through self-reported and existing

data sources.

Overall, the models we evaluated were discriminative (t-AUC

COX and RF, 30- to 180-day time horizons = 0.73–0.70), and all

models performed better than the null model (0 variables) across

all time horizons (Figure 2). The COX model demonstrated the

best overall performance across all time horizons compared to

the other models. However, our models performed worse than

previously described military MSKI risk models (Rhon et al.,

2022b; Shaw et al., 2023). In an Army Ranger cohort, the

logistic regression and cross-validation techniques produced a

discriminative (cross-validation AUC = 0.90) and accurate (Brier

score = 0.12) MSKI risk model with demographic, biomechanical,

and Army physical fitness scores (Rhon et al., 2022b). Similarly,
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TABLE 2 Risk bins across time horizons incidence rates.

Time (days) Quantile
(risk bin)

IR ± SE IRR (95%CI) IRR
p-value

Log rank Log rank
p-value

30 1 299.51± 122.27 Reference

2 818.03± 204.51 2.73 (1.07, 6.98) 0.036 4.79 0.029

3 654.93± 181.65 2.19 (0.83, 5.75) 0.113 2.65 0.104

4 2,817.26± 394.5 9.41 (4.04, 21.92) <0.001 40.24 <0.001

90 1 465.73± 89.63 Reference

2 628.94± 106.31 1.35 (0.82, 2.23) 0.241 1.39 0.238

3 973.8± 133.76 2.09 (1.32, 3.32) 0.002 10.36 0.001

4 2,474.68± 234.89 5.31 (3.49, 8.09) <0.001 76.10 <0.001

180 1 449.21± 64.17 Reference

2 626.32± 77.69 1.39 (0.96, 2.02) 0.079 2.79 0.095

3 891.95± 95.63 1.99 (1.4, 2.82) <0.001 14.57 <0.001

4 2,130.82± 171.15 4.74 (3.44, 6.54) <0.001 101.22 <0.001

365 1 480.94± 49.34 Reference

2 510.57± 52.38 1.06 (0.8, 1.41) 0.680 0.12 0.733

3 789.63± 68.73 1.64 (1.26, 2.14) <0.001 13.13 <0.001

4 1,721.2± 125.2 3.58 (2.8, 4.58) <0.001 99.50 <0.001

Risk bins stratified based on the Cox proportional hazards regression model. Incidence rates (IR)± standard error (SE); Incidence rate ratios (IRR) (95% confidence interval); Reference group

(risk bin 1) compared to 2, 3, and 4 risk bins within each time horizon.

an RF model for medial tibial stress syndrome in military cadets,

with an externally validated dataset of Australian Navy recruits,

demonstrated discriminative (test set AUC = 0.92) capabilities

(Shaw et al., 2023). In general, the worse performance of ourmodels

may relate to the granularity of variables being assessed. In our

study, dichotomized variables (e.g., yes/no response) were used

and may not have provided enough information for the algorithms

to “learn” or the variables were not as closely related to MSKI

when compared to more granular data (e.g., biomechanical data).

Furthermore, previous research did not apply survival-typemodels;

thus, it is difficult to make model performance comparisons (Rhon

et al., 2022b; Shaw et al., 2023).

Survival analyses are rarely utilized in MSKI risk research

unless for inference and association rather than prediction (e.g.,

epidemiologic research) (Sharma et al., 2017; Hando et al., 2023).

For example (Nielsen et al., 2019a), out of 31 original research

studies, only two used “time-to-event” or survival analyses (Drew

and Finch, 2016) when associating training load toMSKI outcomes.

In MSKI risk research, it may be more advantageous to analyze a

rate (e.g., survival–hazard ratios) compared to a static risk (e.g.,

odds ratios), especially when analyzed over an extended exposure

time (e.g., 1 year). By calculating a rate, exposure time is included

in the modeling, which could be helpful in determining how useful

a screening tool/measurement is up to a specified time horizon, as

determined by t-AUC or expected survival time among particular

groups (Nielsen et al., 2019a). To a clinician, time-to-event may

assist in allocating resources, such as staff or additional screening,

to mitigate MSKI risk among a group of Service members before

the MSKI occurrence at a specified time horizon (Nielsen et al.,

2019b).

Our baseline COX model outperformed all models when

evaluating the varying performance metrics. The RF model

performed similarly to COX, but the COX model was chosen as

the final model to aid clinical interpretation due to the slightly

better performance at 180 days (t-AUC 180 days: COX = 0.70,

RF = 0.69; IPA 180 days: COX = 12.4%, RF = 10.2%). The COX

model may have outperformed the RF model due to the large

number of dichotomized variables (RF is robust to continuous

type variables but may lead to overfitting) or a few variables

explaining the majority of model performance. While the variables

most important for modeling (i.e., prior MSKI, female gender,

and movement pain; Figure 3) are in agreement with decades of

previous research (Rhon et al., 2022a; Hando et al., 2023), many of

these are non-modifiable and subject to minimal change states over

an extended exposure time (e.g., occupation changes infrequently;

Table 1).

Models such as RF are typically deemed “black box” algorithms

as there are ensembles of decision trees that are utilized for model

building, and extrapolating a single decision tree does not reflect

the overall ensemble of trees (Ishwaran et al., 2008; Price, 2018).

On the other hand, the CTREE is a single decision tree that is

considered a “white box” algorithm andmay be easier for a clinician

to interpret (Loyola-Gonzalez, 2019). However, the CTREE model

had the worst overall model performance (t-AUC 180 days= 0.65).

We included the CTREE decision tree (Supplementary Figure 1)

and the COX model hazard ratios (Figure 3) to demonstrate the

interoperability of these “white box” algorithms for immediate

MSKI risk decision support tools.

To empirically evaluate the COX model, Service members in

the test data were stratified into quartiles based on predicted risk
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TABLE 3 Risk bin descriptive statistics.

Variable Levels Risk bins P-values

One
(n = 247)

Two
(n = 246)

Three
(n = 247)

Four
(n = 247)

Omnibus One
vs. two

One vs.
three

One
vs. four

Paygrade Officer 26.3% 6.9% 8.9% 10.1% 0.001 0.001 0.001 0.002

E5-E9 19.4% 16.7% 17.0% 21.1%

E1-E4 54.3% 76.4% 74.1% 68.8%

Occupation Combat arms 67.6% 32.9% 27.9% 19.8% 0.001 0.001 0.001 0.001

Combat

Service support

18.2% 29.3% 41.7% 48.2%

Combat support 14.2% 37.8% 30.4% 32.0%

Gender Male 99.6% 96.7% 78.5% 70.9% 0.001 0.668 <0.001 <0.001

Female 0.4% 3.3% 21.5% 29.1%

Marital status Single 79.4% 72.4% 59.9% 55.5% 0.001 1.00 <0.001 <0.001

Married 20.6% 27.6% 40.1% 44.5%

Race White 89.1% 80.5% 69.6% 53.4% 0.001 0.256 0.001 0.001

Asian or

Pacific Islander

3.2% 8.1% 3.6% 6.5%

Black 6.5% 11.4% 24.7% 36.4%

American

Indian or

Alaskan native

0.8% – 1.6% 0.8%

Unknown 0.4% – 0.4% –

Other – – – 2.8%

Prior MSKI No 100.0% 98.4% 89.9% 50.2% 0.001 1.00 <0.001 <0.001

Yes – 1.6% 10.1% 49.8%

Nicotine use No 57.9% 67.5% 76.9% 71.3% 0.005 0.901 0.001 0.120

Yes 42.1% 32.5% 23.1% 28.7%

ACFT fail No 86.6% 85.0% 81.4% 76.1% 0.469 1.00 1.00 0.167

Yes 13.4% 15.0% 18.6% 23.9%

ACFT pain No 99.2% 96.3% 88.3% 57.9% 0.001 0.944 <0.001 <0.001

Yes 0.8% 3.7% 11.7% 42.1%

Surgery No 100.0% 99.2% 98.8% 89.1% 0.001 1.00 1.00 <0.001

Yes – 0.8% 1.2% 10.9%

MSKI profile No 100.0% 99.2% 91.9% 54.3% 0.001 1.00 <0.001 <0.001

Yes – 0.8% 8.1% 45.7%

Stress fracture No 98.0% 93.9% 95.5% 82.2% 0.001 0.706 1.00 <0.001

Yes 2.0% 6.1% 4.5% 17.8%

Movement

pain

0 99.6% 98.4% 83.4% 35.6% 0.001 1.00 0.001 0.001

1 0.4% 1.6% 14.2% 36.8%

2 – – 2.0% 15.8%

3 – – 0.4% 11.7%

Age (years) 22.9± 4.5 23.1± 5.1 24.3± 5.1 25.6± 6.4 <0.001 1.00 0.063 <0.001

Mass (kg) 76.1± 10.3 78.7± 9.5 79.0± 12.4 78.0± 13.1 0.668 0.167 0.182 1.00

Height (cm) 176.8± 7.1 176.0± 7.9 174.5± 9.3 173.2± 9.4 0.001 1.00 0.112 <0.001

Sleep (hours) 6.6± 0.9 6.6± 1.0 6.2± 1.0 6.0± 1.1 <0.001 1.00 <0.001 <0.001

Descriptive statistics for each risk bin from the Cox proportional hazards regression model; categorical predictors are proportions (%) across the grouping feature, Fisher’s exact test across risk

bins; numeric features are means± standard deviation, one-way ANOVA across risk bins; dashed line (–) denotes, “no value”.
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at four time horizons. In the COX model, when compared to

risk bin 1, risk bin 4 had a 9.41× (30 days), 5.31× (90 days),

4.74× (180 days), and 3.58× (365 days) significantly greater

MSKI risk (Table 2). Thus, we successfully stratified groups into

low- to high-MSKI risk bins. Our approach may be utilized

as a clinical decision support tool to identify Service members

who require more in-depth screenings to assess their MSKI risk

more thoroughly. Our recommended utilization for the MSKI risk

prediction model is to stratify Service members into quartiles or

use the top percentage of participants (e.g., top 10%) predicted

probability risk to create an “at risk” bin for further screening

and potential intervention (Figure 1B) (Roach et al., 2023). An

example may be to follow up on the “at-risk” participants with

biomechanical assessments that provide feedback to mitigate

potential dysfunctional movement patterns (Bird et al., 2022) or

in-depth clinical assessments to identify (i.e., Figure 1C: additional

screening), properly diagnose (i.e., Figure 1C: Human Performance

Staff), and treat present MSKIs (i.e., Figure 1C: Intervention).

We stratified the Service members into quartiles, but, dependent

on the staffing and time allotted for additional screening and/or

interventions, other stratification methods may be used (e.g.,

quintiles) to increase/decrease the number of Service members who

screen into each quantile. Regardless of the number of MSKI risk

categories, identifying a “high-risk group” with routinely collected

variables (i.e., self-reported MSKI risk screen data = ∼30min time

to assess 150 Service members) or already collected data (i.e., health

records), this may be a method to drastically reduce the number

of Service members requiring more in-depth MSKI risk screening

(Roach et al., 2023).

Congruent with previous research, we found that female

gender, prior MSKI, and pain with movement assessments were

MSKI risk factors (Rhon et al., 2022a; Roach et al., 2023).

Interestingly, the selection of “other race” had the highest hazard

ratio [3.3 (1.4–8.2)] (Figure 3), and Service members who identified

as “other” were all distributed to the high-risk bin after stratification

(Table 3). All race data were extracted from DEERS and included

the following categories: White, Asian or Pacific Islander, Black,

American Indian or Alaskan, Other, and Unknown. While several

studies have identified an association between race and MSKI risk,

the findings are contradictory, and there is no clear association

as to which race is at the highest MSKI risk (Sammito et al.,

2021). Furthermore, MHS data systems do not fully capture

race data, as Service members are unable to view or edit their

DEERS data (Michael-Anne Browne, 2023). Thus, we are unable

to determine whether disparities exist, and further investigation

into race and MSKI risk is needed. On the other hand, modifiable

risk factors (e.g., pain with three and two movement assessments)

were highly associated with MSKI (Figure 3). Thus, pain with

movement assessments may provide a guided in-depth screening to

understand the underlying mechanism of pain, allowing a human

performance staff teammember to potentially intervene (Figure 1).

The primary strength of our study was developing a training

model and testing the model on hold-out test data, as many original

research articles conclude their findings with the training model

(Van Eetvelde et al., 2021). Additionally, we provided potential cut-

points to assess MSKI risk for clinicians (Table 3) and a framework

for MSKI risk modeling (Figure 1) using existing data sources.

However, our study is not without limitations. Our primary

limitation is that our analyses include MSKI diagnostic codes, as

MSKIs are only identified if the Service member sought care for

the MSKI. Service members often do not seek medical care, and

MSKIs may go unreported (Sauers et al., 2016). Additionally,∼300

observations were removed due to data being incomplete, which

is common when utilizing secondary data sources. Furthermore,

our framework only designates high-risk Service members (n =

247) for in-depth screening, which inherently leaves 740 Service

members without more in-depth MSKI risk screening data. Since

our model is based on MSKI risk probability, we decided to

structure our framework to further screen Service members at

the greatest estimated MSKI risk probability to reduce the time

burden on clinicians due to the large number of U.S. military

Service members.

Conclusion

Service members’ MSKI risk levels can be determined from self-

reported MSKI risk screens and existing military data. This high-

throughput approach will improve the ability to complete initial

MSKI risk assessment en masse and reduce the number of Service

members requiring “in-depth” screenings, as healthcare providers

and strength and conditioning professionals can focus their efforts

on the highest risk individuals. Decreasing additional screenings

across all Service members reduces the time burden on the Service

member and clinical staff and increases resource allocation to

other necessities across the MHS. Thus, the next step is to deploy

this type of algorithm directly into an electronic health record

or within an operational military unit. This original research is a

continuation of the modernization of the MHS with 21st-century

capabilities by delivering a framework that may be deployable in

the MHS infrastructure.
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