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Noise-induced modality-specific 
pretext learning for pediatric 
chest X-ray image classification
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Sameer Antani *

Computational Health Research Branch, National Library of Medicine, National Institutes of Health, 
Bethesda, MD, United States

Introduction: Deep learning (DL) has significantly advanced medical image 
classification. However, it often relies on transfer learning (TL) from models 
pretrained on large, generic non-medical image datasets like ImageNet. 
Conversely, medical images possess unique visual characteristics that such 
general models may not adequately capture.

Methods: This study examines the effectiveness of modality-specific pretext 
learning strengthened by image denoising and deblurring in enhancing the 
classification of pediatric chest X-ray (CXR) images into those exhibiting no 
findings, i.e., normal lungs, or with cardiopulmonary disease manifestations. 
Specifically, we  use a VGG-16-Sharp-U-Net architecture and leverage its 
encoder in conjunction with a classification head to distinguish normal from 
abnormal pediatric CXR findings. We benchmark this performance against the 
traditional TL approach, viz., the VGG-16 model pretrained only on ImageNet. 
Measures used for performance evaluation are balanced accuracy, sensitivity, 
specificity, F-score, Matthew’s Correlation Coefficient (MCC), Kappa statistic, 
and Youden’s index.

Results: Our findings reveal that models developed from CXR modality-specific 
pretext encoders substantially outperform the ImageNet-only pretrained 
model, viz., Baseline, and achieve significantly higher sensitivity (p  <  0.05) with 
marked improvements in balanced accuracy, F-score, MCC, Kappa statistic, 
and Youden’s index. A novel attention-based fuzzy ensemble of the pretext-
learned models further improves performance across these metrics (Balanced 
accuracy: 0.6376; Sensitivity: 0.4991; F-score: 0.5102; MCC: 0.2783; Kappa: 
0.2782, and Youden’s index:0.2751), compared to Baseline (Balanced accuracy: 
0.5654; Sensitivity: 0.1983; F-score: 0.2977; MCC: 0.1998; Kappa: 0.1599, and 
Youden’s index:0.1327).

Discussion: The superior results of CXR modality-specific pretext learning and 
their ensemble underscore its potential as a viable alternative to conventional 
ImageNet pretraining for medical image classification. Results from this study 
promote further exploration of medical modality-specific TL techniques in the 
development of DL models for various medical imaging applications.
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1 Introduction

In the evolving landscape of artificial intelligence (AI) driven 
medical diagnostics, the use of deep learning (DL) methods for chest 
X-ray (CXR) analysis promises enhanced clinical outcomes and 
operational efficiencies (Pasa et al., 2019). Chest radiography, despite 
its relatively lower sensitivity compared to advanced modalities like 
computed tomography (CT), remains a de facto standard in diagnostic 
imaging due to its cost-effectiveness, lower radiation dose, and 
widespread availability. Its use is particularly critical in resource-
constrained environments where access to high-end imaging 
technologies is limited. Modern DL-driven AI leverages multi-layered 
neural networks to learn hierarchical feature representations directly 
from the data bypassing the need for manual feature extraction.

1.1 Related works

The application of DL models, such as convolutional neural networks 
(CNNs), for analyzing CXR datasets has yielded promising results in 
identifying, grading, and localizing cardiopulmonary manifestations such 
as tuberculosis, pneumonia, and COVID-19, among others, thereby 
enhancing the interpretative depth of automated radiographic analyses 
(Akhter et  al., 2023; Mei et  al., 2022). The advent of extensive CXR 
datasets, coupled with advances in DL model architecture, training 
strategies, and data engineering (Kumarasinghe et al., 2022; Nimalsiri 
et al., 2023; Kolonne et al., 2021), has catalyzed significant breakthroughs 
in the field of medical diagnostics. Many publicly available DL models are 
conventionally trained on ImageNet (Fei-Fei et al., 2010), which is an 
extensive collection of stock photography images. In conventional transfer 
learning (TL), the feature representations learned by these DL models are 
subsequently transferred and fine-tuned for a downstream task. Medical 
modality-specific knowledge transfer, on the other hand, refers to the 
strategic process of transferring knowledge gained from training a DL 
model on large, medical modality-specific (e.g., CXRs) datasets, 
encapsulating unique characteristics of those medical images, to improve 
performance on the related downstream task (Xue et al., 2023). Recent 
reviews, such as the comprehensive analysis provided in Meedeniya et al. 
(2022), highlight the progress in DL-based CXR analysis but also 
underline the need for innovations that tailor these approaches more 
closely to specific medical modalities. Medical imaging modalities, such 
as CXRs, capture various anatomical and functional information. Unlike 
the images in the ImageNet collection, CXRs are characterized by a high 
degree of similarity across different classes of pathologies and a relatively 
low variance within the same disease class that is separated only by subtle 
differences in texture, shape, and visual features. This distinction prompts 
a departure from using conventional TL methods toward a consideration 
of a medical modality-specific knowledge transfer that closely aligns with 
the inherent complexities of medical images (Yang et al., 2023). This 
approach not only addresses the limitations posed by conventional TL 
that learn irrelevant feature representations but also significantly reduces 
the risk of model overfitting, particularly when the downstream task 
involves using smaller and potentially imbalanced datasets that are 
common in medical tasks. Each of these studies contributes to the broader 
understanding of chest X-ray analysis but also highlights the need for 
more specialized approaches, particularly for pediatric populations. Our 
research fills this gap by implementing modality-specific learning 
strategies that are explicitly designed for and validated on pediatric chest 

X-ray datasets, addressing both the unique challenges and the clinical 
requirements of this demographic.

In this research, we  aim to hypothesize that the CXR modality-
specific pretext learning tasks such as image denoising and deblurring 
may help learn robust feature representations that can subsequently 
be transferred and fine-tuned to improve sensitivity in a downstream 
pediatric CXR classification task. We  aim to prove that through 
comparison with a traditional fine-tuning approach using an ImageNet-
pretrained model. To the best of our knowledge, this study is the first to 
attempt to perform such an analysis. Using a U-Net framework (described 
in Section 2.3.1), our method employs two specific pretext learning 
strategies. These involve the removal of Gaussian noise and Gaussian blur 
distortions that have been artificially applied to CXRs. We hypothesize 
that training the U-Net to restore clean images would force the model to 
learn to identify and prioritize the reconstruction of critical features over 
the distortions. In the process of learning the restoration, the trained 
models could learn to discern and encode the relevant disease feature 
representations in the original images. We  anticipate a marked 
improvement in sensitivity with these CXR modality-specific pretext-
learned models due to improved initialization over a naive ImageNet-only 
pretrained model by truncating them at the encoder and adding 
classification layers for a downstream pediatric CXR classification task.

1.2 Study contribution

The following points highlight the contributions of this study:

 i We introduce an Attention Fuzzy (A-F) ensemble that integrates 
the pretext-learned models using a learnable fuzzy-based logic. By 
incorporating a learnable parameter that controls the fuzziness of 
the model combination, we aim to strike a balance, dynamically 
adjusting the influence each model exerts based on its confidence.

 ii Our research demonstrates the effectiveness of leveraging the 
specialized knowledge gained from CXR denoising and 
deblurring tasks to enhance performance in a downstream 
CXR classification task over conventional TL approaches.

 iii We adopt a U-Net model that is traditionally utilized for 
biomedical image segmentation for the CXR denoising and 
deblurring pretext learning tasks, demonstrating its versatility.

As a result of these contributions, we believe that our study lays 
the groundwork for broader applications of medical modality-specific 
knowledge transfer for other DL-based medical image analyses.

2 Materials and methods

2.1 Datasets and preprocessing

The datasets used in our study include the following:

 i Pediatric Pneumonia CXR (Kermany et al., 2018): A collection 
of de-identified images from the Guangzhou Medical Center 
in China comprising 4,273 CXRs of children aged 1–5 years 
that are diagnosed with either bacterial or viral pneumonia and 
1,583 CXRs of normal (no-findings) lungs. We use this dataset 
for image denoising and deblurring tasks.

https://doi.org/10.3389/frai.2024.1419638
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Rajaraman et al. 10.3389/frai.2024.1419638

Frontiers in Artificial Intelligence 03 frontiersin.org

 ii VinDr-PCXR (Pham et al., 2023): This dataset includes 9,125 
de-identified CXR scans collected from major Vietnamese 
hospitals between 2020 and 2021. The collection features CXR 
images of 5,354 male and 3,709 female pediatric patients with 
62 pediatric images of undisclosed gender. Out of 8,755 
pediatric CXRs, 5,876 show normal lungs while 2,879 manifest 
various cardiopulmonary abnormalities. We use this dataset for 
the classification task.

Both datasets are split at the patient level into three groups: 70% 
for training, 10% for validation, and 20% for hold-out testing, 
respectively, to prevent data leakage and learning bias. Table 1 provides 
the details of this data partition.

We apply a U-Net model with an Inception-V3 encoder backbone, 
which we previously used in Rajaraman et al. (2023) to segment the 
lung regions and crop them to a bounding box encapsulating the lung 
pixels. This approach prevents the model from learning features that 
are irrelevant to the lung regions in CXR images. The cropped images 
are resized to 224 × 224 pixels to address computational demands and 
the pixel values are normalized to the range [0, 1].

2.2 Adding Gaussian noise and blur

The quality of the CXR image plays a pivotal role in their automated 
diagnostic analysis and accurate disease identification. Achieving 
optimal image quality is often challenged by various factors, including 
technical limitations, patient-specific conditions, and the inherent 
constraints of imaging modalities. One such critical challenge is 
radiation underexposure, a frequent occurrence in clinical settings, 
which introduces quantum mottle or noise (Huda and Abrahams, 
2015; Tischenko et al., 2005) and significantly affects their diagnostic 
utility. We adopt a Gaussian noise addition approach to simulate this 
noise and mimic the effects typically observed in CXRs exhibiting 
radiation underexposure.

 i Each CXR image is processed to normalize its intensity levels 
to a range between 0 and 1. This standardization is crucial 
for ensuring consistency in the subsequent noise addition 
process across all images.

 ii We generate Gaussian noise characterized by a zero mean 
and a unit standard deviation. This noise is scaled by a set 
of predefined variance factors [0.02, 0.04, 0.06, 0.08, 0.1], 
representing different levels of radiation underexposure. 
The variance factors are chosen to span a realistic spectrum 
of underexposure conditions, from mild to severe.

 iii For each image in the Pediatric Pneumonia CXR dataset, a 
variance factor is randomly selected from this predefined list. This 
ensures that each image is subjected to a unique level of noise, 
thereby introducing variability into the training process.

 iv The synthesized noise is added to the normalized CXR 
images with the noise intensity tailored per the chosen 
variance factor.

 v Finally, the images added with Gaussian noise are rescaled to 
their original intensity range of 0–255 and saved. This step 
ensures the retention of the original image format while 
incorporating the simulated effects of noise.

The clarity of a CXR is also influenced by the capabilities of 
the imaging detector. A phenomenon known as detector crosstalk 
occurs when the energy from one pixel inadvertently spreads to 
those nearby, leading to blurring (Huda and Abrahams, 2015). 
Movements or vibrations, whether from the subject being imaged 
or the imaging apparatus itself, also add to the blur, further 
complicating the task of obtaining clear images. To simulate these, 
we  adopt a Gaussian blurring approach to mimic such effects 
observed in CXR images. The methodology utilized for applying 
Gaussian blur is discussed below:

 i We apply Gaussian blur, characterized by its kernel size, that 
determines the extent of blurring. The kernel size is selected 
randomly from a predefined set of sizes [3 × 3, 5 × 5, 7 × 7, 
and 9 × 9].

 ii The standard deviation (sigma) of the Gaussian filter is 
automatically calculated using the function in the OpenCV 
library such that the blurring effect is optimally adjusted 
according to the kernel size.

 iii The processed images with Gaussian blur applied are saved for 
subsequent analysis.

It is crucial to acknowledge the stochastic nature of noise and 
blur phenomena in clinical imaging settings. In real-world 
scenarios, blur and noise do not follow a uniform or deterministic 
pattern; they are subject to a wide range of variabilities due to 
patient movement, variations in imaging protocols and 
radiographer skill, and intrinsic properties of the detector systems. 
To simulate this randomness and its impact on imaging quality, 
we incorporate a stochastic component in our methodology by 
introducing random variations in the noise and blur applied to 
each image. This random selection from our predefined set of 
variance factors for the noise and the kernel sizes for the blur aims 
to more closely mimic the unpredictable and varied nature of 
noise and blur encountered in clinical practice. It is important to 
note that the literature does not explicitly define the direct 
correlation between specific variance factors and the noise and the 
Gaussian filter sizes and the blur present in CXRs. Our approach 
is a methodological choice that aims to create a dataset that 
challenges the robustness of the algorithm against various degrees 
of image degradation, thereby introducing variability, rather than 
precise modeling of the physical phenomena of noise and blur.

TABLE 1 Dataset partitioning.

Dataset Task Total Training Validation Test

Pediatric Pneumonia CXR Denoising/deblurring 5,856 4,100 586 1,170

VinDr-PCXR Classification 8,755 6,129 876 1,750

This table shows the total number of images in the two datasets used in this study with respective fractions used for training, validation, and hold-out testing.
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2.3 Model architecture

2.3.1 VGG-16-Sharp-U-Net
We use the VGG-16-Sharp-U-Net architecture for image 

denoising and deblurring tasks. The encoder, or the contracting path, 
adopts the VGG-16 (Simonyan and Zisserman, 2015) architecture 
and is initialized with random weights. The VGG-16 model, 
renowned for its simplicity and effectiveness, has been widely adopted 
in the field of medical image classification, particularly with CXRs 
(Bougias et al., 2021; Nishio et al., 2020). The 1st and 2nd encoder 
block consists of two 3 × 3 convolutional layers with rectified linear 
unit (ReLU) activations, followed by a 2 × 2 max-pooling layer. The 
3rd, 4th, and 5th encoder blocks consist of three 3 × 3 convolutional 
layers with ReLU activations, followed by a 2 × 2 max-pooling layer, 
except the 5th block, which does not include a pooling layer. We use 
64, 128, 256, 512, and 512 filters, respectively, for the convolutional 
layers in the encoder blocks. The symmetrical decoder or the 
expanding path may be regarded as an operator that performs the 
reverse of the contracting path. The 1st and 2nd block in the decoder 
comprises a 2 × 2 up-convolution to up-sample the features, followed 
by three 3 × 3 convolutions with ReLU activations. The 3rd and 4th 
blocks comprise a 2 × 2 up-convolution, followed by two 3 × 3 
convolutions with ReLU activations. The final convolutional layer has 
one 3 × 3 convolution and a sigmoidal activation to predict the 
denoised/deblurred image. The encoder abstracts and compresses the 
input data. This leads to the loss of fine-grained details crucial for 
precise localization. The decoder projects the lower-resolution 
encodings back to the original image space. However, solely relying 
on the decoder’s up-sampled outputs can result in a loss of detail due 
to the prior compression steps. Skip connections mitigate information 
loss by concatenating the high-resolution features from the encoder 
to the corresponding up-sampled features in the decoder. This fusion 
of context and localization cues enables the U-Net to reconstruct 
images with both high-level semantic clarity and detailed spatial 
accuracy. The authors of Zunair and Ben (2021) observe that a feature 
mismatch occurs when the low-level, fine-grained encoder features 
are fused with the high-level, semantic, and course-grained decoder 
features. This fusion may result in blurred feature maps throughout 
the learning process and may adversely affect image reconstruction. 
Hence, Zunair and Ben (2021) proposed an approach to reduce this 
feature mismatch where the encoder features undergo a depth-wise 
convolution (i.e., spatial convolution operation performed 
independently over each channel of the encoder features) with a 
sharpening spatial kernel. This sharpening operation enhances edges 
and details, thereby sharpening the details in the encoder feature 
maps and hence balancing the semantic gap introduced by the high-
level process in the decoder network. By making the encoder and 
decoder features more semantically compatible, the sharpening 
operation facilitates a smoother gradient flow across the network 
during backpropagation (Zunair and Ben, 2021). The sharpening 
operation does not introduce any learnable parameters. Such an 
approach might be especially beneficial in learning denoising and 
deblurring tasks, as these tasks necessitate the preservation and 
emphasis of fine image details that are often compromised by noise 
and blur artifacts. The sharpened feature maps are thus more aligned 
in semantic richness with the decoder’s outputs, facilitating a more 
coherent and detailed reconstruction of the denoised or 
deblurred image.

Using the interactive tool at Setosa.io1 to study the effects of 
various image kernels, we elected to incorporate a 3 × 3 sharpening 
kernel in the skip connections between the encoder and the decoder. 
A sharpening kernel, defined as [0 –1 0; −1 5 –1; 0 –1 0], was 
specifically selected for its capacity to accentuate the differences in 
adjacent pixel values, a property that is essential in medical imaging 
for enhancing edge definition and contrast. The central weight of 5 in 
the sharpening kernel increases the intensity of the center pixel 
relative to its neighbors. This is particularly effective for maintaining 
and highlighting critical structures within the images, such as edges, 
textures, and fine details. The negative weights surrounding the center 
serve to subtract the average surrounding pixel value, further 
accentuating the differences between adjacent pixel intensities. This 
operation effectively highlights edges and textures by increasing their 
visibility against the surrounding areas, thereby enhancing the 
perceptual sharpness of the image. Depth-wise convolutions process 
each channel of the input independently, preserving the distinct 
characteristics of each feature map while applying the sharpening 
effect. Figure 1 shows the architecture of the VGG-16-Sharp-U-Net 
used in our study.

The proposed model is trained with image pairs. For the denoising 
task, the input is a Gaussian noise-added image with its original, clean 
counterpart as the label. For the deblurring task, the input is a 
Gaussian-blurred image with its clean counterpart as the label. The 
model is configured to output a denoised/deblurred image. We utilize 
the Adam optimizer for training optimization, starting with an initial 
learning rate of 1 × 10−3. We minimize the Structural Similarity Index 
Measure (SSIM) loss, which is chosen for its efficacy in capturing the 
perceptual difference between the predicted and ground-truth (GT) 
images. We monitor Mean Squared Error (MSE) and Mean Absolute 
Error (MAE) as secondary metrics, along with the Peak Signal-to-
Noise Ratio (PSNR) and SSIM for performance evaluation. 
We implement a robust training regimen complemented by several 
key callback functions aimed at optimizing the training process and 
ensuring model generalization. We dynamically adjust the learning 
rate during training while monitoring the validation loss as a key 
indicator of model performance. If the validation loss ceases to 
decrease for 10 epochs, a scenario indicative of a plateau in the 
learning process, the learning rate is reduced by a factor of 0.5. This 
approach allows the model to make finer adjustments to the weights, 
potentially navigating out of local minima or plateaus in the loss 
landscape. The learning rate reduction continues until it reaches a 
lower bound of 1 × 10−6, ensuring that the learning rate does not 
decrease to a level that would be counterproductive for the training 
process. Concurrently, we save only the model weights that achieve 
the lowest validation loss, thereby ensuring that the model version 
with the highest generalization capability is retained for 
subsequent evaluation.

2.3.2 Classification models
The encoder of the trained denoising and deblurring models is 

truncated at the deepest convolutional layer. This is followed by the 
addition of classification-specific layers, which include a global 
average pooling (GAP) layer and a dense output layer with two 

1 https://setosa.io/ev/image-kernels/
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nodes and a Softmax activation function. The adapted models, 
hereinafter called denoising pretext (Den-P) and deblurring pretext 
(Deb-P), are fine-tuned to fulfill the objective of classifying pediatric 
CXRs in the VinDr-PCXR dataset as those manifesting 
cardiopulmonary diseases and those without such signs, categorizing 
them as normal. To establish a benchmark for performance 
evaluation, a baseline (B) model is constructed by truncating an 
ImageNet pre-trained VGG-16 model at its deepest convolutional 
layer, followed by the addition of a GAP layer and a dense output 
layer with two nodes and a Softmax activation function. This model 
is then fine-tuned to parallel the classification capability of the Den-P 
and Deb-P models.

2.3.3 Ensemble learning
CNNs learn through error backpropagation and stochastic 

optimization to minimize loss for accurate image categorization. 
However, training data inconsistencies may lead to potential 
overfitting and increased prediction variance, which may adversely 
impact their performance. To mitigate these challenges, 
we investigate ensemble learning (Asgharnezhad et al., 2022; Rao 
et al., 2024), a strategy that amalgamates multiple, distinct CNNs 
to harness their collective intelligence, thereby diminishing 
prediction variance. In medical imaging, particularly in classifying 
CXRs, ensemble models have shown considerable promise, 
employing techniques like majority voting, and simple and 
weighted averaging (Chowdhury et  al., 2021; Rajaraman et  al., 
2020; Abedalla et  al., 2021). Our methodology encompasses 
constructing ensemble predictions from Den-P and Deb-P models, 
utilizing both simple averaging (SA) and Sequential Least-Squares 
Programming (SLSQP)-based (Marques et  al., 2021) weighted 
averaging (SLSQP-WA). A simple averaging ensemble involves 
averaging the output probabilities of the individual models. 
Mathematically, if p xi � �  is the prediction of the ‘ith’ model, the 
final prediction p x� � is computed as given by Equation 1. Here, N  
denotes the number of models. Simple averaging is straightforward 
and often effective in reducing variance without the need for 
complex weighting schemes.

 
p x

N
p x

i
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i� � � � �

�
�1

1

.

 
(1)

Sequential Least-Squares Programming (SLSQP)-based Weighted 
Averaging is an advanced technique that optimizes the weights 
assigned to each model’s predictions to minimize logarithmic loss. The 
weights are found by solving the following optimization problem, as 
shown in Equation 2. SLSQP provides a numerically efficient method 
to perform this optimization, adapting weights based on the reliability 
and performance of individual models.
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We propose a novel model ensemble, hereafter called the Attention 
Fuzzy (A-F) ensemble, that integrates the Den-P and Deb-P models 
using a learnable fuzzy-based logic (Ieracitano et  al., 2022). The 
mathematical model for the A-F ensemble is expressed as shown in 
Equation 3. Here, p x� � denotes the final prediction where ±i are the 
attention weights applied to the logits, f xi � �, from each model, 
combined and passed through a softmax function for normalization.
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By incorporating a learnable parameter that controls the fuzziness 
of the model combination, we aim to strike a balance, dynamically 
adjusting the influence each model exerts based on its confidence. 
We load the Den-P and Deb-P models and freeze their trainable layers. 
The features from their deepest convolutional layer are extracted and 
fed into their respective GAP layers. The feature maps from the GAP 
layers are then concatenated. An attention mechanism, implemented 
via a trainable dense layer, assigns weights to the concatenated feature. 
Such an approach guides the ensemble to focus on relevant features 

FIGURE 1

VGG-16-Sharp-U-Net architecture. The input is a Gaussian noise-added image with its original counterpart as the label. The model predicts a denoised 
image. A similar architecture is used with a Gaussian blur-added image as the input with its original counterpart as the label. The model then predicts a 
deblurred image.
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from each model’s output. We  introduce a custom layer, which 
multiplies the logits by a trainable fuzziness parameter before applying 
a Softmax activation. This layer introduces a controllable degree of 
uncertainty to the final predictions. During training, the proposed A-F 
ensemble adjusts its parameters, including the learnable fuzziness, 
according to the backpropagated errors. This learning process ensures 
that the A-F ensemble not only learns the best representations from 
the constituent models but also the optimal degree of fuzziness for the 
Softmax operation.

Optimization of the baseline, Den-P, Deb-P, and A-F ensemble 
models is carried out using the Stochastic Gradient Descent (SGD) 
algorithm, with an initial learning rate set at 1 × 10−3. The learning rate 
is dynamically adjusted downwards in response to periods of 
validation loss plateau, enhancing the training process by avoiding 
stagnation and promoting loss minimization. Throughout the training 
process, internal monitoring is implemented via callbacks to check 
models’ performance, while tracking improvements in validation loss. 
Model checkpoints are saved at instances of validation loss 
improvement, ensuring that the model checkpoints with the minimal 
validation loss are selected for final evaluations on the hold-out test 
set. Our experiments are conducted using Tensorflow Keras v.2.10 on 
an Ubuntu system with a Xeon E5-2640v3 processor, 64GB Random 
Access Memory (RAM), NVIDIA® 2080Ti graphical processing unit 
(GPU), and CUDA dependencies for GPU acceleration.

2.4 Activation visualization using 
score-weighted class activation mapping 
(score-CAM)

We use Score-weighted Class Activation Mapping (Score-CAM) 
(Wang et al., 2020) to visualize the learned behavior of the baseline, 
Den-P, and Deb-P models. Unlike conventional Class Activation 
Mapping (CAM) and Gradient-weighted Class Activation Mapping 
(Grad-CAM) methods, Score-CAM eliminates the dependence on 
gradients by obtaining the weight of each activation map through its 
forward passing score on the target class. The final result is obtained 
by a linear combination of weights and activation maps. Score-CAM 
is reported to achieve improved visual performance and fairness than 
conventional CAM and Grad-CAM methods for interpreting 
decision-making processes. We  use Score-CAM to generate the 
activation maps from the deepest convolutional layer of the baseline, 
Den-P, and Deb-P models. These activation maps are resized to the 
input shape and normalized. The resulting activation maps are 
translated into bounding boxes by identifying their extreme points. 
These boxes are then overlaid on the test CXRs to directly compare 
with GT annotations released by Pham et  al. (2023), thereby 
facilitating a qualitative assessment of the models’ performance.

2.5 Evaluation metrics

2.5.1 Denoising/deblurring
We use the following metrics to evaluate the performance of the 

VGG-16-Sharp-U-Net model trained for denoising and deblurring 
tasks: (a) Peak Signal-to-Noise Ratio (PSNR); (b) Structural 
Similarity Index (SSIM), and (c) Haar Wavelet-based Perceptual 
Similarity Index (HaarPSI). PSNR is a widely used metric to measure 

the quality of reconstruction as it provides a clear, quantitative 
measure of reconstruction error. It compares the similarity between 
the GT and predicted image based on their MSE, given by 
Equation 4.
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Here, MAXI2  is the maximum possible pixel value of the image 
(e.g., 255 for 8-bit images), and MSE is the mean squared error 
between the GT and the predicted image. The MSE value is given by 
Equation 5.
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Here, I  is the original image, K  is the predicted denoised/
deblurred image, and m n,  are the dimensions of the images. PSNR is 
typically measured in decibels (dB). The range of PSNR is from 0 to 
infinity, theoretically. In practice, PSNR values commonly fall between 
20 dB and 50 dB for image processing applications. Higher PSNR 
values indicate better quality of the predicted image.

SSIM measures the perceived quality of an image by 
comparing local patterns of pixel intensities that have been 
normalized for luminance and contrast. SSIM is particularly 
useful to compare model performance in tasks including 
denoising and deblurring as it considers texture, contrast, and 
structure in its evaluation, thereby offering a more comprehensive 
assessment of image quality and similarity to human perception 
than PSNR. The SSIM measured for a pair of images x y,� � is given 
by Equation 6.
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(6)

Here, µ µx y,  are the average intensities, σ σx y
2 2,  are the variances, 

σ xy  is the covariance of images x yand , C1 and C2 are constants used 
to maintain stability. SSIM values range from −1 to 1. A value of 1 
indicates perfect similarity between the GT and the predicted image, 
implying no distortion. Values closer to −1 indicate a lack of similarity, 
signifying significant distortion or differences between the GT and the 
predicted image.

HaarPSI (Reisenhofer et  al., 2018) is a performance metric 
designed to assess the perceptual similarity between two images. The 
computational steps involved in HaarPSI are listed as follows: (i) Local 
similarity evaluation: This step involves the use of high-frequency 
Haar wavelet coefficients to compare local areas between the GT and 
predicted images, focusing on capturing details like edges and textures 
that are crucial for human perception; (ii) Importance Weighting: The 
low-frequency Haar wavelet coefficients are used to determine the 
importance of each area within the image, assuming that not all 
discrepancies have an equal impact on the perceived image quality. 
This approach ensures reflecting the human visual system’s varying 
sensitivity to different image areas, providing a more nuanced 
assessment of image quality improvements or degradations. While the 
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authors of Reisenhofer et  al. (2018) provide an exhaustive 
mathematical formulation, a simplified representation can 
be conceptualized as in Equation 7.

 
HaarPSI

Similarity scores Importance weights
Importance

�
� �� �

�
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The final HaarPSI score ranges from 0 to 1, where 1 indicates 
perfect perceptual similarity and 0 indicates no perceptual similarity 
between the GT and predicted images.

2.5.2 Classification
The following metrics are used to evaluate the classification 

performance: (i) Balanced accuracy; (ii) Sensitivity; (iii) Specificity; 
(iv) F-score (F); (v) Matthews correlation coefficient (MCC); (vi) 
Kappa statistic, and (vii) Youden’s index. While these metrics are 
widely discussed and utilized in literature (Erickson and Kitamura, 
2021), balanced accuracy receives comparatively less attention. While 
conventional accuracy can provide a quick overview of model 
performance, it may not always offer a fair assessment, especially in 
imbalanced datasets. In such cases, a model might heavily favor the 
majority class, leading to high overall accuracy while performing 
poorly on the minority class. Hence, balanced accuracy is an 
important measure to use in scenarios involving imbalanced datasets. 
Balanced accuracy is calculated as the average of sensitivity and 
specificity achieved in each class, computed at a classification 
threshold of 0.5. The sensitivity for a class is defined as the ratio of 
correctly predicted positive observations to all observations in that 
actual class. Balanced accuracy is given by Equation 8.

 
Balanced accuracy TP

TP FN
TN

TN FP
 �

�
�

�
�
�
�

�
�
�

1

2
.
 

(8)

Here, True Positives (TP) are correctly predicted positive values, 
True Negatives (TN) are the correctly predicted negative values, False 
Positives (FP) are negative values that are incorrectly predicted as 
positive, and False Negatives (FN ) are positive values that are 
incorrectly predicted as negative.

2.6 Statistical analysis

We perform statistical analysis to assess the differences in the 
sensitivity between various computational models under study. The 
rationale for this comparative analysis is to statistically determine 
whether the improvements in sensitivity are significant or occur by 
chance, thereby informing the selection of the most effective model 
for the current classification task. For each model, the sensitivity 
and the corresponding 95% confidence intervals (CI) are 

established. The standard error (SE) of sensitivity is calculated as 
shown in Equation 9.

 
SE

CI CIupper lower
�

�� �
�2 1 96.

.
 

(9)

Here, CI CIupper lowerand  denote the upper and lower bounds of 
the CI. Next, we compute the differences in sensitivity (ΔSensitivity), 
as in Equation 10, between pairs of classification models and their 
associated combined standard error (ΔSE), as in Equation 11, which 
incorporates the variability of both models being compared.

 �Sensitivity Sensitivity Sensitivity� �2 1. (10)

 
�SE sqrt SE SE� �� �1 22 2 .

 
(11)

Here, Sensitivity1 and Sensitivity2 are the sensitivity metrics, and 
SE1 and SE2 are the SE metrics of the compared models. To determine 
the statistical significance of the differences in sensitivity between each 
pair of models, we computed the Z-score (Z) using Equation 12.

 Z Sensitivity SE� � �/ . (12)

The Z-score represents how many standard deviations the observed 
difference in sensitivity is away from the null hypothesis (i.e., no sensitivity 
difference between the compared models). We evaluate the corresponding 
two-tailed p-value (p) for each Z-score based on the standard normal 
distribution. The statistical significance level is set to 0.05. A low p-value 
(<0.05) indicates a statistically significant difference in sensitivity. The 
analysis is conducted using Python with NumPy for numerical operations 
and SciPy for statistical functions. A series of pairwise comparisons were 
made between six models, i.e., Baseline (B), Den-P, Deb-P, SA, SLSQP-
WA, and the A-F ensemble. The sensitivity difference, SE, and p-values for 
each comparison are visualized in a graph.

3 Results and discussion

3.1 Denoising/deblurring performance 
analysis

The VGG-16 Sharp-U-Net model’s performance in the tasks of 
denoising and deblurring the pediatric CXR images is quantitatively 
assessed using PSNR, SSIM, and HaarPSI metrics. Table 2 shows the 
performance achieved by the denoising and deblurring models.

As observed from Table 2, for the denoising task, the model achieves 
a PSNR of 29.7535 dB, indicating a moderate level of noise reduction. 

TABLE 2 Performance of denoising and deblurring models.

Task PSNR SSIM HaarPSI

Denoising 29.7535 0.6578 0.7909

Deblurring 39.7211 0.9700 0.9502

Bold numerical values denote superior performance in respective columns.
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The model scores an SSIM of 0.6578, reflecting an acceptable level of 
visual similarity to the original images post-denoising. The HaarPSI is 
recorded at 0.7909, illustrating a good perceptual similarity between the 
denoised images and their original counterparts. This is evident from 
Figure 2 which shows a sample instance of a pediatric test CXR with its 
Gaussian noise-added counterpart and the predicted denoised image.

For the deblurring task, the model achieves a markedly higher value 
of PSNR at 39.7211 dB, indicating good performance in reducing blur 
and restoring image clarity. The SSIM value is 0.9700, demonstrating 
that the deblurred images closely match the original ones in structure, 
contrast, and luminance. The model achieves a HaarPSI score of 0.9502, 
denoting a markedly improved perceptual similarity to the original 
images, post-deblurring. We  could visualize this prediction quality 
through Figure 3, showing a sample instance of a pediatric test CXR with 
its Gaussian blur-added counterpart and the predicted deblurred image.

A comparative analysis of the denoising and deblurring models 
demonstrates that the proposed VGG-16 Sharp-U-Net model exhibits 
superior performance in the deblurring task over denoising, as evidenced 
by higher values across all metrics. This distinction could be attributed 
to the inherent complexity of each task. Deblurring, focused on 

correcting uniform distortions, might be  a more straightforward 
objective compared to denoising, which involves addressing random 
noise patterns that can vary significantly across images.

3.2 Classification performance analysis

The performance of the classification models, viz., baseline, Den-P, 
Deb-P, and ensembles are shown in Table 3 and the confusion matrices 
are shown in Figures 4, 5. The bar plot shown in Figure 6 presents a 
comparative analysis of various models employed in the classification 
task. The Baseline (B) model sets the benchmark with a balanced 
accuracy (Bal. Acc.) of 0.5654, yet it lags in sensitivity, identifying TPs 
at a rate of only 0.1983. While its specificity stands high at 0.9344, 
suggesting a strong ability to recognize TNs, the model’s F-score, 
MCC, Kappa, and Youden’s index are modest, indicating room for 
improvement in balanced classification performance. The Den-P 
model exhibits an improvement in sensitivity to 0.3130, indicating a 
better detection rate of actual disease manifestations but at the expense 
of specificity, which drops to 0.8765. This shift suggests a trade-off 

FIGURE 2

Image denoising. (A) Original CXR, (B) Gaussian noise-added CXR (variance factor  =  0.08), and (C) predicted denoised image.

FIGURE 3

Image deblurring. (A) Original CXR, (B) Gaussian blur-added CXR (kernel size  =  7), and (C) predicted deblurred image.
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between detecting more TPs and incorrectly classifying some healthy 
cases as diseased. Conversely, the Deb-P model shows a marked 
enhancement in sensitivity (0.3391) over the baseline, aligning with a 
moderate specificity of 0.8484. This reflects a nuanced improvement 
in identifying pathological features within the CXRs, although it still 
faces challenges in accurately segregating all healthy cases. The Den-P 
and Deb-P models exhibit enhanced balanced accuracy, sensitivity, 
F-score, MCC, Kappa, and Youden’s index compared to the baseline 
model that relied on ImageNet-pretrained weights, highlighting the 
benefit of CXR modality-specific pretext learning and fine-tuning in 
the realm of pediatric CXR classification.

Simple averaging of the predictions of the Den-P and Deb-P 
further improves specificity and MCC. The SLSQP-WA ensemble of 

the predictions of the Den-P and Deb-P models improves balanced 
accuracy, sensitivity, F-score, MCC, Kappa, and Youden’s index 
compared to the constituent models. The standout performer is the 
A-F ensemble, which demonstrates the highest balanced accuracy 
(0.6376) and sensitivity (0.4991), both metrics markedly superior to 
the individual constituent models, thereby underscoring its robustness 
in classification. This indicates a synergistic effect, where the A-F 
ensemble effectively combines the strengths of the individual models 
to achieve higher accuracy in classifying the pediatric CXRs. 
Moreover, the A-F ensemble demonstrates the highest F-score 
(0.5102), MCC (0.2783), Kappa (0.2782), and Youden’s index (0.2751) 
suggesting it is the most proficient ensemble in delivering superior 
performance across these metrics.

TABLE 3 Performance comparison of constituent models and their ensembles.

Model Bal. Acc. Sensitivity Specificity F-score MCC Kappa Youden

B 0.5654 0.1983 0.9344 0.2977 0.1998 0.1599 0.1327

Den-P 0.5948 0.3130 0.8765 0.4000 0.2289 0.2132 0.1895

Deb-P 0.5938 0.3391 0.8484 0.4114 0.2150 0.2060 0.1875

SA 0.5892 0.2643 0.9140 0.3671 0.2381 0.2080 0.1783

SLSQP-WA 0.6082 0.3739 0.8424 0.4410 0.2420 0.2345 0.2163

A-F 0.6376 0.4991 0.7760 0.5102 0.2783 0.2782 0.2751

The acronyms SA, SLSQP-WA, and A-F denote simple averaging, SLSQP-based weighted averaging, and Attention Fuzzy ensembles, respectively. Bold numerical values denote superior 
performance in respective columns.

FIGURE 4

Test confusion matrices obtained with the baseline, denoising pretext (Den-P), and deblurring pretext (Deb-P) models.

FIGURE 5

Test confusion matrices obtained with the ensembles.
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FIGURE 7

A visual representation of the difference in sensitivity between model pairs alongside the statistical significance of these differences.

3.3 Performance significance analysis

Figure 7 provides a visual representation of the difference in the 
sensitivity between model pairs alongside the statistical significance 
of these differences. Notable observations from Figure  7 include 
the following:

 i (B vs. Den-P): There is a significant increase in sensitivity when 
using the Den-P model over the B, as evidenced by a positive 
sensitivity difference and p < 0.05.

 ii (B vs. Deb-P): Similar to the Den-P model, the Deb-P model 
significantly outperforms the B, again indicated by a positive 
sensitivity difference and p < 0.05.

FIGURE 6

Bar plot comparing the performance of all models across the classification metrics. Bold numerical values denote superior performance for the 
respective performance metric.
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 iii (Den-P vs. Deb-P): The comparison between the Den-P and 
Deb-P models shows a smaller, non-significant difference in 
sensitivity (p >  0.05), suggesting that while both are 
improvements over the B, they may not differ significantly 
from each other in terms of sensitivity.

 iv (B vs. A-F): The A-F ensemble exhibits the largest increase in 
sensitivity compared to the B, with p < 0.05, indicating a 
substantial performance improvement.

 v (Den-P vs. A-F) and (Deb-P vs. A-F): Both comparisons show 
that the A-F ensemble significantly surpasses the Den-P and 
Deb-P models (p < 0.05).

The p-values denote that except for the comparison between 
the Den-P and Deb-P models, all other model pairs show 
statistically significant differences in sensitivity. The consistently 
low p-values reinforce the statistical robustness of the performance 
gains observed with the models, particularly the proposed 
A-F ensemble.

3.4 Activation visualization

Figure 8 shows the Score-CAM activations (in red bounding 
box) compared with the GT annotations (in blue). The first row 

shows a text CXR of a pediatric with peri-broncho-vascular 
interstitial opacity and the second row shows a test pediatric CXR 
with atelectasis in the right lung. Firstly, we observe the baseline (B) 
model activations in Figures 8A,D cover a broader area and are not 
tightly focused on the expert GT annotations. Such a lack of 
precision suggests that the B model may not be highly sensitive to 
the specific clinical features associated with the pathologies 
mentioned. The Den-P model, presented in Figures 8B,E, shows a 
narrower focus in its activations. Notably, the red boxes are more 
congruent with the expert annotations, suggesting that the 
denoising process in the model’s training has potentially led to a 
refined feature representation. This could be  due to the model 
learning to disregard noise, focusing on the salient features that 
contribute to the diagnosis. Such precision is likely to increase the 
sensitivity of the model, as evident from Table 3. The Deb-P model’s 
activations, illustrated in Figures 8C,F, exhibit a different pattern. 
While the red boxes seem to be concentrated around the areas of 
expert annotations, they also appear to expand slightly beyond the 
blue boxes. This suggests that the Deb-P model might be picking up 
on subtler changes in texture or contrast that are not immediately 
apparent to the human eye but are nonetheless relevant. Such an 
expansion of activation zones could indicate a heightened 
sensitivity, potentially leading to higher TP rates, as evident from 
Table 3. Comparatively, the Den-P and Deb-P models appear to 

FIGURE 8

Score-CAM activations (in red bounding box) showing the learned behavior of the models. Blue bounding boxes denote GT annotations. The first row 
shows a CXR of a pediatric patient with peri-broncho-vascular interstitial opacity in the right middle lobe. The second row shows a CXR of a pediatric 
patient with atelectasis in the right middle lobe. The sub-figures (A) and (D) (first column) show the predictions of the baseline (B) model. The sub-
figures (B) and (E) (second column) show the predictions of the Den-P model. The sub-figures (C) and (F) (third column) show the predictions of the 
Deb-P model.
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outperform the B model in terms of their activation alignment with 
expert annotations.

4 Conclusion

Our work introduces significant advancements in the 
application of DL to pediatric CXR analysis. Unlike existing 
studies that often rely on generic training on large datasets like 
ImageNet, our study leverages modality-specific pretext learning 
to address the unique challenges presented by pediatric CXRs. 
This not only improves accuracy but also enhances the clinical 
relevance of the models.

Our methodology leverages specialized knowledge from CXR 
denoising and deblurring tasks to enhance classification 
performance. By training models to first understand and correct 
these specific image artifacts, which are prevalent in pediatric 
CXRs, we  effectively enhance the model’s ability to focus on 
relevant pathological features during the classification task. This 
approach was demonstrated to be  superior to conventional 
transfer learning (TL) methods, as our results indicated a marked 
improvement in performance metrics, confirming that our 
modality-specific pretext learning tasks provide a solid foundation 
for accurate disease identification.

We adopted the U-Net architecture, traditionally used for 
biomedical image segmentation, to perform the denoising and 
deblurring of pediatric CXR images. This adaptation showcases 
the versatility of the U-Net model beyond its conventional 
applications, successfully applying it to tasks that require precise 
artifact correction before classification. The effectiveness of this 
approach was evident in the improved image quality observed in 
denoised and deblurred CXRs, which subsequently facilitated 
more accurate disease classification, underscoring the adaptability 
and utility of U-Net in new domains of medical image processing.

Our study introduces the novel A-F ensemble, which uniquely 
combines the outputs of pretext-learned models using a learnable 
fuzzy-based logic. This innovation was motivated by the need to 
enhance model reliability and accuracy, particularly in scenarios 
with ambiguous or conflicting signs in pediatric CXRs. This 
approach was further validated to demonstrate that the A-F 
ensemble significantly outperforms traditional ensemble 
techniques by producing more accurate and stable classification 
results, as evidenced by improved performance metrics.

Moreover, our novel A-F ensemble approach synthesizes the 
strengths of individual models through a sophisticated fuzzy 
logic-based attention mechanism, setting a new benchmark in 
ensemble learning strategies within medical imaging. This is 
particularly important as it addresses the variability and often 
contradictory nature of pediatric CXR interpretations, providing 
a more robust and reliable diagnostic tool. Additionally, the 
application of Score-CAM-based activation mapping in our study 
not only aids in visualizing what the models are focusing on but 
also confirms that our modality-specific trained models prioritize 
medically pertinent features more effectively than traditional 
approaches. This enhanced focus is directly correlated with the 
observed improvements in classification performance, advocating 
for a shift toward modality-specific pretraining paradigms in 
medical imagery.

Despite these promising developments, our research 
acknowledges certain limitations. Our study concentrates on a 
binary classification framework and two specific pretext-learning 
tasks. Expanding the spectrum of pretext tasks could potentially 
lead to broader and more diverse feature representations, 
enhancing the model’s diagnostic interpretability. The integration 
of additional tasks, each uncovering unique aspects within the 
imaging data, may further elevate the model’s analytical depth. 
Exploring a wider range of pretext tasks promises to improve 
model performance not only for CXRs but also across other 
medical imaging modalities, including MRI and CT scans. 
Moreover, incorporating contrasting learning paradigms, both 
supervised and unsupervised, could serve to refine these 
improvements further.

Regarding the visualization of our models’ behavior via 
Score-CAM, we must emphasize that while the activation maps 
yield valuable insights into the decision-making process of the 
models, translating these observations into clinical relevance 
necessitates extensive validation. Such validation should involve 
diverse datasets, encapsulating the full range of targeted 
pathologies and reflecting demographic variabilities. While our 
current focus is on binary classification, the true potential of 
medical modality-specific knowledge transfer lies in its 
application to more complex scenarios, including multiclass, 
multi-label, and multi-modal tasks. The extension of our 
proposed methodology to these areas could substantially 
push the boundaries of medical diagnostics, leveraging the 
distinctive diagnostic capabilities inherent in various imaging 
modalities to gain a more comprehensive understanding of 
pathologies. To conclude, our findings do more than just 
highlight the advantages of CXR modality-specific pretext 
learning; they pave the way for innovative avenues in medical 
image analysis. They suggest that DL, particularly when tailored 
to specific medical modalities, holds immense promise for 
transforming diagnostic practices.
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