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Cauliflower cultivation is subject to high-quality control criteria during sales,

which underlines the importance of accurate harvest timing. Using time series

data for plant phenotyping can provide insights into the dynamic development

of cauliflower and allow more accurate predictions of when the crop is ready

for harvest than single-time observations. However, data acquisition on a daily

or weekly basis is resource-intensive, making selection of acquisition days highly

important. We investigate which data acquisition days and development stages

positively a�ect the model accuracy to get insights into prediction-relevant

observation days and aid future data acquisition planning. We analyze harvest-

readiness using the cauliflower image time series of the GrowliFlower dataset.

We use an adjusted ResNet18 classificationmodel, including positional encoding

of the data acquisition dates to add implicit information about development.

The explainable machine learning approach GroupSHAP analyzes time points’

contributions. Time points with the lowest mean absolute contribution are

excluded from the time series to determine their e�ect on model accuracy.

Using image time series rather than single time points, we achieve an increase

in accuracy of 4%. GroupSHAP allows the selection of time points that positively

a�ect the model accuracy. By using seven selected time points instead of all 11

ones, the accuracy improves by an additional 4%, resulting in an overall accuracy

of 89.3%. The selection of time points may therefore lead to a reduction in data

collection in the future.

KEYWORDS

explainability, deep learning, feature contribution, GroupSHAP, harvest-readiness

1 Introduction

Cauliflower cultivation is subject to high-quality standards. The optical appearance of

cauliflower heads to be sold is crucial, which makes it essential to determine the exact

time of harvest. However, the plants grow self-covered by their leaves, which makes

determining harvest-readiness particularly difficult. Thus, an approach that contributes

to determining the harvest time without harming the plants—e.g., by cutting away the

leaves to see the heads—has a high value. Monitoring can be done through remote

sensing techniques, such as unmanned aerial vehicles (UAVs; Chi et al., 2016; Weiss

et al., 2020). The use of UAVs is significantly less resource-intensive than evaluating

the plants from the ground by humans, as one image covers a large area of the

field. At the same time, modern systems offer high resolution and image quality.
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Determining harvest information of cauliflower from UAV

images of single points in time has been done by Kierdorf and

Roscher (2023). Opposed to individual time points, which can

only capture a plant’s current state to a limited extent, time series,

enabling continuous monitoring of the entire growth cycle of

plants, offer insights into the dynamic and current rate of plant

development. This facilitates the comprehensive analysis of growth

patterns and the estimation of crop yields. Utilizing image time

series has already shown great success in the field of satellite

data, e.g., for crop type mapping (Turkoglu et al., 2021; Rußwurm

et al., 2023; Rußwurm and Körner, 2017) or yield prediction

(Van Klompenburg et al., 2020; Schauberger et al., 2020; Yli-

Heikkilä et al., 2022). Therefore, using time series shows a high

potential for improving the accuracy of harvest prediction using

UAV images.

UAV data acquisition and processing on a weekly or even daily

basis is time-consuming. Sambasivan et al. (2021) have shown that

the optimization through the reduction of low-quality data enables

model improvement, as this data harms the result. Dodge and

Karam (2016) have shown that low-quality data results, e.g., from

time points that are less relevant or have no information gain for

model predictions. Thus, finding time points that contribute most

to a correct harvest-readiness estimation is crucial to improving the

model and resources like time and money for future observations.

Deep learning (DL) methods leverage neural networks (NNs)

to acquire complex patterns in data and enable automated analysis

in the domain of plant phenotyping. Explainable machine learning

(ML) techniques have been employed to select salient features that

contribute to the decisions made by the NN (Chen et al., 2018;

Mostafa et al., 2023; Harfouche et al., 2023) and can be divided

in for example gradient-based methods (Simonyan et al., 2013;

Springenberg et al., 2014; Smilkov et al., 2017; Selvaraju et al., 2017;

Sundararajan et al., 2017) and perturbation-based methods (Zeiler

and Fergus, 2014; Ribeiro et al., 2016; Lundberg and Lee, 2017;

Petsiuk et al., 2018). Currently, explainable ML has primarily been

applied to single images to derive pixel-wise information regarding

feature attribution or significance in relation to the model’s

predictions (Uijlings et al., 2012; Gevaert et al., 2022). In plant

phenotyping, explainable ML has been used to support tasks such

as disease detection (Ghosal et al., 2018; Toda and Okura, 2019;

Akagi et al., 2020; Wei et al., 2022) or plant classification (Grinblat

et al., 2016; Desai et al., 2019). The application of explainable ML

to image time series has predominately been performed for satellite

data so far due to challenges in time-series analysis such as missing

time series data, handling equidistant intervals between time points

with UAVs (Drees et al., 2022; Kolhar and Jagtap, 2021), or unequal

time-series length. Thus, most studies using explainable ML have

focused on one-dimensional time series data only (Schlegel et al.,

2019; Theissler et al., 2022; Villani et al., 2022; Shickel and Rashidi,

2020; Rojat et al., 2021), such as determining the importance of

features in temperature or torque sequences (Siddiqui et al., 2019).

In our work, we classify cauliflower plants concerning their

harvest-readiness using image time series showing plants and their

development over time. For this, we use a modified ResNet18

Abbreviations: DAP, day after planting; iTS, initial time series; sTS, selective

time series; TPE, time point embedding; TSE, time series embedding.

(He et al., 2016) as a classifier. We compare models using images

of single points in time shortly before harvest (Kierdorf and

Roscher, 2023) to models using image time series with initial

acquired time points without explicit selection. Furthermore, we

use the explainable ML method GroupSHAP (Jullum et al., 2021)

to investigate which image time points contribute most to the

model’s prediction. With this information, we selectively determine

time points that increase the model’s accuracy. We compare the

time points with the respective development stages of the plants.

From this, we conclude which developmental stages are generally

important to determine harvest-readiness and propose how to

reduce data acquisition resources.

The main contributions of this paper are as follows:

• Utilizing time series data, as opposed to single time

points, enhances the predictive accuracy of cauliflower

harvest-readiness by up to 4% through the integration of

developmental information.

• Applying GroupSHAP for selecting specific time points,

especially in leaf and shoot development interval, further

increases accuracy by an additional 4%, reaching up to 89%.

This method aligns with growth stages and offers the potential

for reducing resource requirements in future data acquisition

efforts.

2 Materials and methods

2.1 Data

We use image time series data from field 2 of the

GrowliFlowerR dataset (Kierdorf et al., 2022), showing the

development of cauliflower from planting to harvest. The dataset

contains information about planting and harvest day for each

cauliflower plant. The planting day is used to derive the day after

planting (DAP) for each image in the time series, which represents

the age of the plant. Harvesting took place on four dates. The images

in the dataset are georeferenced and have the same resolution and

scale. Due to different weather conditions at different DAPs, factors

such as exposure and soil irrigation differ at various points in time.

The data used for this work is selected and processed in the

same way as the data for the work of Kierdorf and Roscher (2023),

who deal with harvest-readiness prediction based on single time

points. They use images right before harvest, as shown in Figure 1

highlighted in orange, and divide them into classes Ready and

Not-ready for harvest. We refer to these images as basic images.

For our time series classification approach, we extend the basic

images by T − 1 images acquired chronologically before the used

basic image, resulting in a time series with T individual time

points. Each image within the time series represents a different

developmental stage of the plant. We vary T for later experiments

with T ∈ {1, 2, . . . , 11}, resulting in time series with different

temporal lengths. We denote these time series as initial time series

(iTS). We use the training, validation, and test set as described in

Kierdorf et al. (2022) and apply standard augmentations according

to Kierdorf and Roscher (2023) like flipping and rotation on

the training data. This involves augmenting the entire image

time series of a plant with the same augmentations. After data
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FIGURE 1

Visualization of cauliflower image time series, with a length of T = 11, presenting various potential harvest days HD, indicated by the blue frames,

whereby a row illustrates an individual time series. (A) shows an example of how to generate time series for an individual plant. In this example, a

plant is observed and labeled as Not-ready for harvest on days HD1, HD2, and HD3, shifting to Ready for harvest on harvest day HD4, indicated by

the gray dashed frame. Each time series is shifted by one image for HD1 to HD4, reflecting the progression over time. The variability in potential

harvest days results in di�erences among the basic images within the time series, indicated by the orange frame. Consequently, the corresponding

images at days after planting (DAP) also shift accordingly. Only non-transparent images are utilized as input for constructing the time series. For

plants deemed Ready for harvest on HD1, there exists only one plausible time series since harvesting occurs on that specific day. Equivalently, for

plants harvested on HD2 and HD3, there are two and three conceivable time series, respectively. This method of generating time series remains

applicable across varying lengths of time series. (B) shows time series of four di�erent plants representing the four harvest days. This illustration is

used to compare Ready and Not-ready for harvest plants.

augmentation, the training set contains 6,224 time series, 2,432

of class Not-ready and 3,792 time series of class Ready.

The validation set and the test set consist of 196 and 194 time

series each.

Example image time series with a length of T = 11 for

one specific plant are shown in Figure 1A. The presented plant is

observed and labeled as Not-ready for harvest on harvest days

HD1, HD2, and HD3, shifting to Ready for harvest on harvest day

HD4. Each time series corresponds to one of the harvest days. If a

plant is classified as not ready for harvest on a given harvest day,

it is reclassified for the next harvest day. The variability in potential

harvest days results in differences among the baseline images within

the time series, indicated by the orange frame. As we align the

time series with these baseline images, the temporal start and end

points of the series shift toward the harvest day, depicted by non-

transparent images. For plants deemed Ready for harvest on HD1,

there exists only one plausible time series since harvesting occurs

on that specific day. Equivalently, for plants harvested on HD2 and

HD3, there are two and three conceivable time series, respectively.

This method of generating time series remains applicable across

varying lengths of time series. Thus, we can generate up to four

time series for a specific plant, dependent on the harvest day.

The images are aligned by DAP and illustrate which DAP is used

for classification regarding the potential harvest days. Since the

basic images were taken on different DAPs depending on the

potential harvest day, iTS contain different stages of development.

Figure 1B compares four different plants, each labeled with a

different harvest day.
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TABLE 1 BBCH developmental stages on the field for cauliflower

according to Feller et al. (1995).

Code Explanation

12 2. leaf unfolds

13 3. leaf unfolds

1x Stages consecutive to...

19 9 or more leaves unfold

2x Not available for cauliflower

3x Developing the main shoot

40 Start of flowering

41 Start of flowering: Vegetation cone width > 1cm

43 30% of the expected head diameter is reached

45 50% of the expected head diameter is reached

47 70% of the expected head diameter is reached

48 80% of the expected head diameter is reached

49 Species/variety-typical size and shape achieved;

head still firmly closed

The code represents the developmental stage and is made up of the macro stage (first number)

and the micro stage (second number). The expected head diameter for cauliflower is about 15

cm. The colors are used to set the code in relation to the acquired data in Table 2.

Available developmental stages of cauliflower according to

Feller et al. (1995) are listed in Table 1. We start with listing stage

12, as the plants were planted in the field out of seedling trays and

consist of two or more leaves at the point of planting (Kierdorf

et al., 2022). The developmental code comprises the macro stage

(first number) and the micro stage (second number). Important

stages for cauliflower are macro stage 1 “Leaf development (main

shoot)” and macro stage 4 “Development of vegetative plant

parts (harvested material).” We set the mean head size per HD

concerning the DAP, illustrated in Table 2. The colors represent the

different developmental stages listed in Table 1. We see that certain

stages of development spread over several flight dates. On average,

the harvest-ready plants on different HDs develop at different

speeds. Particularly shortly before harvest, major variations can

be seen between the HDs. Although the development is spread

out, there is a certain correlation between development and

acquisition day.

2.2 Classification network

Our model (see Figure 2) is used to classify RGB image time

series into two classes Ready and Not-ready for harvest. Each

image of the time series is sequentially fed into the same ResNet18

(He et al., 2016) encoder, where the weights are updated only

after the entire time series has passed through the network. To

obtain a lower-dimensional feature embedding vector that can be

used for explainable ML methods, we modify the size of the last

standard fully connected layer within the encoder to 32. We add

a positional encoding (Gehring et al., 2017) of the plant’s age to

the embedding. This adjustment allows for better differentiation

between young plants and poorly developed plants. We refer to

TABLE 2 Overview over the mean head size per harvest day (HD) per day

after planting (DAP).

Mean head size [cm]

DAP HD1 HD2 HD3 HD4

44 0.9 0.7 0.4 0.1

50 0.9 0.8 0.5 0.2

57 2.1 1.9 1.6 1.2

65 7.7 6.1 4.6 3.3

69 10.9 8.8 6.7 5.6

71 - 12.0 9.4 7.3

76 - - 13.5 10.0

80 - - - 12.2

The colors represent the different developmental stages shown in Table 1. The numbers are

calculated based on the in-situmeasurements of GrowliFlower dataset (Kierdorf et al., 2022).

the resulting embedding as the time point embedding (TPE). The

TPEs are then concatenated to form a time series embedding (TSE),

which is fed into a linear encoder consisting of two linear layers to

calculate the final scores for each class. The input dimension of the

first linear layer in the encoder is equal to the length of the TSE

(T × 32). The output dimension is optimized by hyperparameter

tuning based on the length of the time series T to retain most of

the information. Therefore, the output dimension is defined by

dividing the TSE length by a scaling factor λ. We have observed

that this additional layer significantly improves the classification

accuracy for time series.

In our architecture, each time series must have the same length,

unlike vision transformers (Dosovitskiy et al., 2020) that can handle

varying time series lengths (Garnot et al., 2020). However, our

architecture has the advantage of requiring less data and fewer

parameters to train an accurate model.

2.3 Shapley additive explanations

Shapley additive explanations (Lundberg and Lee, 2017)

(SHAP) is a model-agnostic explainable machine learning method.

SHAP is used to calculate the contribution of an entity to a model

prediction where an entity consists of one or more features. The

original SHAP approach (Lundberg and Lee, 2017) uses single

features, while the GroupSHAP approach (Jullum et al., 2021)

considers multiple features within an entity. In our work, we

compute GroupSHAP values by defining an entity consisting of

a combination of all features within a TPE. Thus, this entity

represents the embedding of an input image of a time series. In

doing so, we investigate the effect of individual time points on the

model’s accuracy rather than model features.

In general, an entity with a positive SHAP value contributes

positively to a prediction and, thus, increases themodel score, while

an entity with a negative value contributes negatively and, thus,

reduces the model score. A SHAP value represents the deviation

from the mean contribution of an entity to the final prediction. To

determine the SHAP value, first, all possible entity combinations
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FIGURE 2

Network for cauliflower image time series classification. Each image of a time series is fed into the network successively. The weights of the network

are updated after the entire time series has passed through the network.

are formed, where one of these combinations is referred to as a

coalition. The entities within a coalition are fixed. Entities not

present in a coalition are filled with random examples of the

same entity from the training set to maintain a uniform number

of entities required for neural networks. Afterward, the SHAP

value is determined by computing the mean of differences between

all coalitions, excluding the entity of interest, compared to the

same coalitions, including the entity of interest. We calculate the

weighted average over all coalition differences using a similarity

measurement of the data samples, e.g., by using a kernel function

such as Gaussian kernel or binomial coefficients. The resulting

value gives the SHAP value for the entity of interest. Coalitions that

consist of either only fixed entities or non-fixed entities are given

the highest weight, as they are most likely to be used to derive direct

entity contributions of the entities of interest. This process is carried

out for all entities representing the different TPEs of a time series.

The final prediction of a data sample is obtained by adding the

SHAP value to the mean prediction of the entire dataset. In general,

SHAP values are calculated for each target.

One issue to consider when using GroupSHAP is the

assumption of feature independence, in our case, the independence

of the embedding vectors. In real-world scenarios, features are often

correlated, leading to misleading interpretations.

2.4 Experimental design

We present two experiments. For each experiment, we train

one model for each input time series length T. We normalize the

input images before feeding them into the model. The training for

each model consists of at least 60 epochs and stops if validation

accuracy does not increase significantly over 10 epochs. We use a

batch size of 16 and the Adam optimizer with a learning rate of

1e−5. The learning rate is reduced using a scheduler with a step

size of 20 and a factor γ of 0.1. We adjust each model’s weight

decay and linear layer mentioned earlier through hyperparameter

tuning. We consider weight decays α in the range of [1e−1, 1e−3]

and scaling factors λ in the range of [2, 4]. As the final model of

training, we select the model with the highest validation accuracy.

For reproducibility, we set all used seeds to 0. We run our

experiments on an AMD EPYC 7742 64-Core processor and an

NVIDIA A100 PCIe graphic card with 40 GB hBM2 RAM. The

model’s runtime with the most input features with T = 11

is 14 min.

2.4.1 Time series classification based on initial
time series

For classification based on single time points, we assume that

the time interval between image acquisition and harvest must be

kept short, as factors such as weather still change the development

considerably (Tollenaar et al., 2017). No prior knowledge about

previous plant development is given in this case. We want to

investigate whether the use of time series information for the

classification of harvest-readiness is more beneficial than the use of

individual time points because the use of time series integrates the

temporal development of the plants into themodel.We also address

whether it is worth integrating early acquisition times to increase
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model accuracy or whether it is sufficient to use time points close

to harvest.

For this purpose, we compare three types of models. In the

first model, we use our designed model structure and single time

points as input and denote this model as our baseline. As a reference

to our baseline, we use the original ResNet18 model without an

additional linear layer, which is also used by Kierdorf and Roscher

(2023) for cauliflower harvest-readiness classification also based on

single time point inputs. For both models, we use the basic images

as input. As the third model type, we use our designed network and

iTS as input. For all model types, we calculate the overall (oaAcc)

and balanced class accuracy (bcAcc)

bcAcc =
TP

TP+FN + TN
TN+FP

2
, (1)

also known as the macro-average of recalls, and compare them

across the different types of models. Equation 1 is composed of the

true positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN) from the confusion matrix.

2.4.2 Classification of time series based on the
selection of time points with GroupSHAP

In this experiment, we investigate how single time points

within a time series contribute to the classification result and how

excluding time points affects the model accuracy. Literature has

shown that excluding features (here time points) based on feature

selection can improve the model accuracy (Bratu et al., 2008; Chu

et al., 2012; Zou et al., 2015). We connect the time points with

the BBCH developmental stages according to Feller et al. (1995)

and investigate whether certain developmental stages have a low

contribution tomodel accuracy and can, therefore, be omitted from

data collection to conserve resources.

We begin by taking the iTS model with T = 11 calculated

in our first experiment and (i) calculate the entity contribution

of the time points using GroupSHAP. Then, we (ii) exclude the

time point with the lowest mean absolute GroupSHAP from iTS

over all harvest days since it has the most neutral contribution

(closest to 0). In theory, the day with the lowest contribution would

have to be excluded separately for each HD to receive the highest

model accuracy, as different DAPs are contained in the time series

of the different HDs. In practice, however, concerning resource-

saving data acquisition, not only selected parts of the field are flown

over, but the entire field, so that certain points in time must be

completely excluded. Therefore, we exclude the time points with

the lowest mean absolute contribution across all time points and,

thus, exclude the mean macro developmental state over the whole

field. We denote the new time series with the selected time points

as selective time series (sTS). Next, we calculate (iii) a new model

using the sTS and recalculate the accuracies. We repeat (i)–(iii)

using the most recently determined sTS instead of iTS.

We specify that the first three and last four acquisition days are

always included in the time series. Keeping the last four acquisition

days is important because it allows us to determine whether the

class Ready or Not-ready for harvest can be derived in the

coming days. Without these time points, there is no reference point

for predicting harvest-readiness. If we classify a plant as Ready,

it will be ready for harvest within the coming days, i.e., the last

image in the time series is the last one before harvesting. Including

the time points close to harvest has proven to be beneficial in

maintaining stable results despite weather fluctuations. Another

reason for always including these seven time points is to minimize

data bias toward a specific HD and maintain similar data for all

models, we only consider time points for exclusion where an image

can be excluded from each HD. The days that are excluded show on

average the same developmental stage per time point (see Table 2).

Different plant developments average out over the entire field. We

assume that this will also be the case for the following growing

seasons. For the experiment, fixing the seven time points allows

only the calculation of sTS for time series length T ∈ [4, 10].

3 Results

3.1 Time series classification based on
initial time points

The comparison between the accuracies of our baseline and the

reference for single time point classification as reported by Kierdorf

and Roscher (2023) indicates that incorporating an additional

linear layer into the model leads to an overall improvement in the

achieved accuracies for single time point inputs (see yellow lines in

Figure 3 compared to orange markers). Additionally, we find that

using iTS input data generally enhances model accuracy compared

to the baseline in nearly all cases. When adding successive time

points, we observe higher accuracies for seven out of ten time series

models, similar accuracy in one case, and lower accuracies in two

cases compared to our baseline. The increasing trend in accuracy

is initially noticeable, decreases between T = 4 and T = 8, and

then rises again at T = 9 to reach a maximum value of 85.7%. The

maximum increase in accuracy compared to the baseline is∼4% for

a time series length of T = 11. By examining the time points added

for specific time series lengths, we find that time points within the

DAP interval [44, 65] are more likely to harm the accuracy.

3.2 Classification of time series based on
the selection of time points with
GroupSHAP

In comparing the sTS and iTS model accuracies, higher

accuracies are consistently achieved across all time series lengths for

sTS (see Figure 3). Compared to the best iTS model with T = 11,

the sTSmodel accuracies maintain a similar or higher level with the

exclusion of selective entities. The oaAcc and bcAcc for sTS models

reach their maximum values of 89.3 and 89.1%, respectively, for a

time series length of 7. However, the sTSmodel accuracies are lower

for shorter time series (< 6TPs). Additionally, we observe that the

sTS of length 5 achieves the same accuracy as the use of 11 initial

time points.

Figure 4 presents the distribution of GroupSHAP values for

sTS lengths with T ∈ [10, 11]. For a more detailed analysis, the

GroupSHAP values are separated for potential harvest days, with

a combined overview of all harvest days shown in light blue. All

five plots are related to the class Ready for harvest. Regardless of
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FIGURE 3

The plot opposes the baseline model accuracies for single time

point inputs to the accuracies achieved by Kierdorf and Roscher

(2023) (TP), to our computed initial time series (iTS) accuracies, and

to the selective time series (sTS) accuracies. The plot shows the

overall (oaAcc) and balanced class accuracy (bcAcc) for di�erent

time series lengths. For sTS, time points are excluded starting from

right to left.

the time series length, the model tends to classify more plants as

Ready for harvest on later potential harvest days, reflecting the

increasing number of plants ready for harvest over time. This trend

is consistent even for shorter time series lengths. In practice, since

data collection involves surveying the entire field, it is practical to

eliminate data from an entire acquisition day. Therefore, we focus

on the combination plots when considering the exclusion of time

points. It turns out that on average, for T = 11, DAP 50 (macro

stage 40) should be excluded, and for T = 10, DAP 65 (meanmacro

stage 43) should be excluded. The subsequent order for exclusion of

DAPs is 57, 44, 22, 27, and 35.

To sum up our observations, we obtain the best model using

sTS with 7 time points within a time series with oaAcc of 89.3%

and bcAcc of 89.1%. We achieve an oaAcc of 76.3% and bcAcc of

76.7% with the samemodel on a test set. Weighing the effort of data

acquisition against achievable model accuracy, we achieve an oaAcc

of 85.2% and bcAcc of 84.7% on validation data and oaAcc of 78.9%

and bcAcc of 78.9% on the test set when using 4 time points.

4 Discussion

4.1 Time series classification based on
initial time points

We demonstrate that incorporating time series information

enhances the predictive accuracy of the model, even when the

cauliflower curd is not visible in any image within the series.

Kierdorf and Roscher (2023) have demonstrated that it is possible

to determine harvest-readiness even when the curd is occluded

by the canopy. Using explainable machine learning through

the Gradient-weighted Class Activation Mapping (Grad-CAM)

interpretation technique, they have revealed that the ResNet18

model’s decisions are influenced by specific image features,

primarily the leaves at the center of the plant, which protect

the curd. Given that our model also utilizes a ResNet18-based

architecture, we expect these insights to be applicable to time series

data as well. Furthermore, information on the plant’s development

over time provides additional features that enhance the prediction

of harvest-readiness, thereby increasing accuracy.

We attribute the decrease in accuracy for iTS to the fact that

not every time point in the dataset provides relevant information

to the model. Some time points may exhibit redundancy or

correlation, thereby sharing their contribution to the output. This

could generally occur because there is no significant visual growth

of the plants between two acquisition days. Particularly in the later

stages of development, the plants may no longer grow visibly but

continue to develop the head internally. Another reason could

be that additional time points negatively impact the accuracy by

confusing the model. This may result from irrelevant features

or noise in the data (Dodge and Karam, 2016), such as slightly

blurry images, which occur during the processing of raw data into

orthophotos (Kierdorf et al., 2022). The subsequent increase in

accuracy can be attributed to the inclusion of new informative

features by adding additional images.

4.2 Time series classification based on
initial time points

The improved accuracies for sTS demonstrate that GroupSHAP

effectively selects relevant entities to enhance model accuracy.

However, excluding too many features can result in losing valuable

information essential for accurate predictions. In our case, this is

because the approach uses the criterion of the lowest mean absolute

value for exclusion. However, the lowest mean absolute value can

also positively contribute to the predictions. This implies that,

beyond a certain point, its exclusion leads to a decrease in accuracy.

The exclusion of entities, therefore, only makes sense up to a certain

point and has to be limited to maintain and achieve the best model

accuracy. In addition, we have identified that shorter time series

including selected time points yield similar accuracies compared to

longer time series without time point selection. This suggests that

feature selection can reduce time and costs in data acquisition and

processing while achieving the same results as acquiring data over

the entire growing period.

From a biological perspective, the images that are sorted out

first show plants that are in the phenological development of macro

stage 4 and micro stages 1–3, according to BBCH by Feller et al.

(1995)). During these stages, head development takes place, and

the head starts growing, reaching a diameter of up to 6cm. In

the corresponding image data, there are minimal visual changes

compared to earlier images, as the growth happens internally within

the plant. The current appearance of the plant, which is used in the

model’s decision-making, is therefore determined from the images

that display the most robust plant development. In contrast, the

developmental stages of the days with the highest contribution

(DAP 22, 27, and 35) are at the beginning of macro stage 3, when

the main shoot begins to develop. Examining the first two excluded

acquisition time points, DAP 50 and 65, we observe that they occur

more frequently in the database for sTS models of length 7 and

8. The frequent presence of these acquisition days may explain
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FIGURE 4

Visual example of GroupSHAP values for time series lengths T of (A) T = 11 and (B) T = 10. The fixed time points are not shown, as they are not

excluded. One violin plot shows the distribution of GroupSHAP values per time point, more explicitly per day after planting (DAP). The first four plots

represent the set of GroupSHAP values classifying data of harvest day (HD) 1–4. The light blue plot represents the combination of the four sets. The

red-marked DAPs represent the days with the lowest mean absolute GroupSHAP value. The red-marked number in the combination plot is excluded

in the next selective time series model.

the decline in the iTS curve as well. For iTS, we hypothesize that

certain time points negatively impact accuracy due to irrelevant

features or noise in the data, such as slightly blurry images. This

insight also applies to sTS models and might further explain the

low contribution of these time points.

It is important to note that our statement regarding the order

of exclusion of DAPsmay change depending on the development of

the plants in response to external conditions. If the field develops,

on average, one week earlier, this shift would apply to the entire

field, resulting in a corresponding adjustment of all harvest days

and development stages. When generalizing to other fields and

farms, it is important to consider the development stages rather

than solely relying on the DAP time point. Although we have

not yet tested the trained model on another cauliflower farm,

preliminary results indicated that the available data in the field for

cauliflower harvest-readiness estimation is insufficient to generalize

and transfer the classification model to other fields. The effects

of varying weather, lighting, and irrigation must be accounted for

to ensure generalizability. However, altering colors in the HSV

color space to simulate changes in exposure and soil conditions

can inadvertently modify the perceived biological properties of the

plants. For instance, a color change might make healthy leaves

appear diseased, or conversely, diseased leaves appear healthy.

GroupSHAP provides valuable insights but has several

limitations that need to be addressed. One primary constraint

is its high computational complexity and substantial processing

time. The method evaluates the contribution of each feature

across numerous permutations, which results in considerable

computational demands, especially with large datasets and complex

models. To mitigate this issue, parallel computation using

multiple GPUs can be employed. Distributing the computational

workload across several GPUs can significantly reduce processing

time. Additionally, GroupSHAP is sensitive to data quality. The

explanations generated by GroupSHAP rely heavily on the quality

of the input data. Noisy, incomplete, or biased data can lead to

incorrect attributions and interpretations. However, GroupSHAP

can also help identify such issues, as features with poor quality will

contribute minimally to the final prediction. Ensuring high data

quality from the beginning thorough data cleaning and validation

is essential to achieving accurate and reliable results.

5 Conclusion

In this work, we classify image time series of cauliflower plants,

depicting the temporal development concerning their harvest-

readiness. For this purpose, we use a ResNet18 model as an encoder

and integrate the plant age through positional encoding to improve

the discrimination between young and underdeveloped plants.

Furthermore, we use GroupSHAP to investigate the contribution

of single time points within a time series on the model prediction

and how excluding time points with the lowest mean average

contribution affect the model accuracy.

In our experimental investigations, we demonstrate thatmodels

based on image time series data exhibit superior accuracy than

the baseline model, which only considers a single time point as
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input. Furthermore, we show that the explainable machine learning

method GroupSHAP effectively facilitates the selection of time

points from time series that contribute highly to the result and,

thus, leads to improved models.

Our findings can be utilized in new data acquisition methods

to control the data acquisition frequency. For instance, data

acquisition could be increased during the interval of leaf and shoot

development and less during the stage when the head has reached

30% of the expected size, as the development of the plants mainly

takes place in the interior of the plant at this time. However, it is

important to continuously observe the development from year to

year andmake adjustments as necessary, considering any variations

in the development. To enhance generalization, it is imperative

to collect additional data reflecting diverse weather and lighting

conditions, as well as additional data stemming from diverse

developmental processes concerning the temporal occurrence of

growth phases throughout the year, which can subsequently be

assimilated into the model framework. Additionally, the findings

in the application of cauliflower cultivation can be used to estimate

the costs and benefits and determine whether the gain in accuracy

justifies acquiring data weeks in advance. Our approach is adaptable

and can be extended to other plant varieties or analogous time series

analysis tasks.
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