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Time series is a typical data type in numerous domains; however, labeling

large amounts of time series data can be costly and time-consuming.

Learning e�ective representation from unlabeled time series data is a

challenging task. Contrastive learning stands out as a promising method

to acquire representations of unlabeled time series data. Therefore, we

propose a self-supervised time-series representation learning framework via

Time-Frequency Fusion Contrasting (TF-FC) to learn time-series representation

from unlabeled data. Specifically, TF-FC combines time-domain augmentation

with frequency-domain augmentation to generate the diverse samples. For

time-domain augmentation, the raw time series data pass through the time-

domain augmentation bank (such as jitter, scaling, permutation, and masking)

and get time-domain augmentation data. For frequency-domain augmentation,

first, the raw time series undergoes conversion into frequency domain data

following Fast Fourier Transform (FFT) analysis. Then, the frequency data passes

through the frequency-domain augmentation bank (such as low pass filter,

remove frequency, add frequency, and phase shift) and gets frequency-domain

augmentation data. The fusion method of time-domain augmentation data

and frequency-domain augmentation data is kernel PCA, which is useful for

extracting nonlinear features in high-dimensional spaces. By capturing both

the time and frequency domains of the time series, the proposed approach is

able to extract more informative features from the data, enhancing the model’s

capacity to distinguish between di�erent time series. To verify the e�ectiveness

of the TF-FC method, we conducted experiments on four time series domain

datasets (i.e., SleepEEG, HAR, Gesture, and Epilepsy). Experimental results show

that TF-FC significantly improves in recognition accuracy compared with other

SOTA methods.

KEYWORDS

representation learning, time-domain augmentation, frequency-domain augmentation,

self-supervised learning, contrastive learning

1 Introduction

Time series plays fundamental roles in many areas, such as financial markets,

clinical diagnosis, and climate science (Harutyunyan et al., 2019; Mahmud

et al., 2020; Ravuri et al., 2021). Time series mining is a pivotal tool for

comprehending the objective world and natural phenomena but also for informing

crucial scientific decisions. Consequently, the study of time series has garnered

substantial interest from both industrial and academic research communities alike.
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In the last 10 years, deep learning models have demonstrated

superior performance when contrasted with traditional machine

learning methods in handling time series data (Dempster et al.,

2020; Sun et al., 2021). Deep neural networks demonstrate

remarkable efficacy, especially when trained with large amounts

of labeled data. However, time series patterns typically lack

human recognizable characteristics and require specialists for

labeling. Hence, labeling time-series data is more arduous than

labeling images, resulting in a lack of labeled time-series data

in real-world applications (Ching et al., 2018). Consequently,

acquiring large amounts of labeled time series data presents a

significant challenge, as it is a costly and time-consuming process.

Moreover, the human-driven label annotation process is vulnerable

to inherent biases, potentially resulting in ambiguous annotations.

To address the label challenge, numerous algorithms have emerged,

including semi-supervised learning, weakly-supervised learning,

and transfer learning techniques. These approaches aim to mitigate

the dependency on labeled data, offering promising avenues

for alleviating the labeling burden (Qian et al., 2019, 2021;

Buffelli and Vandin, 2021). Using these methodologies, researchers

can improve the precision and adaptability of deep learning

models while mitigating the costs and time constraints in manual

labeling procedures.

Self-supervised learning has garnered more attention for

extracting effective representations from unlabeled data for

downstream tasks involving designing a pretext task and

automatically generating intrinsic ground-truth labels for that

task. Comparatively, self-supervised pre-trained models, when

confronted with limited labeled data, achieve performance on

par with supervised models trained on full labeled data (Chen

et al., 2020). In response to the distinctive characteristics of

time series data, several pretext tasks have emerged, such as

masked reconstruction (Haresamudram et al., 2020) and data

transformation predictions (Saeed et al., 2019). Through training

models with pretext tasks, the acquisition of versatile latent

representations can improve the performance of subsequent

downstream tasks. An extensively used self-supervised technique

is contrastive learning, which involves applying metric learning

to instance-level classification tasks (Tian et al., 2021; Park et al.,

2022). In this method, metric learning is utilized for instance-level

classification tasks, aiming to pre-train a model by contrasting

various views of a particular data instance with those of other

instances. Demonstrating effectiveness, this strategy enables deep

neural networks to acquire robust representations from extensive,

unlabeled datasets, avoiding the necessity for labor-intensive

manual labels. Furthermore, contrastive learning finds extensive

application in computer vision tasks like image classification (Park

et al., 2022), anomaly detection (Tian et al., 2021), and graph

mining (Zhu et al., 2021), along with applications in natural

language processing (Guo et al., 2022). Notably, it attains state-

of-the-art performance by employing instance discrimination as

its pretext task, surpassing even supervised learning approaches

in downstream classification tasks in accuracy. In the realm of

time series analysis, contrastive learning has gained comparatively

less attention compared to other domains (Liu et al., 2021;

Zhang et al., 2022). This is partially attributed to the challenge of

identifying appropriate augmentation methods that capture crucial

invariance properties within time series data. Most prevailing

methods center solely on modeling the time domain, neglecting

the frequency domain. This oversight may lead to the omission of

crucial information, potentially reducing the efficacy of learned

representations in downstream tasks.

In this paper, we introduce TF-FC, a new self-supervised

contrastive framework that merges time-domain augmentation

techniques like jittering, scaling, permutation, and masking with

frequency-domain augmentations such as phase shifting, low-

pass filtering, etc., designed for time series classification. The

objective of time-domain augmentation is aimed at capturing

a variety of temporal characteristics of the time series data by

applying methods that include but are not limited to jittering,

scaling, permutation, etc., while frequency-domain augmentation

is to capture data features by focusing on spectral properties by

applying methods that including but not limited phase shift, low

pass filter, etc. This approach is particularly advantageous for

time series classification tasks, as different classes often exhibit

distinct frequency components. Our approach successfully captures

temporal and spectral characteristics within time series data,

mitigating the need for extensive labeled data. The contribution of

our paper is 3-fold:

• We propose a novel self-supervised contrastive framework

named TF-FC, which combines time-domain augmentation

methods with frequency-domain augmentation methods for

time series classification tasks.

• Specifically, TF-FC effectively captures both the temporal and

spectral attributes of time series data, enhancing the model’s

ability to accurately distinguish between different classes.

The integration of time-domain and frequency-domain

methodologies in our approach represents an innovative and

pioneering contribution to the field of time series classification

tasks.

• Extensive experimentation on four benchmark datasets

showcases the effectiveness of our proposed framework,

achieving state-of-the-art performance. These experimental

results show the efficacy of our approach and emphasize

the potential of self-supervised learning and time-frequency

fusion for enhancing time series classification tasks.

The remainder of this paper is structured as follows: In

Section 2, we delve into the related work, followed by an extensive

description of the TF-FCmethod framework in Section 3. Section 4

outlines the experiments conducted on the benchmark dataset.

Finally, Section 5 is the conclusion and offers insights into

future works.

2 Related work

2.1 Self-supervised learning

Recent advances in self-supervised learning began using pretext

tasks on images to create useful representations. These pretext tasks

include solving jigsaw puzzles (Noroozi and Favaro, 2016), image

colorization (Zhang et al., 2016), and predicting image rotation

(Gidaris et al., 2018). While these pretext tasks yielded promising

results, their reliance on pretext tasks could potentially constrain
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the generality of the acquired representations. A generative model

can also execute the pretext task. This self-supervised model based

on generative modeling can be trained to reconstruct the initial

input, thus acquiring valuable representations. For instance, the

autoencoder (Vincent et al., 2008) is trained to reconstruct input

images. The context encoder (Pathak et al., 2016) is designed to

restore missing portions of the input image when a mask is applied.

Another commonly used framework in training self-supervised

models is contrastive learning. For example, MoCo (He et al., 2020)

implemented a momentum encoder to acquire representations

from negative pairs retrieved from a memory bank. SimCLR (Chen

et al., 2020) replaced the momentum encoder by employing an

expanded batch of negative pairs. BYOL (Grill et al., 2020) attained

representations by bootstrapping from existing representations

without the need for negative samples. SimSiam (Chen and He,

2021) advocated for disregarding negative samples and instead

relied solely on a Siamese network and stop-gradient operation to

achieve state-of-the-art performance.

Self-supervised representation learning for time series has been

becoming more popular recently. Some approaches employed

pretext tasks for time-series data. For example, Saeed et al.

(2019) devised a binary classification pretext task for human

activity recognition. They achieved this by applying multiple

transformations to the data and training the model to distinguish

between the original and the transformed versions. Sarkar and

Etemad (2020) introduced SSL-ECG, a method where ECG

representations are acquired through six applied transformations

on the dataset serving as pretext tasks. Pseudo-labels are then

assigned based on the type of transformation. Saeed et al. (2021)

adopted a similar methodology, designing eight auxiliary tasks

to learn representations from multi-sensor human activity data.

Aggarwal et al. (2019) acquired subject-invariant representations by

modeling local and global activity patterns.

2.2 Contrastive learning for time series

Contrastive learning, a widely adopted self-supervised

learning approach, seeks to train an encoder that maps inputs

onto an embedding space. The objective is to minimize the

distance between positive sample pairs (comprising the original

augmentation and an alternative view of the same input) while

maximizing the distance between negative sample pairs (consisting

of the initial augmentation and an alternative augmentation of

a different input sample). Exploration of contrastive learning in

time series remains relatively less compared with other domains,

such as image and NLP, etc., primarily because of the difficulty in

identifying augmentation methods that effectively capture crucial

invariance properties within time series data. For time invariance,

Kiyasseh et al. (2021) leverage unlabeled physiological data to

derive representations of instances across spatial, temporal, and

patient dimensions. Their approach encourages the similarity

of these representations while defining adjacent time segments

as positive pairs. Tonekaboni et al. (2021) operates assuming

that overlapping temporal neighborhoods exhibit comparable

representations. These methodologies capitalize on temporal

invariance to establish positive pairs, subsequently employed in

computing the contrastive loss. For transformation invariance,

Tang et al. (2020) assessed eight data augmentation techniques

specifically for time series data, replacing traditional image

augmentation operators within the SimCLRmodel, Liu et al. (2021)

implemented time-domain and frequency-domain augmentation

techniques within the SimCLR framework. Wang et al. (2022)

examined the effectiveness of sensor sampling frequencies and

introduced a data augmentation method centered on re-sampling

within their investigation. Recently, there are multi-invariance

methods proposed, Yue et al. (2022) focused on the hierarchy

within identical time series. This approach aimed to differentiate

multi-scale contextual information at both the timestamp and

instance levels.

Several methodologies incorporated frequency domain

characteristics to enrich the learning of time-series representations.

For instance, the Bilinear Temporal-Spectral Fusion (BTSF)

method implemented an iterative bilinear fusion technique,

combining feature embeddings from both time series

representations. Likewise, both TF-C (Zhang et al., 2022)

and STFNets (Liu et al., 2021) acquired representations by

encouraging proximity between time domain and frequency

domain representations of identical samples while pushing them

apart from representations of other signals. Differently, we use

the kernel PCA to fuse time-domain augmentation data and

frequency-domain augmentation data in data layer. We also use

the fused augmented data and original data as positive samples.

3 Methodology

3.1 Formulation

Our objective aims at solving the time series classification issue.

Specifically, when presented with a dataset D = (Xi, yi)(i ∈

1, 2, · · · ,N), where Xi ∈ R
T×S represents a multivariate time series

with a length of T and consisting of S sensor channels, and yi
denotes the associated class label, our aim is to train a mapping

function f :RT×S → Y . This function should accurately predict

the class label for new, unseen time series. In simpler terms, when

presented with a test time series X∗ ∈ R
T×S, the model’s output,

ŷ = f (X∗) ∈ Y , should match the true class label y.

The paper employs the self-supervised learning method to pre-

train an encoder with unlabeled data. While class labels are solely

utilized for fine-tuning the model, the initial pre-training stage

operates self-supervised without the need for class labels.

In this scenario, the encoder, trained in the pretext task, can

be regarded as a function f :RT×S → R
D, responsible for mapping

initial time windows into embeddings of sizeD. Subsequently, these

embeddings processed by an MLP-based model g :RD → R
Y .

3.2 Motivation

Conventional time-domain augmentation techniques,

including jitter, scaling, permutation, and masking, effectively

capture temporal variations within the data. Nevertheless, these

methods are constrained in capturing the frequency-related

aspects of time series, which hold significant information. For
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FIGURE 1

The framework of the Time-Frequency Fusion Contrasting (TF-FC) method consists of three primary components: the augmentation of the initial

sample, the encoder network for both augmented and original samples, and the contrastive learning, constrained by the NT-Xent Loss.

example, various classes might showcase unique frequency

components, like rhythmic arm movements in activities such

as walking or running. On the other hand, frequency-domain

augmentation techniques like Fourier transformations or wavelet

transforms excel at capturing crucial frequency components

within the data. Nonetheless, these methods frequently struggle

to capture temporal variations present in the data, potentially

resulting in information loss and diminished model accuracy.

However, frequency-domain augmentation techniques, like

Fourier transformations or wavelet transforms, excel in capturing

crucial frequency components present in the data. Yet, they often

need to catch up on capturing temporal variations, potentially

resulting in information loss and reduced model accuracy. Several

methodologies incorporated frequency domain characteristics

to enrich the learning of time-series representations in the

embedding layer, which may result in information loss, potentially

undermining the model’s effectiveness by reducing its ability to

capture essential data patterns. Hence, there exists a necessity

to leverage the advantages of time-domain and frequency-

domain methodologies to encompass both temporal and spectral

characteristics inherent in time series data. The TF-FC method

merges time-domain augmentation and frequency-domain

augmentation to generate a diverse set of samples, which can

capture both the time and frequency domains of the signal. The

Kernel Principal Component Analysis (KernelPCA) is often used to

fuse data due to its ability to handle non-linear relationships in the

data, providing a more comprehensive and detailed representation

of the underlying patterns, therefore, we use KernelPCA to fuse

the time-domain and frequency-domain data. Utilizing these

complementary techniques, TF-FC designs a pre-trained model

that encapsulates an expanded scope of information, resulting in

more generalizability and strengthen robustness in the ultimate

time series model, the framework of the proposed method is

presented in Figure 1.

3.3 The augmentation of original sample

• Time-domain augmentation bank: According to the

study conducted by Chen et al. (2020), the integration of

diverse data augmentation techniques has been shown to

enhance the quality of learned embeddings. In this paper, we

introduce an augmentation bank composed of a collection

of straightforward time-domain augmentations. With a

set of time-domain augmentations A = {a1, a2, . . . , aK},

each augmentation is applied to every signal with a

probability of occurrence represented by p. In this

paper, we adopt four commonly used time domain

augmentation techniques and four commonly used

frequency domain augmentation techniques, therefore,

the probability p for applying augmentations is set to 0.25.

The list of simple augmentations utilized in this study is

provided below:

• Jittering: Add random Gaussian noise to original signals to

create new, slightly perturbed versions of signals. Jittering

helps enhance the robustness of signal processing by

simulating real-world noise.

• Scaling: An augmentation that multiplies input signals with

values sampled from the normal distribution. Scaling can

introduce variability in the amplitude or magnitude of the

signals to generate the scaled versions of the original signals.

• Permutation: Splits input signals into a certain number

of intervals and randomly permutes them. Permutation

aims to introduce temporal disorder or rearrangement of

original data.

• Masking: Obscuring segments of the signals with a

predefined mask value. Masking helps improve a model’s

ability to handle missing or incomplete data to make

it robust.
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• Frequency-domain augmentation bank: The initial time

series data transforms frequency domain data using the Fast

Fourier Transform (FFT). In this paper, we introduce an

augmentation bank composed of straightforward frequency-

domain augmentations. With a set of frequency-domain

augmentations A = {a1, a2, . . . , aK}, each augmentation

is applied to every frequency signal with a probability of

occurrence represented by p. The list of simple augmentations

utilized in this study is provided below:

• Low-pass filter: A low-pass filter selectively allows signals

below a specific frequency threshold to pass while

attenuating higher frequencies, commonly employed to

reduce noise or emphasize lower-frequency components in

signal processing.

• Phase shift: Gaussian noise perturbs the phase spectrum

values, while the phase shift augmentation introduces a

random value ranging from −π to π to the existing phase

values.

• Remove frequency: This method selectively alters the

input data by applying a binary mask generated with a

specified perturbation ratio, effectively zeroing elements

based on this mask, thereby serving as a method to remove

components for time series selectively.

• Add frequency: The technique involves the introduction of

perturbations to data by utilizing a binary mask, providing

a method for controlled alterations within the dataset,

thereby serving as a method to selectively add components

for time series.

• To obtain the final augmented data, we employ the kernel

PCA method to combine the time-domain augmented time

series and frequency-domain augmented time series. Firstly,

the time-domain augmented time series and frequency-

domain augmented time series undergo flattening operations

to reshape them into one-dimensional arrays while preserving

their channel and sequence length information. Specifically,

for the time-domain augmented time series, it typically

consists of a two-dimensional array, where one dimension

represents the time steps, and the other dimension represents

the signal channels. Similarly, for the frequency-domain

augmented time series, it also typically comprises a two-

dimensional array, with one dimension representing the

frequency components and the other dimension also

representing the signal channels. During the flattening

operation, these two-dimensional arrays are reshaped into

one-dimensional arrays by concatenating all time steps or

frequency components into a single continuous sequence.

Subsequently, KernelPCA transformations are individually

applied to both flattened datasets, generating transformed

data feature representations separately. The next stage

involves concatenating these transformed representations

to form an integrated feature space. Finally, the reshaped

representation constitutes the final augmented time series,

now enriched with combined temporal and frequency

domain information obtained through the KernelPCA

fusion process. Specifically given two augmented time

series data
t_aug and data

f_aug, then the augmented data

were flattened to data
t_aug_flat and data

f_aug_flat. The

final augmented data is obtained as follows: data
final =

KernelPCA(datat_aug_flat)⊕ KernelPCA(dataf_aug_flat).

3.4 Encoder

In our study, we employ a 3-layer ResNet as the foundational

structure for our self-supervised learning framework’s encoder

component. The ResNet architecture’s widespread adoption in

computer vision tasks stems from its proficiency in managing deep

neural networks containing numerous layers while avoiding the

challenges posed by the vanishing gradient problem. Specifically

in the domain of time series data, 1D ResNet models have proven

effective in capturing temporal dependencies and producing

meaningful embeddings.

3.5 The contrastive learning

Self-supervised learning involves training an encoder without

employing explicit target labels. To achieve this goal, pretext tasks

are employed, among which contrastive approaches specifically

try to align diverse views of identical instances by employing

metric learning objective functions. The objective of self-supervised

learning is to acquiremeaningful and valuable data representations,

which subsequently utilize in downstream tasks like classification

and prediction.

The contrastive learning method proposed in this paper

establishes the final augmented data and the original data as

positive pairs while generating negative samples by sampling

from different instances within the same batch. The normalized

temperature-scaled cross-entropy loss (NT-Xent) serves as the

chosen objective function for training the model. Mathematically,

let zi and zj represent the representations of two samples within

the batch, where i and j denote the indices of these samples. The

formula for the NT-Xent loss is expressed as Equation (1).

Li,j = − log
exp(sim(zi, zj)/τ )

∑2N
k=1 1[k6=i] exp(sim(zi, zk)/τ )

(1)

Here, τ denotes the temperature parameter, 1[k6=i] represents

an indicator function that equals 1 when k 6= i and 0 otherwise,

and sim(·, ·) denotes the cosine similarity function. The NT-Xent

loss promotes the embeddings of positively paired samples to be

proximate in the embedding space while urging the embeddings

of negatively paired samples to be distant from each other.

Throughout the training process, the model is trained to maximize

the average NT-Xent loss across all positive and negative pairs

within the batch, the loss function is shown in Equation (2).

LNT =
1

N

N
∑

i=1

1

2

(

Li,i′ + Li′ ,i
)

(2)

where N is the batch size, i′ is the index of the augmented view

of the same instance as i. The equation computes the mean NT-

Xent loss over all positive and negative pairs contained in the
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batch. By optimizing the NT-Xent loss, the model acquires the

ability to extract meaningful and valuable features from the data,

subsequently applicable for downstream tasks like classification

and prediction.

4 Experiment

4.1 Datasets and preprocessing

In order to evaluate the effectiveness of the proposed approach,

a comprehensive set of experiments was performed on four distinct

publicly available time series datasets from various domains,

including SleepEEG (Goldberger et al., 2000), HAR (Micucci

et al., 2017), Gesture (Liu et al., 2009), and Epilepsy (Andrzejak

et al., 2001), Table 1 illustrates the classification number, division

proportion, and window size of the datasets.

• SleepEEG dataset: The SleepEEG domain dataset we used

is PhysioBank, which comes from Goldberger et al. (2000).

Sleep-EDF includes whole-night PSG sleep recordings, where

we used a single EEG channel (i.e., Fpz-Cz). The dataset

contains 153 whole-night sleeping electroencephalography

(EEG) recordings produced by a sleep cassette. Every sample is

associated with one of the five sleeping patterns/stages: Wake

(W), Non-rapid eye movement (N1, N2, and N3), and Rapid

Eye Movement (REM). The dataset is sampled at 100 Hz.

• HAR dataset: The HAR domain dataset we used is UniMib-

SHAR, which researchers at the University of Milano-Bicocca

collected. Its primary purpose is to detect various “falling”

activities. This dataset comprises information gathered from

30 individuals aged between 18 and 60 years old, utilizing

Android smartphones. Throughout the data collection phase,

participants were required to carry smartphones in both their

left and right pockets. Sensor signals were sampled at a rate of

50 Hz.

• Gesture dataset: The dataset contains accelerometer

measurements of eight simple gestures that differ based

on the paths of hand movement. The eight gestures are

hand swiping left, right, up, and down, hand waving in

a counterclockwise or clockwise circle, hand waving in a

square, and waving a right arrow. The classification labels

are these eight different kinds of gestures. The dataset uses

three channels corresponding to three coordinate directions

of acceleration and is sampled at 100 Hz.

• Epilepsy dataset: The dataset contains single-channel EEG

measurements from 500 subjects. For every subject, the

brain activity was recorded for 23.6 s. The dataset was then

divided and shuffled (to mitigate sample-subject association)

into 11,500 samples of 1 s each. The raw dataset features

five classification labels corresponding to different states of

subjects or measurement locations—eyes open, eyes closed,

EEG measured in the healthy brain region, EEG measured

in the tumor region, and whether the subject has a seizure

episode. To emphasize the distinction between positive and

negative samples in terms of epilepsy, We merge the first four

classes into one, and each time series sample has a binary label

describing if the associated subject is experiencing a seizure.

4.2 Implementation details

4.2.1 Augmentation
Within the time-domain augmentation module, four

techniques are employed: jittering, scaling, permutation, and

masking. Specifically, for jittering, Gaussian noise with a standard

deviation of 0.01 is added to the time series data. Scaling operates

by multiplying data points with a random scalar value from the

range (0.9, 1.1). Permutation randomly rearranges the order of the

time series data points. Masking obscures 10% of the time series

data points. In the frequency-domain augmentation module, we

use four techniques: Low-pass filter, phase shift, remove frequency,

and add frequency. Low-pass filter Phase shift involves that phase

spectrum values are perturbed by Gaussian noise, then adds a

random value between -π and π to the phase values; we choose a

random value between -π and π for every signal sample. Remove

frequency involves 10% of the elements of the frequency data that

will be randomly zeroed out. Add frequency involves 10% of the

elements of the frequency data that will be randomly perturbed by

adding noise.

4.2.2 Pretext setup
The encoder undergoes pre-training within the suggested

contrastive learning framework, employing the Adam optimizer

(Kingma and Ba, 2015) with a learning rate set at 10-4 and decay

rates of 0.9 and 0.99, sustained for 100 epochs. This optimizer

can be a good choice for time series classification problems,

particularly those with complex and varied patterns in the data.

We also add L2 regularization to the loss function to mitigate

over-fitting. As different datasets might present varying input data

lengths, it’s crucial to ensure uniform feature lengths extracted from

these inputs. Adaptive average pooling is employed to standardize

the vector length of the ResNet features for this purpose.

The projection MLP receives the encoder output and performs

projection into a lower-dimensional space, achieved through two

fully connected layers equipped with batch normalization and

ReLU activation functions.

4.2.3 Fine-tuning
The prediction model comprises two hidden layers, the first

with 256 neurons and the second with 128 neurons, utilizing ReLU

activation functions. Additionally, there’s dropout regularization

applied with a probability of 0.2. For optimization, the model

employs the Adam optimizer with default parameters: ǫ = 10−4,

β1 = 0.9, and β2 = 0.99. The output layer uses the softmax

activation function.

4.3 Evaluation metrics

The evaluation of the model’s performance is based on three

metrics:

• Accuracy: This metric measures the ratio of correctly

predicted instances to the total instances in the dataset,

providing an overall assessment of the model’s correctness.
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TABLE 1 Briefly description and operation of four domains datasets.

Operation

Dataset
SleepEEG HAR Gesture Epilepsy

Number of classification 5 17 8 2

Ratio of pretrain 60% 60% 60% 60%

Ratio of finetune 20% 20% 20% 20%

Ratio of test 20% 20% 20% 20%

Sliding window size 3000 171 206 178

Overlap rates 50% 50% 75% 75%

• Precision: Precision quantifies the accuracy of the positive

predictions made by the model. It is calculated as the ratio of

true positive predictions to the total positive predictions (true

positives + false positives).

• F1-score: The F1-score is the harmonic mean of precision

and recall. It gives a balance between precision and recall,

providing a single score that considers both false positives and

false negatives.

The calculation formula of accuracy, precision and F1-score are

as follows:

Accuracy =
Number of Correct Predictions

Total Number of Predictions

Precision =
True Positives

True Positives + False Positives

F1-score = 2×
Precision× Recall

Precision + Recall

4.4 Experimental results

In this study, we employed a total of seven baseline methods.

To examine the utility of pre-training, we consider two additional

approaches applied directly to fine-tuning datasets without any pre-

training: Non-DL (a non-deep learning KNN model) and Random

Init (randomly initializes the fine-tuning model). Additionally,

we utilized five self-supervised state-of-the-art (SOTA) methods,

including TF-C (Zhang et al., 2022), TS2vec (Yue et al., 2022),

Mixing-up (Wickstrøm et al., 2022), TS-TCC (Eldele et al., 2021),

and SimCLR (Tang et al., 2020).

Below are introductions to these baseline methods.

• TS2Vec: This method introduces the concept of contextual

consistency and employs a hierarchical loss function to

capture the long-range structure in time series data.

• Mixing-up: This method introduces innovative mix-up

augmentation and pretext tasks, designed to accurately predict

the mixing proportion of two time series samples.

• TS-TCC: The method uses temporal and contextual

contrastive learning to help the model learn consistent

features across variations and identify distinct feature changes

over different time intervals.

• TF-C: The method proposes a novel contrastive learning

approach called temporal-frequency consistency, where data

from the temporal domain and the frequency domain are

treated as positive samples.

• SimCLR: Themethod adapts the SimCLR contrastive learning

framework for the domain of human activity recognition,

utilizing eight specialized data augmentation techniques

designed for time series data.

The experimental results are shown in the Table 2 and Figure 2.

The table above showcases the experimental results of various

methods across diverse domain datasets. In terms of experimental

evaluation metrics, we use accuracy, precision, and F1-score for

comprehensive evaluation of the model. To assess the efficacy

of pre-training, we conducted a comparative analysis involving

two additional methodologies, which directly use fine-tuning

datasets without any pre-training. The initial approach, denoted

as “Non-DL,” employs a non-deep learning K-nearest neighbors

(KNN) model. The subsequent method, named “Random init.,”

involves the random initialization of the fine-tuning model. TF-

FC (ours) showcases promising results, achieving the highest

accuracy, precision, and F1-score in all different domain datasets,

which displays the robustness of the model. Specifically, in

the SleepEEG dataset, TF-TC secures the highest accuracy at

82.53%, coupled with precision and F1-score reaching 75.21

and 72.62%, respectively. Similarly, in the HAR dataset, TF-TC

demonstrates substantial prowess with an accuracy of 85.81% and

precision and F1-score at 79.72 and 77.96%, respectively. The

Gesture dataset further solidifies TF-TC’s dominance, achieving

an accuracy of 97.92% alongside precision and F1-score metrics

of 98.15 and 98.09%, respectively. In the Epilepsy dataset,

TF-TC secures the highest accuracy at 97.99%, coupled with

precision and F1-score reaching 97.81 and 96.85%, respectively.

The superior performance of TF-FC across these four datasets can

be attributed to several key factors. Firstly, TF-FC leverages time-

frequency fusion techniques, enabling it to effectively integrate

temporal and spectral information. Secondly, TF-FC employs

comprehensive data augmentation strategies, enhancing the

diversity of training samples and facilitating robust model training.

Lastly, TF-FC incorporates kernel PCA fusion for nonlinear

feature extraction, allowing it to capture complex patterns inherent

in the data.
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Overall, the analysis indicates that TF-TC outperforms other

methods in all metrics across SleepEEG, HAR, Gesture, and

Epilepsy datasets, showcasing its efficacy in different tasks of time

series classification.

4.5 Ablation study

The ablation experiment in this study aims to investigate

the contributions of time-domain augmentation and frequency-

domain augmentation to the performance of the TF-FC method.

For this purpose, two experiments were carried out: one excludes

time-domain augmentation and solely relies on frequency-domain

techniques, while the other involved omitting frequency-domain

augmentation and exclusively employing time-domain techniques.

The experimental results are shown in the Table 3.

The results shown in Table 3 illustrate the ablation experiments

conducted by independently evaluating the time-domain

augmentation and frequency-domain augmentation modules.

The TF-FC method, leveraging both time-domain and frequency-

domain augmentations, demonstrates superior performance,

yielding the highest accuracy, precision, and F1 scores across all

four datasets. Notably, removing either augmentationmodule leads

to a decline in accuracy, precision, and F1 scores, underscoring

the substantial contributions of both modules to the TF-FC

method’s performance. Indeed, the varying performances of the

“only Time-domain” and “only Frequency-domain” approaches

across datasets highlight the nuanced importance of time-related

and frequency-domain information in different domains. The

proposed TF-TC method offers a unique solution that combines

the strengths of both time and frequency domains. By integrating

Time-Frequency Fusion Contrasting, TF-TC effectively leverages

the complementary nature of these domains, allowing for a

more comprehensive representation of the underlying data

characteristics. These observations emphasize the method’s adept

utilization of the complementarity between time-domain and

frequency-domain augmentations, culminating in enhanced

self-supervised learning for time series classification.

4.6 Visualizations

For visualizing the performance of our method, we generated

three confusion matrices specific to the SleepEEG dataset, as shown

in Figure 3. The first confusion matrix shows the results of only

using the time-domain augmentation module, the second only

using the frequency-domain augmentation module, and the third

using the TF-FC (ours) method.

The overall performance of combining the time-domain

augmentation module and frequency-domain augmentation

module is better than only using the time-domain augmentation

module or the frequency-domain augmentation module.

Specifically, our method showcases superior performance

compared to using only time-domain augmentation, especially

within the “Wake” class; however, slight decreases are observed

in certain classes like “N1” and “N3,” which could be due to the
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A

B

C

FIGURE 2

Experimental results compared with other methods using histograms. (A) Accuracy. (B) Precision. (C) F1-score.
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TABLE 3 Ablation experiment results.

Methods

Dataset
SleepEEG HAR Gesture Epilepsy

Evaluation metrics Acc Precision F1-score Acc Precision F1-score Acc Precision F1-score Acc Precision F1-score

Only time-domain 0.8070 0.7448 0.7194 0.8016 0.7395 0.6982 0.9583 0.9664 0.9540 0.9705 0.9742 0.9519

Only freq-domain 0.8201 0.7539 0.7047 0.7852 0.7090 0.6814 0.9271 0.9399 0.9241 0.9411 0.9592 0.8969

TF-TC (ours) 0.8253 0.7560 0.7262 0.8581 0.7972 0.7796 0.9792 0.9815 0.9809 0.9799 0.9781 0.9685

Bold values signify accuracy, precision, and F1-score.
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introduction of noise or irrelevant features during the frequency-

domain augmentation process. Additionally, the complex interplay

between time-domain and frequency-domain features may result

in trade-offs in performance across different classes. Moreover,

when directly compared to using only time-domain augmentation,

our method outperforms three out of five categories, although

displaying slightly lower performance in “N1” and “N2.” Our

method outperforms only the use of time-domain augmentation

three out of five but is slightly worse in “N1” and “N2.” “N1”

and “N2” stages often exhibit complex patterns and transitions

between sleep states, which may pose challenges for the model to

accurately distinguish between them. The addition of frequency-

domain augmentation may not necessarily enhance the model’s

ability to capture these subtle variations, leading to comparable

or slightly lower performance compared to using only time-

domain features.

The combination of both time-domain and frequency-

domain augmentations within our method showcases superior

performance compared to individual approaches, showing its

comprehensive advantage in overall performance.

5 Conclusion

This paper introduces an innovative approach called the

Time-Frequency Fusion Contrasting (TF-FC) method, designed

specifically for self-supervised time series classification. TF-FC

utilizes the potency of contrastive learning to address the common

problem of demanding extensive labeled data. Combining time-

domain and frequency-domain augmentations generates a diverse

array of samples, effectively capturing both the temporal nuances

and spectral attributes inherent in time series data. The results

obtained from experiments on four benchmark datasets strongly

support the effectiveness of the TF-FC method. It showcases state-

of-the-art performance, surpassing conventional machine learning

techniques and other self-supervised approaches. These outcomes

validate the TF-FC method’s potential and emphasize the benefits

derived from integrating both time-domain and frequency-domain

augmentations, significantly boosting the model’s capabilities. But

the computational complexity of TF-FCmay pose challenges due to

the intensive processing power and memory resources required for

combining time-domain and frequency-domain augmentations.

The TF-FC method demonstrates substantial promise for real-

world applications in health assessment, accident monitoring, and

various other domains. For instance, in healthcare, TF-FC could

be utilized for analyzing physiological signals such as EEG or

ECG data, aiding in the diagnosis of neurological disorders or

monitoring patients’ health status over time. Similarly, in accident

monitoring systems, TF-FC could contribute to the early detection

and prediction of critical events based on sensor data, thereby

enhancing safety measures and preventing potential accidents. In

the absence of extensive labeled data, the method demonstrates

favorable performance. Subsequent research avenues could delve

into integrating supplementary data sources or modalities, like

contextual environmental factors, aiming to advance the method’s

performance and applicability. Moreover, extending the TF-FC

approach to address diverse time-series classification tasks could

facilitate training a versatile model using large amounts of

unlabeled datasets. This could further transfer knowledge to

smaller datasets with limited or zero labels, enhancing the model’s

adaptability across domains.
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