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Plant leaf disease recognition 
based on improved SinGAN and 
improved ResNet34
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College of Big Data, Yunnan Agricultural University, Kunming, China

The identification of plant leaf diseases is crucial in precision agriculture, playing 
a pivotal role in advancing the modernization of agriculture. Timely detection 
and diagnosis of leaf diseases for preventive measures significantly contribute 
to enhancing both the quantity and quality of agricultural products, thereby 
fostering the in-depth development of precision agriculture. However, despite 
the rapid development of research on plant leaf disease identification, it still 
faces challenges such as insufficient agricultural datasets and the problem of 
deep learning-based disease identification models having numerous training 
parameters and insufficient accuracy. This paper proposes a plant leaf disease 
identification method based on improved SinGAN and improved ResNet34 
to address the aforementioned issues. Firstly, an improved SinGAN called 
Reconstruction-Based Single Image Generation Network (ReSinGN) is proposed 
for image enhancement. This network accelerates model training speed by 
using an autoencoder to replace the GAN in the SinGAN and incorporates a 
Convolutional Block Attention Module (CBAM) into the autoencoder to more 
accurately capture important features and structural information in the images. 
Random pixel Shuffling are introduced in ReSinGN to enable the model to 
learn richer data representations, further enhancing the quality of generated 
images. Secondly, an improved ResNet34 is proposed for plant leaf disease 
identification. This involves adding CBAM modules to the ResNet34 to alleviate 
the limitations of parameter sharing, replacing the ReLU activation function 
with LeakyReLU activation function to address the problem of neuron death, 
and utilizing transfer learning-based training methods to accelerate network 
training speed. This paper takes tomato leaf diseases as the experimental 
subject, and the experimental results demonstrate that: (1) ReSinGN generates 
high-quality images at least 44.6 times faster in training speed compared to 
SinGAN. (2) The Tenengrad score of images generated by the ReSinGN model 
is 67.3, which is improved by 30.2 compared to the SinGAN, resulting in clearer 
images. (3) ReSinGN model with random pixel Shuffling outperforms SinGAN 
in both image clarity and distortion, achieving the optimal balance between 
image clarity and distortion. (4) The improved ResNet34 achieved an average 
recognition accuracy, recognition precision, recognition accuracy (redundant 
as it’s similar to precision), recall, and F1 score of 98.57, 96.57, 98.68, 97.7, and 
98.17%, respectively, for tomato leaf disease identification. Compared to the 
original ResNet34, this represents enhancements of 3.65, 4.66, 0.88, 4.1, and 
2.47%, respectively.
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1 Introduction

Precision agriculture (Chen et al., 2021) is a product of the rapid 
development of artificial intelligence and Internet of Things 
technology, playing an important role in promoting China’s agriculture 
toward modernization. Plant leaf disease identification, as one of the 
research areas in precision agriculture, has a significant impact on the 
development of the planting industry (Liao et al., 2018). Timely and 
effective detection and diagnosis of leaf diseases, along with preventive 
measures, can significantly increase crop yield and quality, further 
driving the advancement of precision agriculture.

In recent years, with the rapid development of computer vision 
technology, deep learning methods have been widely applied in crop 
disease identification. Wang et  al. (2024) proposed a tomato leaf 
disease detection method based on attention mechanisms and multi-
scale feature fusion. By incorporating CBAM into the backbone 
network to enhance lesion feature extraction and reduce 
environmental interference, they constructed the BiRepGFPN module 
to fuse shallow features for improved small lesion localization 
capability, which was then applied to the YOLOv6 model replacing 
PAFPN, effectively fusing deep semantic and shallow spatial 
information. The model achieved respective improvements of 2.3, 4.0, 
3.1, and 2.7% in accuracy, recall, F1 score, and mAP on a tomato leaf 
disease dataset. Gonzalez-Huitron et  al. (2021), addressing the 
classification of tomato leaf diseases, combined transfer learning with 
four lightweight models. They conducted both quantitative and 
qualitative evaluations through quality metrics and saliency maps, and 
developed a GUI tool adaptable to different devices. Hu and Fang 
(2022) achieved automatic identification of tea leaf diseases with small 
sample sizes by integrating the MergeModel with leaf disease image 
segmentation and weight initialization techniques, and further 
augmenting the dataset through generating new training samples 
using SinGAN. Compared to existing methods, the proposed 
approach demonstrates higher accuracy in the recognition of tea leaf 
diseases with limited samples. Amri et al. (2024) introduced a new 
deep learning model, MIV-PlantNet, tailored for Saudi  Arabia’s 
diverse plant population, which integrated the advantages of 
MobileNet, Inception, and VGG architectures, achieving a 99% 
accuracy rate, 96% precision, and 98% F1 score, demonstrating 
superior performance. Alkanan and Gulzar (2024) enhanced the 
MobileNetV2 model by incorporating multi-level optimizations and 
combining various model tuning techniques, applying the refined 
model to corn disease classification tasks. Comparative analysis 
against state-of-the-art models revealed that the improved 
MobileNetV2 surpassed its counterparts in terms of accuracy, recall, 
F1 score, and overall accuracy. Zeng et  al. (2024)proposed the 
DIC-Transformer model, which first detects disease areas using Faster 
R-CNN combined with Swin Transformer and generates disease 
image feature vectors, then employs a Transformer to generate image 
descriptions, enhancing subsequent classifier decoder performance 
through weighted fusion of text features with image feature vectors. 
Experiments showed that DIC-Transformer outperforms other 
comparative models in both classification and description generation 
tasks. Wu et al. (2024) applied an improved Mask R-CNN method to 
the image segmentation task of soybean rust pathogens. This method 
initially replaces the original backbone of Mask R-CNN with Res2net 
to hierarchically split residual connections within a single residual 
block and combines FPG to reinforce feature extraction capabilities. 

Furthermore, it adopts the CIoU loss function in the bounding box 
regression prediction stage to expedite model convergence and cater 
to the precise classification needs of high-density spore images. 
Compared to the original Mask R-CNN algorithm, the improved 
version saw respective enhancements of 6.4, 12.3, and 2.2% in 
detection and segmentation mAP and accuracy.

This paper presents a plant leaf disease identification method 
based on an improved SinGAN (Shaham et al., 2019) and an enhanced 
ResNet34 (He et al., 2016), with key contributions outlined as follows:

 1) Accelerated Model Training: Replacing GAN in SinGAN with 
an autoencoder shifts the training objective from unconditional 
image generation to image reconstruction, leading to a faster 
training process for the model.

 2) Accelerated Model Training: Replacing GAN in SinGAN with 
an autoencoder shifts the training objective from unconditional 
image generation to image reconstruction, leading to a faster 
training process for the model.

 3) Accelerated Model Training: Replacing GAN in SinGAN with 
an autoencoder shifts the training objective from unconditional 
image generation to image reconstruction, leading to a faster 
training process for the model.

 4) Accelerated Model Training: Replacing GAN in SinGAN with 
an autoencoder shifts the training objective from unconditional 
image generation to image reconstruction, leading to a faster 
training process for the model.

 5) Accelerated Model Training: Replacing GAN in SinGAN with 
an autoencoder shifts the training objective from unconditional 
image generation to image reconstruction, leading to a faster 
training process for the model.

 6) Accelerated Model Training: Replacing GAN in SinGAN with 
an autoencoder shifts the training objective from unconditional 
image generation to image reconstruction, leading to a faster 
training process for the model.

The technical roadmap of this paper is illustrated in Figure 1.

2 Materials and methods

2.1 SinGAN

Shaham et al. (2019) proposed the SinGAN model, which is a 
non-conditional generative model that learns from a single image to 
generate images from noise. Like conventional GANs, SinGAN aims 
to fit the distribution of real data by progressively capturing data 
relationships within the samples. As shown in Figure 2, the output 
images of the GANn layer are upsampled by cubic interpolation to the 
next scale resolution, then fed along with noise Zn−1 into the generator 
of the GANn−1 layer. The images generated through training with 
convolutional neural networks are combined with the images Xn 
generated at GANn layer to obtain fake images Xn−1 at that resolution. 
Subsequently, these fake images and real images are input together 
into the discriminator to determine if they are real images at the 
current scale. Through multiple rounds of training, SinGAN can 
generate high-quality images Xn−1. From GANn to GAN0, N + 1 scale 
structures are progressively trained to learn the internal data 
distribution of a single image at different resolutions.
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2.2 Data augmentation method based on 
improved SinGAN

SinGAN is a single-image training and generation model based 
on Generative Adversarial Networks (GANs), which circumvents the 
need for a large number of training samples, requiring only a single 
image to achieve diverse image generation. However, despite training 
with only a single image, SinGAN involves iterative training at 
multiple scales, which may require longer training times and higher 
computational resources. Additionally, since SinGAN is trained on 
a single image, the generated images may suffer from distortion 
issues. This paper proposes ReSinGN to circumvent the 

above-mentioned issues, and its model architecture follows that of 
SinGAN. ReSinGN is a reconstruction-based single-image generative 
network trained for general image generation on a single natural 
image. The network replaces the GAN in SinGAN with an 
autoencoder incorporating the CBAM, introduces random pixel 
Shuffling within the model, and trains the model in a cascaded 
multi-scale and progressively growing manner to capture 
information at different scales of a single image. Experimental results 
demonstrate that ReSinGN has shorter training times compared to 
SinGAN and generates higher-quality tomato leaf disease images. 
Furthermore, ReSinGN outperforms the SinGAN in terms of 
distortion scores.

FIGURE 1

The technology roadmap.

FIGURE 2

The basic structure of the SinGAN.
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2.2.1 Reconstruction-based single image 
generation network

Autoencoder (Hinton and Salakhutdinov, 2006) is a data-driven, 
unsupervised learning neural network model used for extracting data 
features. Its structure is depicted in Figure 3. It can be observed from 
Figure 3 that the autoencoder is divided into an encoding stage and a 
decoding stage. Its objective is to capture essential factors representing 
the input data through the intermediate hidden layer encoding, while 
the output layer’s result is solely used to assess whether the 
autoencoder can reconstruct the original data. By computing the 
reconstruction error and utilizing the backpropagation algorithm for 
parameter optimization, the autoencoder aims to achieve 
reconstruction error within a given range, thereby obtaining the 
features of the input data.

The aim of this paper is to train a model for generating high-
quality images from a single natural image more quickly. While 
SinGAN addresses the similar problem, its learning objective is 
complex, requiring excessive time for model training. Inspired by Yoo 
and Chen (2021), this paper replaces the GAN in the SinGAN with an 
autoencoder, forming a Reconstruction-Based Single Image 
Generation Network (ReSinGN). The model transitions from learning 
unconditional image generation to learning image reconstruction, 
making the training objective simpler.

2.2.2 Adding convolutional block attention 
module

The Convolutional Block Attention Module (Woo et al., 2018) 
consists of two sub-modules: the Channel Attention Module and the 
Spatial Attention Module. By adaptively refining intermediate feature 
maps through CBAM in each convolutional block of the deep 
network, feature representation capability can be enhanced, enabling 
the network to learn to focus on key information. As a lightweight 
attention module, CBAM can be  embedded into almost all 
convolutional neural networks with minimal additional computational 
cost and parameter overhead. CBAM also supports end-to-end 
training with the base CNN, as shown in Figure 4.

Due to the limitations of the autoencoder network structure, it 
may not effectively capture important local and global features in the 
image, resulting in distortion and blurriness in the reconstruction 
results. To enhance the model’s perception of local and global features 
in images and improve reconstruction quality, this paper incorporates 
the attention mechanism module CBAM (Convolutional Block 
Attention Module) after the encoder of the autoencoder, as shown in 
Figure 5. Adding the CBAM module to the encoder part allows it to 
flexibly select and strengthen important features in the input data, 
enabling the model to more accurately capture important details and 
structural information in the image, thereby improving the 

reconstruction quality of the autoencoder and enhancing the overall 
performance of the model.

2.2.3 Multi-scale cascaded learning
A natural image typically contains different structures at various 

scales. In order to successfully learn these cross-scale visual attributes, 
similar to SinGAN, ReSinGN learns how to refine a downsampled 
training image in a cascaded multi-scale manner (Figure 6A), to learn 
image visual attributes at different scales. The model consists of 
multiple networks, each responsible for refinement at each scale. The 
output of each network is upsampled and fed into the next finer-scale 
network. At coarser scales, the model learns more to refine the overall 
structure, while at finer scales, it learns more to refine details and 
textures. In this way, the entire model can reconstruct high-resolution 
images that are closer to the original image.

To train the multi-scale network, this paper adopts a progressively 
growing learning approach (Karras et al., 2017) to train the ReSinGN 
model (Figure  6B). This is an advanced multi-scale learning 
framework widely used in many image synthesis methods (Aigner and 
Körner, 2018; Karras et  al., 2019; Zhang et  al., 2019), including 
SinGAN. This method starts from the coarsest scale and progressively 
trains multiple networks, freezing the previously trained networks 
when continuing to train the next scale network. This approach 
addresses simpler problems one by one, thereby reducing the training 
difficulty. Specifically, the model first downsamples the training image 
to obtain a set of N + 1 real images at different scales { , , ,X X XN N− …1 1

}, whereX0=X  and the X  is the original training image. Then, at each 
nth scale, the nth network Fn  is trained to reconstruct the image 
refined by one level. Therefore, let 

1
r

n nnX F X +
 

= ↑  
 

 and 

( )N N NX F X=

 represent the reconstructed image at the coarsest scale 
(↑r  represents upsampling by a factor of r), the objective of this section is:

 

min

F
X X

n
rec n n ,











 
(1)

rec is the reconstruction loss. Once the training of a network is 
completed, this network is frozen, and a new network is added to train 
an image at a smaller scale.

2.2.4 Random pixel shuffling
When the training objective is image reconstruction, the cascaded 

multi-scale learning method has certain limitations. This is because 
when the output at the coarsest scale exhibits limited diversity, it may 
show limited variations to the next network in the training samples. 
Consequently, in the progressive training process, the finer-scale 
networks are likely to learn simple or identity mappings, rather than 
more complex or diverse representations. Furthermore, since each 
network can only be trained with fixed outputs from previously frozen 
networks, the diversity at the input end of the network is zero. This 
approach restricts the network’s opportunities to learn from various 
variations, reducing the strength of its representation capabilities. 
Inspired by denoising autoencoders (Vincent et al., 2008), this paper 
effectively alleviates this issue by introducing a simple technique - 
random pixel shuffling, specifically, random permutation of the input 
image pixels (Figure  6A). This method introduces randomness, 
making the mapping of the autoencoder randomized. This process 

FIGURE 3

Autoencoder model structure.
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allows the autoencoder to learn richer and more powerful data 
representations, even when trained with reconstruction loss, thereby 
enabling it to generate new images. Additionally, the introduced 
random pixel transformations are used as tools to control the trade-off 
between super-resolution perception and distortion (Blau and 
Michaeli, 2018).

2.2.5 Optimizer
This paper utilizes the Adam optimizer (Kingma, 2015) ( 1β  = 0.5, 

β2  = 0.999) with a learning rate of 0.001. Equation (2) as the loss 
function for ReSinGN. The reconstruction loss employs the mean 
squared error (MSE) loss. However, the MSE loss tends to produce 
blurry images (Zhao et al., 2016). Therefore, a weighted sum of the 
mean squared error (MSE) loss and the Kullback–Leibler (KL) 
divergence is combined with the Structural Similarity (SSIM) loss 
(Wang et al., 2004). In Equation (1), rec represents:

 

( ) ( ) ( )
( ) ( )( )

, SE A,B 1

, 1 ,
weight weightrec A B mse M mse

KL A B SSIM A B

= ∗ + −

∗ + −



 (2)

Where mseweight is used to control the relative weight of the MSE 
and KL divergence losses in the overall loss calculation, and A and B 
are the original image and the reconstructed image, respectively.

2.2.6 Model architecture
Figure 7 shows the network architecture of the ReSinGN model. 

The first two 1 × 1 convolutional layers encode the input data, mapping 
RGB images to the feature space, with a CBAM module added after 
the encoder. The last two 1 × 1 convolutional layers map the 
representations in the feature space back to the reconstructed input 
data. The middle six convolutional blocks are densely connected 
through residual operations (Huang et  al., 2017), with each 

convolutional block consisting of a 3 × 3 convolutional layer, an 
instance normalization layer, and a LeakyReLU activation layer (with 
a negative slope of 0.2). The Tanh function is used to obtain the final 
output. No pooling or unpooling is used within the network, so the 
input and output of each network have the same spatial dimensions. 
Additionally, the ReSinGN network architecture is used for all 
networks at each scale.

2.3 Residual network model

ResNet is a deeply influential neural network architecture 
introduced by the team led by Kaiming He  in 2016. It directly 
increased the depth of neural networks to 152 layers in the ImageNet 
image classification competition. The model overwhelmingly won the 
championship in both image recognition and object detection tasks in 
ImageNet, and similarly excelled in object detection and image 
segmentation competitions on the COCO dataset. The introduction 
of ResNet has significant historical significance for the development 
of deep neural networks. Compared to traditional network 
architectures, ResNet introduced “shortcut connections” or “skip 
connections,” as shown in Figure 8.

ResNet introduces a “shortcut” connection before the ReLU 
activation function in the second layer, altering the input to the 
activation function from the original output H(x) = F(x) to 
H(x) = F(x) + x. In ResNet, this operation, which keeps the output 
equal to the input, is known as an identity mapping. The “identity” in 
the residual block structure in Figure 8 ensures the implementation 
of this identity mapping. With the introduction of identity, the 
identity mapping alters the direction of the network layer, that is 
F(x) + x → x. This improvement facilitates the direct propagation of 
data across multiple layers, ensuring that the model remains in an 
ideal state while aiding in the rapid convergence of the network.

FIGURE 4

Connection between channel module and spatial module in CNN.

FIGURE 5

The network architecture diagram of ReSinGN integrated with CBAM module.
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In addressing the vanishing gradient problem, it is analyzed 
through Equation (3):

 
X X F X ,WL l

i

L

i i= + ( )
=

−

∑
1

1

 
(3)

Where XL represents the characteristics of the L-th layer of the 
network, indicating that each unit Xl  in the shallow layers is 
augmented with a residual function mapping ( )L 1

i ii 1 F X ,W−
=∑ , 

showing that the model exhibits residual characteristics within 
each unit. It can be  observed that in the residual network, the 

FIGURE 6

(A) Cascading multi-scale training. (B) Step by step learning training.

FIGURE 7

The network architecture of ReSinGN.
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output of lower-level residual modules can be determined by a 
higher-level layer.

For backpropagation, assuming the loss function is E, according 
to the chain rule of backpropagation, we  can derive the gradient 
formula (4) for the residual network.

 

∂
∂

=
∂
∂

∂
∂

=
∂
∂

+
∂
∂

( )










=

−

∑ε ε ε
X X

X
X X X

F X W
l L

L

l L l i

L
i i1

1

1
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(4)

Equation (4) consists of two parts: ∂
∂
ε
Xl

 that does not pass through 

the weight layers and ∂
∂

+
∂
∂

( )










=

−

∑ε
X X

F X W
L l i

L
i i1

1

1

,  that passes through 

the weight layers, 
∂
∂
ε
Xl  ensures that the propagation can be directly fed 

back to any shallow layer Xl, which is a consequence of the mapping in a 
typical multi-layer neural network. In the residual network, even if the 
gradients of the newly added multi-layer neural network are zero, an 
additional “1” is added during the gradient update process. This helps to 
avoid the problem of vanishing gradients, allowing the gradients from 
deeper layers to directly propagate back to the previous layer, enabling 
effective training of the parameters in shallow layers.

2.4 Plant leaf disease identification method 
based on improved ResNet34

For the medium-scale classification task of tomato leaf diseases, 
this study opts for ResNet34 as the foundational model, grounded in 
the following rationales: (1) On tasks of intermediate scale, ResNet34 
strikingly balances high performance with computational efficiency, 
ensuring optimal resource utilization. (2) As a lighter variant within 
the ResNet family, ResNet34 is distinguished by its capability to yield 
excellent classification outcomes with reduced computational 

resources and shorter training durations, thereby making it a 
computationally frugal yet effective choice.

2.4.1 Adding convolutional block attention 
module

To address the issues of insufficient integration of local features 
and excessive parameter sharing in the ResNet34, this paper 
introduces the CBAM (Woo et  al., 2018) into its architecture, 
resulting in ResNet34-CBAM. Simply adding the CBAM module 
directly to ResNet34 would alter the network structure, rendering the 
use of pre-trained parameters infeasible. Through experimentation, 
this study incorporated two CBAM modules into ResNet34, 
positioned after the second convolutional layer and the last 
convolutional layer, as illustrated in Figure  9. This combination 
exhibits higher weight coefficients at recognition points, thereby 
enhancing the classification performance of ResNet34.

The convolutional structure of Conv1 in Figure 9 is 7×7, with 64 
channels and a stride of 2. The residual structures of Conv2_x, 
Conv3_x, Conv4_x, and Conv5_x are illustrated in Figure 10.

2.4.2 LeakyReLU activation function
ReLU (Banerjee et  al., 2019) is a commonly used activation 

function in neural networks, with its corresponding formula shown 
in Equation (5). It can be observed from Equation (5) that during the 
training process, the ReLU activation function only operates when the 
input variable x is positive. When the input variable x is negative, 
ReLU exhibits neuron death, resulting in the cessation of 
weight updates.

 
ReLu

x

x
=

>
≤





1 0

0 0

,

,  
(5)

LeakyReLU (Dubey and Jain, 2019) is very similar to the ReLU 
function, with the only difference lying in the negative part of the 
input. While ReLU sets the values of the negative part of the input to 
0, LeakyReLU assigns negative values to the negative part of the input 
and has a small gradient. The formula for the LeakyReLU activation 
function is shown in Equation (6).

 
LeakyReLu

x x

ax x
=

≥
<





,

,

0

0 
(6)

In Equation (6), a usually takes a smaller value.
To address the issue of neuron death, this paper employs 

LeakyReLU instead of ReLU as the activation function in 
intermediate layers, forming ResNet34-LeakyReLU. During the 
training of the ResNet34-LeakyReLU model, the activation 
function in the negative region is more active. The advantage of 
using LeakyReLU lies in its ability to compute gradients even 
when its input values are less than zero during backpropagation. 
This characteristic not only prevents the phenomenon of node 
death during training but also enhances the adaptability and 
robustness of the model.

2.4.3 Transfer learning
Transfer learning is a machine learning method, the core idea of 

which is to utilize existing knowledge to address problems in different 

FIGURE 8

Residual block structure.
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but related domains (Zhuang et al., 2023). It aims to achieve knowledge 
transfer from one domain to another related domain. For 
convolutional neural networks, transfer learning involves successfully 
applying the “knowledge” trained on specific datasets to new domains.

Transfer learning can typically be applied to convolutional neural 
networks in two ways. The first approach involves using a pre-trained 
model with learned weights to extract features required for the new 
problem, essentially employing the pre-trained model as a feature 
extractor for the new problem. In this method, the features of interest 
are extracted from the output of the network preceding the last fully 
connected layer. The second approach is to fine-tune the network 
weights by training the network with new data. When adopting this 
method, it is necessary to adjust the number of nodes in the output 
layer to match the number of categories in the new problem. 
Additionally, regardless of the method chosen, the size of input data 
needs to be adjusted to match that of the pre-trained model. The 
specific transfer learning strategy should be determined based on the 
size and similarity between the target dataset and the original dataset. 
If the target dataset is very small and similar to the original dataset, 
using the pre-trained model as a feature extractor helps prevent 
overfitting; if there is a significant difference between them, fine-
tuning is preferred.

Given that ResNet34 is a deep neural network primarily designed 
for extracting high-level features from large, complex datasets, and 
considering the relatively smaller size of the dataset employed in this 
study, which heightens the risk of overfitting, a pretrained model is 
utilized to extract features from the images. The trained ResNet34 is 
first used as a feature extractor, and then the extracted features are put 
into the Softmax classifier for classification training. The transfer 
learning process is shown in Figure 11.

2.5 Dataset

The dataset used in this paper is from the publicly available dataset 
on “kaggle,” which contains 9 classes of tomato leaf diseases and class 
1 of healthy leaves, with 700 images in each category for a total of 
7,000 images. As shown in Figure 12.

2.6 Data augmentation

In order to enhance the model’s generalization ability and 
mitigate the risk of model overfitting, this subsection employs the 
ReSinGN method for data augmentation, expanding each category 
of tomato leaf diseases to 1,000 images. ReSinGN is trained with 2 
scales, where the scale factor is set to 2, random pixel transformation 

percentage is set to 1e-2, and the learning rate is set to 0.001. The 
specific process of data augmentation is as follows: (1) Utilize a 
simple random sampling method to extract 300 images from each 
category of tomato leaves; (2) Employ the ReSinGN model to 
reconstruct the extracted 300 images, generating higher quality 
sample images; (3) Integrate the 3,000 images generated by ReSinGN 
back into the original dataset. Finally, the augmented dataset is 
divided into a training set, a validation set, and a testing set in a ratio 
of 7:2:1.

3 Experimental results

3.1 Experimental environment and 
parameter settings

All experiments in this paper were consistently conducted on a 
computer equipped with an NVIDIA RTX 3050 Ti GPU, utilizing 
Pytorch as the deep learning framework and Python as the 
programming language.

During the training process of ReSinGN, for fair comparison, 
this paper sets the scale factor r to approximately 4/3, with the 
minimum and maximum sizes being 25px and 250px respectively, 
following the same approach as SinGAN. The learning rate is set 
to 0.001, and bicubic interpolation is used for resampling. 
Regarding the number of iterations, since the training objective of 
ReSinGN is much simpler than unconditional image generation, 
significantly fewer iterations are required. It achieves optimal 
image generation results with only 500 iterations per scale, 
whereas SinGAN requires up to 4,000 iterations to achieve 
similar results.

During the model training process, all models share the same 
hyperparameters, as shown in Table 1.

3.2 Image evaluation metrics

The Tenengrad function (Zhao et al., 2004) is a commonly used 
method for evaluating image sharpness. It utilizes the information of 
image gradients to assess the clarity or focus sharpness of an image, 
where larger gradients typically indicate sharper images. The 
Tenengrad function employs Sobel operators to extract the gradients 
in both the horizontal and vertical directions, and then calculates the 
sum of their squares as the evaluation function. The specific process 
is as follows:

If the Sobel convolution kernel is denoted as G Gx y, , then the 
gradient of the image at a point x,y( ) is given by:

FIGURE 9

The ResNet34-CBAM network structure.
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 S x y,( ) = G I x y G I x yx y∗ ( ) + ∗ ( ), ,  (7)

The Tenengrad value of the image is defined as:

 

Ten
n

S x,y

x y

= ∗ ( )∑∑1 2

 
(8)

The evaluation function F k( ) is:

 

F k G x,y G x,y T

x y

( ) = ( )  ( )( ) >∑∑ 2

 
(9)

Where T  is the given edge detection threshold.

FIGURE 10

Residual structure in ResNet34.
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RMSE (Root Mean Square Error) is a commonly used image 
quality evaluation metric. It assesses the quality of an image by 
calculating the difference in pixel values between the evaluated image 
and the original image. Generally, a lower RMSE value indicates a 
smaller difference between the image and the original image, 
indicating higher quality, while a higher RMSE value indicates a larger 
difference between the image and the original image, indicating lower 
quality. Its formula is as follows:

 
( ) ( )( )

M N

i 1 j 1

1RMSE f' i,j f i,j
M N = =

= ∗ −
× ∑∑

 
(10)

Where ( )f' i,j  represents the image to be  evaluated, f i,j( )  
represents the original image, M and N respectively represent the 
length and width of the image.

Peak Signal-to-Noise Ratio (PSNR) is an objective assessment 
method used to measure the level of distortion or noise in an image. 
It ranges from 0 to 40, with units in decibels (dB), where higher values 
indicate greater similarity between the reconstructed image and the 
original image. PSNR is defined as follows:

 
PSNR

MSE

n

=
−

10
2 1

10log

 
(11)

FIGURE 11

Transfer learning training process diagram.

FIGURE 12

Each category of tomato leaf images. (A) healthy, (B) bacterial_spot, (C) early_blight, (D) late_blight, (E) leaf mold, (F) septoria leaf spot, (G) two spotted 
spider mite, (H) target spot, (I) mosaic virus, (J) yellow leaf curl virus.
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Where MSE (Mean Square Error) represents the mean square 
error between the original image and the reconstructed image:

 
MSE

H W
s i,j r i,j

i

H

j

W

=
∗

( ) − ( ) 
= =
∑∑1

1 1

2

 
(12)

Where n represents the number of bits per pixel, measured in bits, 
H and W respectively denote the height and width of the image, s and 
r respectively represent the reconstructed image and the 
original image.

SSIM (Wang et  al., 2004) is a metric used to measure the 
similarity between two images. It assesses the distortion of images by 
comparing the structural changes in the data, thereby providing an 
objective quality assessment. The SSIM ranges from 0 to 1, where 
values closer to 1 indicate greater similarity between the images. 
SSIM measures image similarity in terms of brightness, contrast, 
and structure.

( ) ( ) ( )x y 1 x y 2 xy 3
2 2 2 2 x y 3x y 1 x y 2

2u u c 2 c c
l x,y ,c x,y ,s x,y

cu u c c

+ σ σ + σ +
= = =

σ σ ++ + σ + σ +
 
(13)

 
( ) ( )

N
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i 1

1 x u y u
N 1 =

σ = − −
− ∑

  (14)

Where l  represents the brightness of the image, c denotes the 
contrast of the image, s represents the structure of the image, xσ  
signifies the structure of the image, xyσ  represents the expectation, 

yσ  is the standard deviation, xyσ  indicates covariance, and c1, c2
,and c3 are constants. Then, the formula for SSIM is given by:

 ( ) ( ) ( ) ( )SSIM x,y l x,y c x,y s x,yα β γ= ⋅ ⋅  (15)

Where x represents the original image, and y denotes the 
reconstructed image. When the hyperparameter α, β γ,  takes the 
value of 1 and c c

3
2

2
= , the structural similarity can be simplified to:

 

( ) ( ) ( )
( ) ( )

x y 1 xy 2
2 2 2 2
x y 1 x y 2
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u u c c

+ σ +
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3.3 Image classification criteria

This paper primarily utilizes accuracy, recall, precision, and F1 
score Equations (17–20) to evaluate the performance of the network.

 
Accuracy

TP TN

TP FP TN FN
=

+
+ + +  

(17)
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+  
(18)

 
Precision

TP

TP FP
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+  
(19)

 
F score

Precision Recall

Precision Recall
1

2
− =

× ×
+  

(20)

In the above formulas, Accuracy describes the ratio of correctly 
predicted instances among all predictions made by the algorithm. 
Recall describes the ratio of correctly predicted instances to all 
instances that should have been predicted correctly. Precision refers 
to the proportion of instances identified as positive that are actually 
positive samples. F1-score is a comprehensive evaluation metric. TP 
(True Positives) and FN (False Negatives) represent the counts of 
positive and negative samples in the sample, while FP (False Positives) 
and TN (True Negatives) represent the counts of samples incorrectly 
predicted as positive and negative, respectively.

3.4 Analysis of model training time

Table  2 displays the training times for ReSinGN and 
SinGAN. SinGAN employs different scales when training images of 
various sizes. To ensure a fair comparison, ReSinGN’s training scale is 
set to match the scale used by SinGAN during training when 
generating images of different sizes. From Table 2, it can be observed 
that when training images are of size 125 × 125, ReSinGN trains 6.94 
times faster than SinGAN. Similarly, for image sizes of 250 × 250, 
ReSinGN trains 7.92 times faster than SinGAN, and for image sizes of 
500 × 500, ReSinGN trains 7.42 times faster than SinGAN. It is 
noteworthy that ReSinGN completes training for images of different 
sizes within minutes.

Table  3 compares the time required for ReSinGN to generate 
images of different sizes when trained with two scales to the time 
required for SinGAN to generate images of different sizes. 
Experimental results (Tables 4, 5) demonstrate that ReSinGN trained 

TABLE 1 Model hyperparameter configuration.

Parameter name Parameter value

Batch-size 16

Epochs 100

Optimizer Adam

Learning rate 0.0001

Loss function CrossEntropyLoss

TABLE 2 Training time of ReSinGN and SinGAN.

Image 
size(scales)

SinGAN ReSinGN Speedup

125px(8) 33m27s 4m49s ×6.94

250px(11) 60m34s 7m39s ×7.92

500px(13) 72m33s 9m57s ×7.42
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with two scales can produce higher-quality images compared to 
SinGAN. Therefore, the actual time required to train ReSinGN to 
generate an image is significantly lower than the training time required 
for SinGAN.

3.5 Analysis of image quality generated by 
ReSinGN

Table 4 presents the scores obtained using Tenengrad function, 
RMSE, PSNR, and SSIM in Equations (7–16)were used to score the 
images generated by ReSinGN and those generated by SinGAN.

A higher Tenengrad score indicates clearer images, while larger 
PSNR, smaller RMSE, and SSIM closer to 1 indicate images that are 
closer to the ground truth. From Table 5, it can be observed that 
compared to SinGAN, ReSinGN generates images with higher clarity. 
However, the images generated by ReSinGN exhibit speckles, artifacts, 
etc. (Figure  13), resulting in lower distortion scores compared to 
images generated by the SinGAN. To address this issue of image 
distortion, this paper introduces random pixel shuffling. By adjusting 
the percentage of randomly shuffled pixels during training, a balance 
between clarity and distortion can be achieved to some extent without 
significantly increasing computational costs.

Table 5 compares the RMSE scores, PSNR scores, and SSIM scores 
of images generated by SinGAN and ReSinGN with different 
percentages of randomly shuffled image pixels during training. From 
Table 5, it can be observed that as the percentage of random pixel 
shuffling increases, the distortion scores of images generated by 
ReSinGN improve compared to SinGAN, while the clarity of the 
images decreases, and vice versa. When the percentage of random 
pixel shuffling is 1e-2, the balance between image clarity and distortion 
is optimized, resulting in images generated by ReSinGN that are 
superior to SinGAN in both clarity and image distortion.

Figure 13 illustrates the impact of the percentage of randomly 
shuffled pixels on the generated images. From the figure, it can 
be observed that when some pixels are randomly shuffled, the artifacts 
and speckles in the images can be effectively reduced.

To further validate the effectiveness of the ReSinGN algorithm, 
this paper employs ResNet34, which has a deeper network 
architecture, to perform a classification task on the dataset 
ReSinGN_7000, consisting of images generated using ReSinGN 

replacing a portion of the images in the original dataset, as well as on 
the original tomato leaf disease dataset Tomato_7000. The 
classification results are then compared. In this subsection, ReSinGN 
is trained using two scales with a scale factor of 2, random pixel 
transformation set to 1e-2, and a learning rate of 0.001. The specific 
process for substituting portions of the dataset is as follows: (1) 300 
images are randomly sampled from each category of tomato leaves 
using simple random sampling. (2) The ReSinGN model is used to 
reconstruct the 300 sampled images, generating higher-quality sample 
images. (3) The 300 images generated by ReSinGN are then used to 
replace the corresponding 300 images in the original dataset for each 
category. Finally, the original dataset and the replaced dataset are 
divided into training, validation, and testing sets in a ratio of 7:2:1.

From Table 6 and Figure 14, it can be observed that compared to 
the original dataset, the disease recognition accuracy, precision, recall, 
F1 score, and average disease recognition accuracy of the ResNet34 on 
ReSinGN_7000 have all been improved. There is only a slight decrease 
in performance for a particular disease, but the precision in identifying 
that disease has significantly increased. These experimental results 
further confirm that the images generated by ReSinGN are diverse and 
of higher quality.

3.6 Comparative analysis of different 
classification models

To validate the effectiveness of the proposed improvement 
strategies, the enhanced ResNet34 was compared with three 
classification networks through contrastive testing. The experiments 
encompassed the following four comparative models: ResNet34, the 
ResNet34-CBAM model which introduces CBAM modules into 
ResNet34, the ResNet34-LeakyReLU model that substitutes ReLU 
activation functions with LeakyReLU, and the comprehensive 
improved model proposed in this chapter, which incorporates both 
CBAM modules and LeakyReLU activation functions into ResNet34 
(labeled as Ours during comparison).

Figure  15 compares the relationship between the number of 
epochs and both training loss and validation accuracy during the 
training process for ResNet34 and the improved ResNet34 (labeled as 
Ours). From Figure 15, it is evident that: regarding training loss, the 
improved ResNet34 converges faster and achieves a lower final error; 
concerning validation accuracy, the curve for the improved ResNet34 
is smoother with less fluctuation, demonstrating a more stable upward 

TABLE 3 Comparison of training time between ReSinGN at two scales 
and SinGAN.

Image 
size(scales)

SinGAN ReSinGN Speedup

125px 33m27s 45 s ×44.6

250px 60m34s 46 s ×79

500px 72m33s 46 s ×94.63

TABLE 4 Analysis of image quality generated by SinGAN and ReSinGN 
models.

Tenengrad RMSE PSNR SSIM

SiNGAN 37.1 10.4 31.1 0.80

ReSinGN 67.3 37.4 27.7 0.72

TABLE 5 Analysis of image quality generated by SinGAN and ReSinGN 
with different random pixel shuffle percentages.

Tenengrad↑ RMSE↓ PSNR↑ SSIM↑

SinGAN 37.1 10.2 31.1 0.80

ReSinGN(1e-1) 35.2 11.5 31.1 0.80

ReSinGN(5e-2) 36.9 11.9 30.0 0.82

ReSinGN(1e-2) 56.3 7.6 32.6 0.91

ReSinGN(5e-3) 50.1 23.9 28.0 0.83

ReSinGN(1e-3) 54.6 32.9 27.6 0.79

ReSinGN(5e-4) 59.2 33.6 27.6 0.78

ReSinGN(1e-4) 63.9 36.0 27.7 0.73
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FIGURE 13

Images generated by SinGAN and ReSinGN with different random pixel shuffle percentages. (A) Original Image, (B) SinGAN, (C) 0, (D) 1e-2, (E) 5e-2, 
(F) 5e-3.

TABLE 6 Disease recognition results of ResNet34 on different datasets.

Disease category Dataset Accuracy Precision Recall F1 score

Bacterial_spot Tomato_7000 0.9333 0.971 0.9571 0.964

ReSinGN _7000 0.96 0.9855 0.9714 0.9784

Early_blight Tomato_7000 0.8933 0.9559 0.9286 0.942

ReSinGN _7000 0.9333 0.971 0.9571 0.964

Healthy Tomato_7000 0.9342 0.971 0.9571 0.964

ReSinGN _7000 0.9467 0.9714 0.9714 0.9714

Late_blight Tomato_7000 0.8947 0.9697 0.9143 0.9412

ReSinGN _7000 0.8933 0.9844 0.9 0.9403

Leaf_Mold Tomato_7000 0.9067 0.9846 0.9143 0.9481

ReSinGN _7000 0.9467 0.9853 0.9571 0.971

Septoria_leaf_spot Tomato_7000 0.8816 0.9692 0.9 0.9333

ReSinGN _7000 0.9333 0.9851 0.9429 0.9635

Two-spotted_spider_mite Tomato_7000 0.8553 0.9538 0.8857 0.9185

ReSinGN _7000 0.9067 0.9701 0.9286 0.942

Target_Spot Tomato_7000 0.8158 0.9516 0.8429 0.8429

ReSinGN _7000 0.96 0.9855 0.9714 0.9784

mosaic_virus Tomato_7000 0.9211 0.9706 0.9429 0.9565

ReSinGN _7000 0.9733 0.9857 0.9857 0.9857

Yellow_Leaf_Curl_Virus Tomato_7000 0.8947 0.9559 0.9286 0.942

ReSinGN _7000 0.9333 0.9577 0.9714 0.9645
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trend and consistently outperforming ResNet34. Collectively, these 
observations indicate that the improved ResNet34 exhibits greater 
stability and convergence, fits the data more closely, and possesses 
enhanced generalization capabilities.

To compare the classification performance of the four networks 
on different types of tomato leaf diseases, this paper selects accuracy, 
precision, recall, F1 score, and average recognition accuracy of various 
leaf disease categories as evaluation metrics. The recognition results 
are shown in Table 7 and Figure 16.

From Table 7, it can be observed that the new model constructed 
by combining the addition of CBAM attention mechanism and the 
change of activation function in ResNet34 proposed in this paper 
performs excellently in terms of disease recognition accuracy and 
average recognition accuracy of tomato leaf diseases, reaching 98.68 
and 98.57% respectively, which are significantly higher than the 
original ResNet34 (97.8, 94.92%). From Figure 16, it is observed that 

the algorithm proposed in this paper achieves higher average 
recognition accuracy for various categories of tomato leaf diseases 
compared to the original ResNet34. It is noteworthy that compared to 
the other three models, the proposed algorithm achieves the highest 
recognition accuracy for the nine categories of tomato leaf diseases, 
and ranks second only in the average recognition accuracy for one 
category of tomato leaf disease. In summary, the proposed method 
demonstrates superior performance in tomato leaf disease 
recognition tasks.

4 Discussion

This paper aims to improve the recognition rate of tomato leaf 
diseases by proposing a data augmentation model based on improved 
SinGAN and a disease recognition model based on improved 

FIGURE 14

Average disease recognition accuracy of ResNet34 on different datasets.

FIGURE 15

The relationship between the training loss and validation accuracy of ResNet34 and Ours as the number of epochs increases.
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ResNet34 to assist in intelligent recognition of tomato leaf disease 
images. The key focuses of this research are as follows:

 (1) Addressing the issues of long training time and potential 
image distortion in SinGAN, a single-image generation 
network based on reconstruction, named ReSinGN, is 
proposed. ReSinGN replaces the GAN in SinGAN with an 
autoencoder equipped with a CBAM module, making the 
training objective image reconstruction, which simplifies the 
learning task. Additionally, random pixel transformations are 
introduced in ReSinGN to control the trade-off between 
clarity and distortion to some extent by adjusting the 
percentage of randomly shuffled pixels during training. 
Experimental results demonstrate that: (1) ReSinGN has 
significantly shorter training time compared to SinGAN while 
generating clearer images; (2) When the percentage of random 
pixel transformations is set to 1e-2, the ReSinGN model 
achieves an optimal balance between image clarity and 
distortion, producing images superior to SinGAN in both 
clarity and distortion aspects. In summary, the use of ReSinGN 
results in images of better quality and greater diversity.

 (2) ResNet34 was further employed to validate the effectiveness of 
ReSinGN. Partial data samples in the original tomato leaf 

disease dataset were replaced with data generated by ReSinGN, 
and ResNet34 was used to classify the original dataset and the 
replaced dataset for comparison. The classification 
experimental results indicate that the disease recognition 
accuracy, precision, recall, F1 score, and the average disease 
recognition accuracy of ResNet34 on the replaced tomato leaf 
dataset have been improved by 4.56, 1.28, 3.86, 2.56, and 2.89%, 
respectively.

 (3) A plant leaf disease identification method based on ReSinGN 
and improved ResNet34 is proposed. Firstly, the tomato leaf 
disease dataset is augmented using the ReSinGN model to 
enhance the overall quality of the dataset. Secondly, a 
Convolutional Block Attention Module (CBAM) is 
introduced to dynamically adjust the attention weights of 
each position in the ResNet34, thereby partially addressing 
the issues of insufficient local feature integration and 
parameter sharing in the network, leading to improved 
performance. Then, the ReLU activation function is replaced 
with the LeakyReLU activation function to prevent neuron 
death. Finally, a training method based on transfer learning 
is employed to accelerate the network training process. 
Experimental results demonstrate that the improved 
ResNet34 achieves an average recognition accuracy and 
precision of 98.6 and 98.68%, respectively, for tomato leaf 
disease, validating the effectiveness of the proposed 
improvements. This provides an automated solution for the 
prevention and control of tomato leaf diseases.

5 Conclusion

The innovation of this paper lies in applying the ReSinGN 
model to data augmentation of tomato leaf disease images and using 

TABLE 7 Different models’ recognition results of tomato leaf diseases.

Classification 
model

Accuracy Precision Recall F1 
score

ResNet34 0.91906 0.97803 0.936 0.95697

ResNet34- CBAM 0.9581 0.97646 0.969 0.97761

ResNet34-

LeakyReLU

0.94572 0.98263 0.958 0.97095

Ours 0.96572 0.9868 0.977 0.98169

FIGURE 16

Average recognition accuracy of different models for tomato leaf diseases.
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an improved ResNet34 for disease recognition, achieving certain 
results. However, there are still some shortcomings: (1) The 
ReSinGN model proposed in this paper trains significantly faster 
than SinGAN and produces images of higher quality. Future 
research could explore extending this approach to the domain of 
multi-image training. (2) Although the improved ResNet34 in this 
paper has achieved excellent results in tomato leaf disease 
recognition tasks, with an average recognition accuracy of 98.6%, it 
ranks only second in the recognition accuracy of one of the diseases. 
Therefore, it is necessary to explore other methods to further 
enhance the model’s performance.
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