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Predicting overall survival from
tumor dynamics metrics using
parametric statistical and
machine learning models:
application to patients with
RET-altered solid tumors

Erick Velasquez†, Nastya Kassir, Sravanthi Cheeti,

Denison Kuruvilla, Rucha Sane, Steve Dang, Dale Miles and

James Lu*†

Clinical Pharmacology, Genentech Inc., South San Francisco, CA, United States

In oncology drug development, tumor dynamics modeling is widely applied

to predict patients’ overall survival (OS) via parametric models. However, the

current modeling paradigm, which assumes a disease-specific link between

tumor dynamics and survival, has its limitations. This is particularly evident in

drug development scenarios where the clinical trial under consideration contains

patients with tumor types for which there is little to no prior institutional data. In

this work, we propose the use of a pan-indication solid tumor machine learning

(ML) approach whereby all three tumor metrics (tumor shrinkage rate, tumor

regrowth rate and time to tumor growth) are simultaneously used to predict

patients’ OS in a tumor type independent manner. We demonstrate the utility of

this approach in a clinical trial of cancer patients treated with the tyrosine kinase

inhibitor, pralsetinib. We compared the parametric andMLmodels and the results

showed that the proposed ML approach is able to adequately predict patient OS

across RET-altered solid tumors, including non-small cell lung cancer, medullary

thyroid cancer as well as other solid tumors. While the findings of this study are

promising, further research is needed for evaluating the generalizability of the

ML model to other solid tumor types.

KEYWORDS
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1 Introduction

The modeling of tumor dynamics data has become widely utilized in supporting

oncology drug development (e.g., see Bruno et al., 2020 for a recent review). Briefly, by

quantitatively characterizing the temporal changes in tumor size under drug treatments,

tumor growth inhibition (TGI) modeling generates metrics, which have shown to be

predictive of patients’ overall survival (OS) (Chan et al., 2021). Tumor size is typically

represented by the sum of longest diameters (SLD) of, at most, five target lesions as outlined

by RECIST 1.1 guidelines (Eisenhauer et al., 2009). Based on size measurements, TGI

modeling generates the following on-treatment metrics: tumor regrowth rate (KG), tumor

shrinkage rate (KS) and time to tumor regrowth (TTG) (Bruno et al., 2023). KG refers to

the rate at which the tumor regrows while the patient is still undergoing treatment, where a
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lower KG value might suggest the treatment is effectively reducing

the growth of the tumor. KS represents how quickly the size of the

tumor is reducing under the effect of the treatment, where a higher

KS value would typically represent a more effective treatment. TTG

indicates the time it takes for the tumor to start growing again

after start of treatment, where a longer TTG indicates that the

treatment has a lasting effect on halting the tumor’s growth. TGI

modeling and the resulting metrics provide valuable insights into

the potential effectiveness of a therapy and be predictive of patients’

OS (Chan et al., 2021). In much of the existing modeling efforts,

the relationships between TGI metrics and OS are identified in an

indication-specific manner (e.g., in the reference Chan et al., 2021),

whereby the assumption is made that this quantitative link is drug-

independent but disease-specific. Although the current approach

demonstrably assists decision-making in frequently encountered

cancer indications with significant historical patient data (Bruno

et al., 2023), its applicationmay be limited in clinical trials involving

treatment arms for rarer tumor types or those that are tumor type-

agnostic.

The challenge of predicting patient survival in a tumor type

agnostic manner calls for a machine learning (ML) framework

(Duda et al., 2021). In this work, we applied a ML model

that accounts for patient baseline covariates as well as TGI

metrics to predict OS. Specifically, the training set consists of

comprehensive patient data collected across 10 clinical trials

representing five tumor types. For our survival model, we leveraged

the XGBoost algorithm (Chen and Guestrin, 2016), following

successful implementation in a prior study (Laurie and Lu, 2023).

In addition to making accurate and generalizable predictions,

ML models also need to be explainable in order to ensure human

involvement in the final decision-making process (Terranova

et al., 2023). Toward this goal, the methodology of Shapley

additive explanation (SHAP) was introduced (Lundberg et al., 2020;

Terranova et al., 2023) and has been previously applied to explain

ML models of patient survival (Sundrani and Lu, 2021; Laurie and

Lu, 2023).

In this work, we compare the parametric statistical and ML

models for OS predictions, in a setting involving patients with

solid tumors across several tumor types—the ARROW study. The

trial stands as a robust case study for methodological comparison,

given its expansive scope examining oncogenic RET alterations

across a diverse range of solid tumors, like Non-Small Cell Lung

Cancer (NSCLC) andMedullary Thyroid Cancer (MTC), and other

solid tumors.

2 Methods

2.1 Clinical study data

The ARROW study (NCT03037385, BO42863) is a multi-

center, open-label, phase I/II study evaluating the safety, efficacy,

and pharmacokinetics of pralsetinib in patients with advanced solid

tumors associated with oncogenic alterations in the rearranged

during transfection (RET) gene (Claret et al., 2013; Subbiah et al.,

2021), which is a key player in certain types of cancers. Alterations

in the RET proto-oncogene, which encodes a transmembrane

receptor tyrosine kinase, has been implicated in molecular

pathogenesis of many solid tumors (Subbiah et al., 2021). Tumor

response, as a measurement of SLD of target lesions per RECIST

1.1 guidelines (Eisenhauer et al., 2009), was assessed in patients

with RET fusion-positive solid tumors (Claret et al., 2013; Subbiah

et al., 2021). The trial has been previously described (Gainor et al.,

2021; Subbiah et al., 2021) and spans oncogenic RET alterations

in NSCLC (n = 313), MTC (n = 224) and other advanced solid

tumors exclusively with a RET fusion (OTHER FUS, n= 28) or any

other RET alteration or rearrangement (OTHERALT, n= 20) (data

cutoff date: March 4, 2022).

2.2 Generation of TGI metrics

The TGI model was constructed as outlined in previous work

(Stein et al., 2008). Briefly, a biexponential TGI model (Claret

et al., 2018) was fit to longitudinal tumor size data from the

ARROWstudy. Themodel was executed as a nonlinearmixed effect

model using NONMEM version 7.5. Patients with baseline and

at least one other post-baseline tumor lesion measurement were

considered TGI-evaluable (Rittmeyer et al., 2017) and included in

the parametric analysis (n= 556, consisting of: 294 in NSCLC, 217

in MTC, 27 in OTHER FUS, 18 in OTHER ALT); ML model was

able to leverage all patients, including TGI non-evaluable patients.

Variability in KG and KS related to tumor type was characterized

under the assumption of a log-normal distribution, and an additive

residual error was described using a normal distribution. The

performance of the model was assessed using standard goodness-

of-fit plots. Notably, TGI metrics derived using this model were

utilized in both the parametric TGI-OS model as well as the

pan-indication ML model.

2.3 Parametric TGI-OS model

A parametric statistical TGI-OS model was developed (Stein

et al., 2008) utilizing data compiled from six atezolizumab

NSCLC clinical trials (3,872 patients) as previously described

(Fehrenbacher et al., 2016; Reck et al., 2019; West et al., 2019;

Jotte et al., 2020; Nishio et al., 2021). The influence of potential

covariates present in the training dataset, with explanatory variables

consisting of TGI metrics and baseline prognostic factors, on OS

were examined via the Kaplan–Meier method and subsequently

analyzed through univariate screening using Cox regression

analysis. The complete set of parameters for the model were

determined using parametric survival regression, where the most

suitable probability density function that accurately represented

the observed data was chosen. A backward stepwise elimination

process was then performed, considering a significance threshold

of p-value < 0.01, and retaining only the covariates which were

significant. The evaluation of model development was conducted

using the R programming language version 4.1.1.

Through this procedure, covariates which were found to be

significant (with a p-value < 0.05) included: TGI metric log (KG),

inflammatory markers such as baseline albumin and the neutrophil

to lymphocyte ratio (NLR), along with common prognostic factors

such as baseline Eastern Cooperative OncologyGroup performance
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FIGURE 1

OS and TGI metrics di�er between indications amongst patients treated with pralsetinib. Kaplan–Meier plots are shown, stratified by: (A) four equal

groups of patients stratified by calculated log(KG) values; (B) tumor type. Distribution of TGI metrics, logKG (C), logKS (D), and TTG (E), by tumor type,

with pairwise comparison summarizing significant di�erences by p-values. OTHER FUS, other RET fusion; OTHER ALT, other RET alterations.

status (ECOG), baseline sum of longest diameter, presence of

liver metastasis, and number of tumor sites. Furthermore, patient

race (Asian vs. non-Asian) and gender were also identified as

significant covariates.

2.4 Pan-indication ML model for TGI-OS

The pan-indication ML model utilizes a comprehensive dataset

comprising of 8,121 patients, spanning across five distinct types of

cancer (NSCLC, small cell lung cancer, renal, triple-negative breast

cancer, urethral) from all arms in the 10 atezolizumab containing

clinical trials, with drug treatments covering both small and large

molecules as have been previously described (Fehrenbacher et al.,

2016; Horn et al., 2018; Powles et al., 2018; Reck et al., 2019; Rini

et al., 2019; West et al., 2019; Schmid et al., 2020; Chan et al.,

2021; Nishio et al., 2021; Vieira et al., 2021). The input features

incorporate all three TGImetrics (i.e., KS, KG and TTG) as well as 8

baseline covariates [ECOG, Hemoglobin (HGB), Albumin (ALBU),

NLR, liver metastasis status, number of tumor sites, neutrophil

count (NEU), and number of years since initial diagnosis (YSD)].

Notably, the ML model is tumor type agnostic, as the tumor type is

not an input variable.

We used XGBSE (Vieira et al., 2021), a gradient boosting

framework with survival embeddings, with hyperparameters set

as summarized in the Supplementary material. XGBSE model was

then fitted to training data (TGI metrics and baseline covariates

across 10 atezolizumab containing trials described above) and

predictions were made calculating the probability of an event

from 0 to 2,000 days, in time intervals of 5 days. Bootstraps were

performed to generate 1,000 model predictions, from which 95%

prediction intervals were generated (see Laurie and Lu, 2023 for

further details). Additionally, SHAP values (Lundberg et al., 2020)

were calculated on the trained model by using the TreeExplainer.

3 Results

3.1 OS and TGI metrics di�er between
indications

A key aim of this study is to assess the applicability of Tumor

Growth Inhibition (TGI) Overall Survival (OS) modeling across

various tumor types, in a tumor agnostic setting. To begin to

understand its applicability, we first studied how TGI metrics

amongst TGI-evaluable patients in the pralsetinib trial varied across
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FIGURE 2

Prediction intervals from survival models compared against the data from the ARROW trial. (A, C, E, G) are the results from the parametric survival

model in each of the tumor types; (B, D, F, H) are those from the ML model. Solid lines represent the observed KM curves while shaded regions

represent prediction intervals. The dashed lines indicate the median predicted survival in the ML model. The horizontal axis indicates time in days, the

vertical axis indicates survival probability.

different tumor types and analyzed their relationships with OS

(Figure 1).

Log(KG) has been previously shown to be the most important

predictor of OS in TGI-OS modeling across several solid tumors

(Chan et al., 2021). When stratifying patients by log(KG)

there was a difference in OS whereby patients with lower

log(KG) (i.e., smaller KG value) showed longer OS compared

to patients with higher log(KG) (Figure 1A). When the data

was examined in relation to tumor type, a significant variation

in overall survival was observed across different tumor types.

Notably, patients with MTC exhibited the best OS (Figure 1B).

This could indicate that patients with distinct tumor types

might respond differently to the therapy. To discern whether

variation between indications - potentially reflecting both disease

differences and differential drug effects - were encapsulated in

the tumor dynamics, we examined TGI metrics across these

indications (Figures 1C–E).

When considering log(KG), there is a significant difference

betweenMTC, NSCLC and Other RET fusion-positive (FUS)/RET-

altered (ALT) (i.e., excluding RET fusion-positive) tumors

(Figure 1C). These differences align with the observed OS, since

patients with smaller KG (Figure 1C, MTC) would show less

tumor growth and thus have a better prognosis (Figure 1B, MTC)

compared to patients with higher tumor growth rates (Figures 1B,

C, OTHER FUS/ALT). When considering TTG, there is a

significant difference between MTC, NSCLC and Other FUS/ALT

tumors (Figure 1E). These differences align with the observed

overall survival, since patients with longer TTG (Figure 1E, MTC)

would have a better prognosis (Figure 1B, MTC) compared to

patients with shorter TTG (Figure 1, OTHER FUS/ALT).
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FIGURE 3

Model explanation provided by SHAP summary plots across the tumor types of interest. (A) NSCLC, non-small cell lung cancer; (B) MTC, medullary

thyroid cancer; (C) OTHER FUS, other RET fusion-positive; (D) OTHER ALT, other RET-altered. For each tumor type, the explanatory variables are

ordered from top to bottom according to decreasing level of influence. The color of the points represents the value of the explanatory variables: red

indicates high and blue indicates low values.

3.2 ML model enables reliable patient
survival predictions across tumor types

The OS prediction results from the parametric and ML models

are shown in Figure 2, where the shaded bands indicate the

95% prediction intervals (PIs) and the solid lines with marked

crosses are the Kaplan–Meier curves of the observed survival

data. The results indicate that the ML predictions exhibit superior

accuracy across the array of tumor types: in patients with

NSCLC, there is a fair agreement between the parametric and

ML model in predicting OS (Figures 2A, B); however, there is

a discrepancy in predictions amongst patients with MTC, with

the parametric modeling predicting a worse survival than what

is observed at the end of the survival interval (Figure 2C). The

TGI-OS ML method captures this difference, predicting an OS

that aligns with the observed data across the survival interval

(Figure 2D). Predictions for patients with other RET fusion-

positive/RET-altered cancers were similar between the parametric

and ML methods and is characterized by wider prediction

intervals, partly reflecting the small number of patients in these

groups (Figures 2E–H).

3.3 Explaining the input dependence in the
ML model

In our study, we utilized Shapley Additive exPlanations (SHAP)

(Lundberg et al., 2020) to understand each feature’s contribution

to the hazard prediction in patients. The most important feature

contributing to the hazard rate, as observed across various tumor

types, is KG (Figures 3A–D), as visually indicated by the broad

dispersion of the SHAP values from the zero value. The SHAP

values for KG also aligned with what would be expected for hazard;

for example, patients with high KG values (Figures 3A–D: red

points) exhibited high SHAP values, affirming that having a high

KG contributes to predicting higher hazard. Interestingly, another

TGI metric—TTG, also demonstrated notable importance across

distinct tumor types. The fact that two main TGI metrics (KG,
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TTG) exhibited high importance is in agreement with existing

parametric TGI modeling work showing these parameters as the

most predictive of hazard rates. However, KS showed consistently

lower importance across different tumor types (Figures 3A–D),

suggesting that the initial tumor remission does not have a strong

influence on the hazard rate beyond those provided by KG and

TTG. Finally, the importance of remaining features was not

consistent across all tumor types. This result emphasizes the patient

variation across indications and their contribution to hazard.

4 Discussion

While the methodology of using TGI metrics to predict OS

is well established in supporting oncology drug development, it

becomes challenging when the clinical trial to be predicted involves

tumor types not present in the available historical dataset. In

this study, we examined how this obstacle could be overcome by

utilizing an ML model that has been trained on a large number of

patients across distinct solid tumor tumor types. We showed that

whereas using a parametric TGI-OS model that has been fitted to

NSCLC may lose predictivity when applied to a different tumor

type (e.g., MTC), the pan-tumor ML model is able to adequately

describe the OS curves across both NSCLC and MTC, as well

as for subsets of patients who have a variety of tumor types.

While it is feasible to attempt a parametric TGI-OS model using

the same dataset and explanatory variables as the ML model, its

effectiveness in modeling a heterogeneous dataset is unproven and

becomes significantly challenging to scale with the increase in data

volume. The results indicate the potential capability of the pan-

indicationMLmodel in extrapolating to new solid tumor types that

are not in the training set, which opens the door for increasing

the future applications of the TGI-OS modeling approach. This

is especially evident in the OS predictions for MTC, where the

ML model better predicts OS toward the end of the survival

curve. We believe that having a diverse and more heterogeneous

training set provides the ML model with more flexibility when

making OS predictions compared to parametric statistical models,

by relaxing assumptions such as proportional hazards and linearity

between explanatory variables and hazard rates. Coupled with

the explainability technique of SHAP analysis, the pan-indication

model can further elucidate similarities as well as differences

between indications and hence help support future clinical studies.

While the results reported in this study are encouraging,

there are some potential limitations in the prospective use of this

methodology. Firstly, the current models take as input the tumor

metrics, which require sufficient clinical follow-up in order to

obtain accurate estimates. Deep learning could provide a solution

to this limitation, allowing for the generation of tumormetrics from

shorter follow-ups, a process explored in Laurie and Lu (2023).

Furthermore, the generalizability of the ML model to additional

solid tumor types remains to be further validated in future research.
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