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This paper investigates uncertainty quantification (UQ) techniques in multi-class

classification of chest X-ray images (COVID-19, Pneumonia, and Normal). We

evaluate Bayesian Neural Networks (BNN) and the Deep Neural Network with UQ

(DNN with UQ) techniques, including Monte Carlo dropout, Ensemble Bayesian

Neural Network (EBNN), Ensemble Monte Carlo (EMC) dropout, across di�erent

evaluation metrics. Our analysis reveals that DNN with UQ, especially EBNN

and EMC dropout, consistently outperform BNNs. For example, in Class 0 vs.

All, EBNN achieved a UAcc of 92.6%, UAUC-ROC of 95.0%, and a Brier Score

of 0.157, significantly surpassing BNN’s performance. Similarly, EMC Dropout

excelled in Class 1 vs. All with a UAcc of 83.5%, UAUC-ROC of 95.8%, and a Brier

Score of 0.165. These advanced models demonstrated higher accuracy, better

discriaminative capability, and more accurate probabilistic predictions. Our

findings highlight the e�cacy of DNNwith UQ in enhancingmodel reliability and

interpretability, making them highly suitable for critical healthcare applications

like chest X-ray imageQ6 classification.

KEYWORDS

uncertainty quantification deep neural networks, Bayesian neural networks, Monte

Carlo dropout, Ensemble Monte Carlo, chest-X-ray, classification metrics, multi-class
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1 Introduction

Computer vision has made enormous progress in recent times. The development of
advanced deep learning techniques for computer vision is motivated by the human visual
system, which is one of the richest senses that we have. While computer vision aims to
replicate the capabilities of the human visual system, it is important to acknowledge that
achieving this goal is still a considerable distance away. Thus, deep learning algorithms that
can achieve state-of-the-art performance are still required for computer vision problems
such as face recognition (Schroff et al., 2015), object detection (Ren et al., 2015), and
image classification (Krizhevsky et al., 2012). These algorithms are well suited to analyze
images and signals. Machine learning (ML) refers to a collection of expert systems that
encompass the creation of expert computer systems capable of learning from their mistakes
and improving their performance, as described by Novaković et al. (2017). Traditional
machine learning algorithms, in contrast to deep learning algorithms, which may learn
representations directly from raw data, rely on examples expressly constructed by human
specialists to represent specific problem areas. Applyingmachine learning (ML) techniques
to computer vision and image analysis systems encounters several challenges, including

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1410841
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1410841&domain=pdf&date_stamp=2024-09-18
mailto:albert.whata@spu.ac.za
https://doi.org/10.3389/frai.2024.1410841
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1410841/full
https://orcid.org/0000-0001-6672-8713
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Whata et al. 10.3389/frai.2024.1410841

handling noisy and imperfect images, addressing complex
background removal, and accommodating variations in
illumination. These factors pose difficulties in developing
handcrafted representations suitable for supervised machine
learning algorithms.

Deep learning (DL) algorithms provide a viable solution to the
difficulties faced by traditional machine learning (ML) models that
manually extract features from images. The inherent multi-layered
processing architecture of deep learning algorithms empowers
these algorithms to autonomously learn and derive representations,
thereby circumventing the limitations associated with manual
feature extraction.

This study focuses on utilizing DL to distinguish between chest
X-ray images associated with pneumonia, COVID-19, and normal
cases. In order to classify these chest X-ray images and return
the probability of an instance falling into a particular class, a
considerable number of training examples that comprise healthy
images (with no pneumonia nor COVID-19) or infected (with
pneumonia or COVID-19) are utilized.

Deep learning-based techniques have demonstrated remarkable
performance in distinguishing chest X-ray images that are infected
with pneumonia or COVID-19 and those that are normal.
The development of deep learning-based techniques for disease
detection in real-life scenarios may face challenges due to the
potential drawback of overconfident diagnostics, despite achieving
high classification results (Hernández and López, 2020). The
reason behind the overconfidence is that most state-of-the-art
deep learning models often fail to provide information about
uncertainties, such as epistemic uncertainty (uncertainty stemming
from the model itself) and/or aleatoric uncertainty (uncertainty
arising from the data). Therefore, important features and sensitive
information can be lost if traditional machine learning outcomes
that do not account for either aleatoric or epistemic uncertainty are
trusted (Abdar et al., 2021b). Furthermore, deep learning methods
are not designed to account for the uncertainty in a model’s
predictions, nor are they able to identify the important features
that are responsible for a specific prediction (Abdar et al., 2021b).
The “inner workings” of these deep learning methods are not
understood as they are typically used as “black boxes.”

This study seeks to gain better insights about deep learning
models by quantifying the uncertainty that is inherent in these
models when they are applied in computer vision tasks. We employ
the Bayesian Deep Learning (BDL) techniques as well as the Deep
Neural Network (DNN) that is coupled with the widely used
method, the Monte Carlo Dropout (MCD), and other dropout
techniques to quantify uncertainty. The MCD approach is better
than the computationally expensive techniques that include the
Markov Chain Monte Carlo (MCMC) (Kendall and Gal, 2017).
Moreover, the use of Bayesian uncertainty quantification (UQ)
techniques such as MCD produces well-calibrated and precise
estimates of uncertainty (Hernández and López, 2020). It is
important to note that the Bayesian UQ techniques use a distinct
approach that derives the posterior probabilities of the parameters
(weights) as opposed to traditional deep learning estimates that
generate point estimates.

This study presents an innovative approach to uncertainty
quantification in deep learning models used in medical image
analysis. By focusing on multi-class classification of chest X-ray

images, it aims to improve the interpretability and reliability of
these models. Therefore, to advance UQ using Bayesian methods
this study specifically makes the following significant contributions:

(i) Adapt the innovative concept of a binary uncertainty
confusion matrix, along with its novel performance metrics
proposed by Asgharnezhad et al. (2022), for objective
uncertainty quantification. This adaptation extends
the binary uncertainty confusion matrix with its novel
performance metrics for multi-class tasks, enhancing the
evaluation of model performance and reliability across
various classes.

(ii) Provide valuable insights into the performance and
reliability of different uncertainty quantification models
across various classes.

(iii) Provides a comprehensive evaluation of uncertainty
quantification techniques that include Bayesian neural
networks (BNN), Monte Carlo dropout, Ensemble
Bayesian Neural Network (EBNN), Ensemble dropout,
and Ensemble Monte-Carlo (EMC) dropout. The aim
is to compare the effectiveness of these methods in
capturing and quantifying uncertainty in the predictions
of multi-class classification models for chest X-ray images.
This will give valuable insights into the performance
and reliability of different uncertainty quantification
techniques across various classes. Such information would
assist practitioners when they are selecting appropriate
uncertainty quantification methods for their neural
network models.

(iv) Highlights the potential of uncertainty-aware models to
enhance the reliability and interpretability of predictions
in critical medical image analysis. This will in turn help
to improve the safety and efficacy of AI-driven healthcare
solutions, particularly in the classification of COVID-19
cases.

2 Related works

We note that machine learning methods have achieved great
success in solving many real-life problems, but they have not
been able to provide more information about the reliability of
their predictions in most cases. This challenge has necessitated
the use of the promising Bayesian neural networks (BNNs) which
model prior distributions on the model parameters to quantify
uncertainty (Alarab and Prakoonwit, 2023). The authors indicate
that assigning a prior distribution over a model’s parameters
and then marginalizing the parameters creates a predictive
distribution that uses Bayesian averaging. With this framework,
prior distributions are assigned to the weights of the model,
and thereafter, Bayes’ theorem is used to determine the posterior
distributions which are approximated because they cannot be
evaluated analytically. Bayesian UQ techniques have been used
in several image classification tasks (Harakeh et al., 2020; Kwon
et al., 2020; Bessai-Mechmache et al., 2022). However, Monte
Carlo (MC) sampling has emerged as an effective technique that
can be used to estimate the posterior distribution and thereby
quantify uncertainty (Neal, 2012). The use of MC sampling has
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a limitation in that when it is deployed in deep architectures, it
can be slow and computationally expensive. Gal and Ghahramani
(2016) state that this limitation can be addressed by employing
efficient techniques such asMC-dropout, which has been developed
as a regularization technique to quantify uncertainty and avoid
overfitting. Furthermore, the authors highlight that applying the
dropout regularization technique after each hidden layer allows the
MC-dropout technique to evaluate uncertainty in neural networks.
Moreover, the MC-dropout technique is employed during the
testing phase to generate uncertainty-aware estimates (Alarab and
Prakoonwit, 2023). Alarab and Prakoonwit (2023) demonstrated
that MC-dropout was more effective in quantifying uncertainty
when applied to the Elliptic (Bitcoin-derived) dataset compared to
other techniques. Lemay et al. (2022) indicated that the predictions
derived from the Monte Carlo dropout were better calibrated when
it was employed on fourmedical image classification tasks that used
DenseNet and ResNet architectures. According to the authors, the
output probabilities produced were more accurate and reflected the
likelihood of correct classification. Mobiny et al. (2021) proposed
the Monte Carlo DropConnect (MC-DropConnect) technique
that incorporated Bayesian Inference in deep neural networks
(DNNs). In this approach, the weights/parameters were assumed
to follow a Bernoulli distribution. The empirical results showed
that the predictive accuracy of MC-DropConnect significantly
outperformed other state-of-the-art techniques. The multi-class
classification based Monte Carlo-based adversarial attack (MC-
AA) method on the Cora dataset was introduced by Alarab and
Prakoonwit (2023). The authors compared MC-AA with other
recent uncertainty models such as, convolutional neural networks
(CNN) and LeConv. The best results for modeling uncertainty
were obtained using LeConv (AUC = 0.889) deployed on the Cora
datasets and CNN (AUC = 0.98) deployed on the MNIST datasets.

Thiagarajan et al. (2021) classified histopathological images
using a hybrid Bayesian-convolutional neural network (Bayesian-
CNN). When applied to a large portion of the test dataset, the
Bayesian-CNN used the quantified uncertainties to significantly
enhance the performance of the CNN. Abdar et al. (2021b)
employed techniques such as EMC dropout and deep ensemble
for uncertainty quantification in skin cancer image classification.
Abdar et al. (2023) employed the effective Ensemble MC Dropout
(EMCD) technique, achieving a prediction accuracy of 99.08% for
the computed tomography (CT) scan dataset and 96.35% for the
chest X-ray dataset. The authors also indicate that EMCD was used
not only to detect COVID-19 but also to quantify uncertainty using
chest X-ray images. McDermott and Wikle (2019) employed deep
ensemble (DE) to quantify uncertainty. DE uses an ensemble model
that comprises several neural networks. The authors used a DE
echo state network model for spatio-temporal forecasting while
also evaluating and quantifying uncertainty. DEmethods have been
found to outperform the Bayesian neural networks in uncertainty
quantification, yielding more accurate UQ estimates (Alarab and
Prakoonwit, 2023). However, Abdar et al. (2021b) noted that DE
methods tend to be more computationally expensive.

Narlı (2021) investigated the impact of applying local
histogram equalization (LHE) on the performance of deep learning
architectures for COVID-19 classification using chest X-ray images.
The effect of the disk factor in LHE on transfer learning was

examined by comparing the results obtained with and without
LHE preprocessing. The dataset used by Narlı (2021) consisted
of chest X-ray images from three classes: COVID-19, Pneumonia,
and Normal. Each chest X-ray image was segmented into two
parts: the right lung lobe and the left lung lobe. The classification
performance of transfer learning was evaluated by applying
different disk values for LHE and the experiments were conducted
using various pre-trained DL architectures, including VGG16,
AlexNet, and Inception models. Altan and Narlı (2022) employed
simplistic CNN architectures with enhanced medical images using
contrast limited adaptive histogram equalization (CLAHE) to
classify of healthy chest X-rays (CXRs) and those with COVID-
19. The study utilized a large-scale dataset of 3,615 COVID-19
cases, demonstrating the clinical applicability of the proposed
method, which enhanced feature learning and preprocessing stages
to facilitate early diagnosis of COVID-19. The study achieved an
impressive accuracy rate of 95.878% for binary classification of
COVID-19 and healthy cases using the VGG16model with optimal
CLAHE parameters.

Yang and Fevens (2021) conducted experiments using two
medical imaging datasets: a SARS-CoV2 CT dataset and the
BreaKHis dataset (Spanhol et al., 2015). The study highlighted the
ability to identify uncertain samples and categories, demonstrating
that by excluding a percentage of the most uncertain inputs, the
accuracy of themodel’s predictions could be significantly improved.
This approach ensured better clinical outcomes by providing a
more reliable framework for the application of DNNs in medical
diagnostics. Moreover, the findings underscored the potential of
UQ methodologies to enhance the practical utility of DNNs in
healthcare, ultimately supporting better patient management and
treatment strategies.

Machine learning models have typically been evaluated in
biomedical research using measures such as sensitivity, specificity,
precision, accuracy, and Matthews correlation coefficient (MCC).
Rabiei et al. (2022) used sensitivity, specificity, and accuracy
metrics to evaluate machine learning models for predicting
breast cancer recurrence, demonstrating their effectiveness in
accurately identifying true positive and true negative cases, which
is crucial for clinical decision-making. Similarly, Helaly et al.
(2022) used deep learning models to detect early Alzheimer’s
disease and measured sensitivity, specificity, precision, and
AUC-ROC. The inclusion of AUC-ROC enabled a detailed
assessment of the models’ discriminative performance across
various threshold settings, offering a robust evaluation framework.
Hajian-Tilaki (2013) discussed the application of sensitivity,
specificity, precision, and accuracy within the context of ROC
curve analysis for medical diagnostic test evaluation, highlighting
their importance in capturing trade-offs between true positive
and false positive rates and offering a comprehensive tool for
evaluating diagnostic accuracy. However, traditional evaluation
metrics do not account for uncertainty in models. It is important
to derive and use performance metrics that quantify uncertainty,
as understanding model uncertainty can significantly enhance
the reliability and interpretability of predictions in real-world
applications. Calculating uncertainty-aware evaluation metrics is
crucial as it can boost confidence and trust in machine learning
models. Several deep learning models struggle to provide necessary
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uncertainty-aware predictions, as they often fail to capture
inherent uncertainties effectively. Consequently, these models
lack the required uncertainty-aware reasoning when deployed in
computer vision tasks. To address this limitation, it is essential
to explore methodologies that effectively quantify uncertainty
within deep learning models. Therefore, this study investigates
the application of Bayesian methods to determine if they offer
improved uncertainty quantification in deep learning techniques
for multi-class classification of chest X-ray images. Uncertainty
quantification (UQ) in multi-class classification has not received
much attention, as UQ research primarily focuses on regression and
binary classification tasks, overlooking the unique techniques and
challenges specific to multi-class classification.

The remainder of the paper is organized as follows. Related
works are presented in Section 2. The proposed methodology is
described in Section 3.1. The experiments are introduced in Section
3.8. Section 4 discusses the results and Section 6 concludes the
paper.

3 Materials and methods

3.1 Dataset

This paper aimed to achieve significant advancements in
uncertainty quantification through multi-class classification
using a publicly available chest X-ray image dataset, accessible at
https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-
pneumonia. The dataset comprised 619 chest X-ray images of
patients with COVID-19, 526 chest X-ray images of patients with
pneumonia, along with 732 images depicting healthy/normal
lungs. We noted that there was a moderate imbalance in the
dataset and we applied the resampling technique to achieve
balance by oversampling the minority class. For this, we used the
imblearn library in Python. Specifically, the RandomOverSampler

was employed to oversample the minority classes to obtain the
following class distributions: Class 1 (COVID-19 images) 732,
Class 0 (Normal images) 732, and Class 2 (Pneumonia images) 732.

3.2 Multi-classification

In real-life scenarios, numerous classification problems involve
the need to distinguish between more than two classes. Examples of
such problems include face recognition, hand gesture recognition,
general object detection, speech recognition, and many others.
These applications require algorithms and techniques that can
effectively classify data into multiple distinct categories, enabling
various tasks and applications in fields such as computer vision,
natural language processing, and human-computer interaction.

In this paper, we adopt a methodology for addressing multi-
class classification tasks referred to as the “One vs. All” (OvA)
strategy. Under this approach, we train multiple linear classifiers
C, where C > 2. C denotes the number of classes within the
classification task. Each classifier is tasked with distinguishing one
class from the remaining classes in the dataset. Therefore, this
method entails the training of C binary classifiers, each dedicated to
distinguishing a single class from the rest. During training, for each

class, a binary target variable is created. We assign a positive label
to instances belonging to the class being considered and a negative
label to instances belonging to other classes. Then, we train a linear
classifier using this binary target variable and the corresponding
features. At prediction time, we apply all C classifiers to the input
data, and each classifier produces a score or probability indicating
the likelihood of the input belonging to its respective class. The class
with the highest score is assigned as the predicted class for the input.
This technique effectively reduces the multi-class problem into a
series of binary classification problems. Each classifier learns to
discriminate one class from the rest, allowing us to handle problems
with more than two classes using linear classifiers.

In a dataset with multiple classes, denoted as (xn, yn)
N
N−1, there

exist C distinct classes of data. Similar to the two-class scenario, we
have the flexibility to use any C distinct labels for distinguishing
between these classes. For convenience’s sake the following label
values yn ∈ {0, 1, ...,C − 1} are assigned.

3.3 Deep learning methods

3.3.1 Bayesian neural networks
In this section, we provide a brief overview of Bayesian neural

networks (BNNs). BNNs are robust against overfitting and capable
of handling high-dimensional inputs, such as images (Abdar et al.,
2021b).

A neural network is considered as a probabilistic model when
it is able to account for and quantify uncertainty within its
predictions. A probabilistic neural network can be represented
by P(y | x,ω), where X = {x1, ..., xn} are the training samples
(input data), and Y =

{

y1, ..., yn
}

represents the set of all possible
outcomes (output data). In addition, we consider ω, to be the set of
parameters that are learnt through a complete Bayesian approach.
Furthermore, using a training dataset D = {X,Y}Ni=1, the posterior
distribution, P(ω | D) is evaluated through Bayesian inferenece
that employs marginalization over all the values of ω (Khairnar
et al., 2020). Therefore, to estimate P(ω | D) the Bayes theorem
is employed as follows:

P(ω | D) =
P(D | ω)P(ω)

P(D)
(1)

where the likelihood of training the data D given the parameters
ω is given by P(D | ω) and, P(D | ω) =

∏N
n=1 P(ŷ

n | x̂n,ω) is the
product of the likelihoods, assuming that each training data point is
independently and identically distributed (iid). (x̂n, ŷn) represents,
respectively, the input data and associated labels. The term P(ω)
denotes the distribution of weights before observing the data, and
P(D) =

∫

�ω
P(D | ω)P(ω)dω denotes the marginalization over the

weight distribution. Equation 1 shows how well the parameters ω

explain the training data that was observed.
Once P(ω | D) has been determined, the expected values of

the predictive distributions can be used to obtain predictions for
test data. Thus, for an unknown label ŷ of a data observation x̂, the
predictive distribution can be expressed as:

P(ŷ | x̂) = EP(ω|D)[P(ŷ | x̂,ω] =

∫

�ω

P(ŷ | x̂,ω)P(ω | D)dω. (2)
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FIGURE 1

Architecture of the Bayesian Neural Network (BNN).

The Bayes approach aims to optimize the parameters, ω, by
maximizing the likelihood, P(y | x,ω). In this study, our task
involves multi-classification of images, so we utilize the softmax
(Liu et al., 2016) likelihood to compute the predictive probabilities
as follows:

P(y = k | x,ω) =
expf ω

k
(x)

∑K
j=1 expf

ω
j (x)

(3)

For classification purposes, the model’s output can be
obtained using a softmax function this allows sampling from the
probability vector: P(y = k | x,ω) = softmax(f ŵt (x)). The
resulting model output is then mapped to a set of class labels
for multi-classification.

The computation of the posterior predictive probabilities,
P(y = k | x,ω), as depicted in Equation 4, presents a
significant challenge as it cannot be evaluated analytically. This is
because it requires explicit modeling of uncertainties and can be
computationally intensive, especially when handling complex data
distributions or large datasets. On the other hand, BNNs naturally
handle uncertainty through their probabilistic weight sampling
mechanism.

To quantify uncertainty using BNN, we employ the architecture
shown in Figure 1.

This architecture uses tfpl.DenseFlipout layers
(https://www.tensorflow.org/probability/api_docs/python/tfp/
layers/DenseFlipout), which are components of TensorFlow
Probability (TFP) designed to integrate uncertainty into neural
network predictions. These layers employ Bayesian inference by

FIGURE 2

Architecture of Deep Neural Network (DNN) that is modified to

quantify uncertainty using di�erent dropout techniques.

introducing stochastic weights during training, enabling the model
to quantify uncertainty in its predictions. This Bayesian approach is
crucial for enhancing the reliability of the neural network’s outputs,
particularly in applications where understanding the confidence
of predictions is essential. Incorporating tfpl.DenseFlipout
layers allows the model to effectively account for uncertainty,
resulting in more reliable and insightful predictions (Dillon et al.,
2017; Abdar et al., 2021a).

3.3.2 Deep neural networks
To quantify uncertainty using DNN, we employ a practical

approach to quantify uncertainty by leveraging various dropout
techniques. We adapt a deep neural network (DNN) (Figure 2) to
accommodate dropout techniques such as Monte-Carlo dropout.

Dropout techniques provide ameans for estimating uncertainty
in model predictions (Gal and Ghahramani, 2016; Kendall and Gal,
2017). Specifically, during inference or testing, dropout is applied
stochastically to the network, resulting in multiple predictions for
the same input. By averaging these predictions, we can obtain an
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estimate of the model’s uncertainty (Srivastava et al., 2014; Gal and
Ghahramani, 2016).

We explore different dropout techniques, such as Monte
Carlo dropout, Ensemble dropout, and Expected Model Change
dropout applied to DNNs, to comprehensively assess and quantify
uncertainty in our multi-class classification task. In addition, we
compare the performance of the modified DNN with different
dropout techniques to that of the BNN.

3.4 Uncertainty quantification using
Monte-Carlo (MC) dropout

We use the MC dropout technique as a regularization
method for computing predictions during both the training and
inference phases. By averaging multiple predictions, we aim to
improve accuracy. As discussed earlier, estimating the posterior
distribution poses computational challenges. To address this
issue, we leverage MC sampling methods (Asgharnezhad et al.,
2022). These methods involve performing multiple stochastic
forward passes with dropout during testing, which generates
MC samples from the posterior distribution. This approach
reduces the computational burden of approximating the output
posterior distribution.

In practice, the model’s predictive mean resembles the
expectation of ŷ (the predicted output). As a result, the final
prediction for a test sample is obtained by using the predictive
mean, denoted asµpred, computed over theMC iterations (Ghoshal
and Tucker, 2020).

µpred =
1

T

T
∑

t=1

P(y = k | x,ω) (4)

where the test input is denoted by x. The prediction probability
produced from the softmax output is denoted by P(y = k | x,ω).
Additionally, ω denotes the model’s parameters for the ith forward
pass and the Monte Carlo (MC) iterations or forward passes are
represented by T.

The output prediction for each test sample x̂ is determined
by selecting the class with the highest predictive mean, while the
variance provides a measure of predictive uncertainty. Validating
the model under epistemic uncertainty has traditionally been
a complex task. In order to quantify epistemic uncertainty,
Ghoshal and Tucker (2020) suggests utilizing predictive
entropy (PE):

PE = −
∑

c

P(y = k | x,ω) logP(y = k | x,ω) (5)

where c is the number of classes. Equation 5 provides a measure
of the confidence of model in making predictions in classification
tasks. Additionally, PE evaluates howmuch a prediction correlates
to each individual class, or how much a prediction differs from its
true label. A model is more confident in making predictions when
the value of PE gets smaller.

3.5 Uncertainty quantification using
Ensemble Monte-Carlo (EMC) dropout

Uncertainty quantification using Ensemble Monte Carlo
(EMC) dropout entails employing a technique that combines
ensemble methods with Monte-Carlo dropout. It utilizes an
ensemble of different DNN architectures. When using the Monte
Carlo dropout algorithm, multiple stochastic forward passes are
performed to evaluate each network in the ensemble. The resulting
posterior probabilities are averaged to estimate a single Gaussian
distribution. The calculation of the predictive entropy (PE) metric
is identical to that of the ensemble approach, with the only
significant difference being the methodology that is used in
determining the following posterior distribution;

P̂(y | x) =
1

T

T
∑

t=1

P̂(ŷ | x̂, ω̂) (6)

and the predictive entropy (PE) metric is then expressed as
follows

PE = −
∑

c

P̂(y | x) logP̂(y | x) (7)

where C is the number of classes and ω are the model’s parameters.

3.6 Uncertainty quantification using
Ensemble Bayesian Neural Network (EBNN)

The Ensemble Bayesian Network (EBNN) is a collection of
networks that collaborate to perform a particular task. Each
network generates predictive probabilities, that are veraged to
obtain the final predictive probability. The predictive entropy (PE)
(Equation 9) is again used to quantify the uncertainty.

µpred =
1

T

T
∑

t=1

Pθi (y = k | x,ω) (8)

PE = −
∑

c

Pθi (y = k | x,ω) logPθi (y = k | x,ω) (9)

where θi is set of the ith network element’s parameters, and C

represents the number of classes. A smaller value of PE indicates
similarity of the predictions from all individual networks.

3.7 Model training

We begin by extracting essential features from the CXR images
by pretraining a DenseNet121 model using normal chest X-ray
images and subsequently use the extracted features to evaluate
whether DNNs have the potential to classify chest X-ray images.
This approach, adapted from Asgharnezhad et al. (2022) is differnt
from the conventional practice of training deep models from
scratch in a transfer learning scenario. Instead, the approach fine-
tunes the weights of pre-existing deep neural networks that are
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pretrained on natural image datasets such as ImageNet, which are
specifically tailored for medical image analysis. Next, we utilize
the methodology suggested by Alarab and Prakoonwit (2023) to
perform One vs. All (OvA) classification of chest X-ray images of
pneumonia, COVID-19 and normal images. Here, we transform
the multi-class problem classification task into multiple binary
classification problems by assigning temporary labels to the dataset,
distinguishing each class from the rest of the data. This step
involves training multiple two-class classifiers, each focused on
discerning one class from the remaining C − 1 classes. Thereafter,
the Deep Neural Network (DNN) model is incorporated into our
experimental procedure.

To achieve optimal performance during training, it is important
to employ optimal hyper-parameters of the deep learning
algorithms, particularly the learning rate (lr). According to Zhang
et al. (2020), a lower lr enhances the reliability of the training
phase but can prolong the optimization process due to smaller
updates in the loss function. Conversely, a higher lr risks non-
convergence or divergence, as it may cause the optimization phase
to skip over the optimal value, worsening the loss function. This can
lead to unproductive oscillations and poor generalization, as the
training weights fail to stabilize at an optimal value. Following the
recommendations in Kingma and Ba (2014), Zhang et al. (2020),
Asgharnezhad et al. (2022), and Sun et al. (2024), who obtained the
best values of all evaluation metric when we set the learning rate is
set to 0.001, we used a default learning rate of 0.001 for the Adam
algorithm, which is deemed effective for stochastic optimization.

The architecture of the deep neural network (DNN) used in
this study is defined by the create_model() function, which
generates the DNN model using TensorFlow (Abadi et al., 2015).
The model is designed to include three hidden layers with 128, 64,
and 32 neurons, respectively, and utilizes ReLU activation functions
for non-linearity. Dropout layers with a dropout rate of 0.5 are
included after each hidden layer to prevent overfitting. The output
layer produces probabilistic predictions using a sigmoid activation
function. The model is compiled with a binary cross-entropy
loss function and optimized using the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 0.001. This architecture is
tailored for binary classification tasks and enables robust model
performance through dropout-based regularization.

Table 1 presents the architecture of the DNN and the
corresponding number of parameters.

The DNN architecture iterates over each class label in the
dataset and trains separate models for each binary classification
task (e.g., Class 0 vs. All, Class 1 vs. All, etc.). For each class, the
DNN model is trained using the training data and evaluated using
the test data. The evaluation metrics include accuracy, F1 score,
precision, recall, and ROC AUC score, which are computed and
stored. This approach ensures a comprehensive assessment of the
model’s performance across different classification tasks.

The training parameters for the DNN are detailed in Table 2.
The model was trained over 15 epochs with a batch size of 64. In
addition, five different models were trained for Ensemble Monte
Carlo (EMC) and Ensemble Bayesian neural network (EBNN) to
enhance model robustness.

After training and during the inference stage of DNN,
we use different uncertainty quantification techniques to assess

TABLE 1 Architecture of the Deep Neural Network (DNN) and number of

parameters.

Layer Number of parameters

Input layer (Dense) 19,328

Dropout layer 1 0

Hidden layer 1 8,256

Dropout layer 2 0

Hidden layer 2 2,080

Dropout layer 3 0

Output layer (dense) 33

Total 29, 697

TABLE 2 Training parameters for DNN.

Parameter Value

Learning rate 0.001

Epochs 15

Batch size 64

Number of models 5

model performance independently. Monte Carlo Dropout (MC
Dropout) involves maintaining dropout layers active during
inference, enabling stochastic sampling of predictions by randomly
deactivating units and their connections in each forward pass.
This allows the model to generate multiple predictions per input,
thereby, capturing the variance in the outcomes to estimate
uncertainty. On the other hand, Ensemble Bayesian Neural
Network (EBNN) averages predictions across multiple stochastic
passes, thereby smoothing out prediction variability and providing
a more stable estimate of uncertainty. In addition, Ensemble
Monte Carlo Dropout (EMC) refines uncertainty estimation
by aggregating predictions from an ensemble of models, each
trained with dropout, to produce a consensus view of prediction
uncertainty. These techniques individually yield probabilistic
distributions that quantify uncertainty, offering more insights
into the confidence level of the model’s outputs. Such detailed
uncertainty quantification is crucial in applications like medical
diagnostics, where understanding prediction confidence supports
informed decision-making.

Model training was conducted using Python libraries such as
NumPy, PyTorch, and pandas. Each experiment was repeated 100
times with different random seeds to ensure repeatability. Table 3
shows the training times for DNN with different uncertainty
quantification techniques, trained for 15 epochs with a batch size
of 64.

The experiments were executed on Google Colab, utilizing its
default hardware settings, which include a GPU (1xTesla K80,
compute 3.7, 2496 CUDA cores, 12GB GDDR5 VRAM).

The performance of DNN (with diferrent dropout techniques)
was compared using model evaluation metrics described in
Section 3.8.
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TABLE 3 The table also shows the training times for DNN trained using Monte Carlo (MC) dropout, as well as the times for DNN trained with five

di�erent models of Ensemble Monte Carlo (EMC) and Ensemble Bayesian Neural Network (EBNN) dropout techniques.

Model Trainable parameters Number of epochs CPU elapsed time (min)

DNN +MC dropout 29,697 15 13.618

DNN + EMC dropout 148,485 15 20.477

DNN + EBNN dropout 148,485 15 20.477

3.8 Model evaluation metrics

3.8.1 Traditional evaluation metrics
To assess the performance of DNN without the dropout

techniques, we adopted several traditional evaluation metrics
namely; sensitivity, specificity, accuracy, that have been used in
previous biomedical papers (Hajian-Tilaki, 2013; Boughorbel et al.,
2017; He et al., 2021; Helaly et al., 2022; Le and Xu, 2023;
Nguyen Quoc Khanh Le, 2023). These metrics are defined by the
following equations. We used the number of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) to
compute these metrics.

Sensitivity =
TP

TP + FN
(10)

Specificity =
TN

TN + FP
(11)

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

where TP represents the true positives, TN represents the true
negatives, and FP and FN represent the false positives and false
negatives, respectively. Boughorbel et al. (2017) states that theMCC
lies is in the interval [−1, 1], with 1 indicating perfect classification
and -1 indicating perfect misclassification.

3.8.2 Performance metrics for the predictive
uncertainty estimations

The dropout techniques, including MC dropout, EMC, and
EBNN, are incorporated into deep neural network (DNN) for
uncertainty quantification. Subsequently, we utilize the uncertainty
confusion matrix developed by Asgharnezhad et al. (2022), which
employs a concept akin to a confusion matrix, to carry out the
predictive uncertainty evaluation. In this study, we employ the
“One 2 vs. All” multiclassification strategy, which reduces to
binary classification for each class. The performance indicators for
predictive uncertainty estimations are quantified by the uncertainty
confusion matrix as shown in Table 4.

The uncertainty confusion matrix objectively and
quantitatively evaluates the predictive uncertainty estimates.
As shown in Table 4, the predictions are categorized into two
groups, correct and incorrect, after being compared to the labels of

the ground truth. Additionally, a threshold is employed to evaluate
and categorize prediction uncertainty estimates into two groups:
uncertain and certain.

Four different outcomes can result from the combination of
correctness and confidence, as shown in Table 4 namely: (i) true
certainty (TC), which represents a combination of correct and
certain predictions; (ii) true uncertainty (TU), which represents
a combination of incorrect and uncertain predictions, (iii) False
certainty (FC) denotes forecasts that are certain but erroneous and,
(iv) false uncertainty (FU) denotes predictions that are definite but
incorrect. The intended results are the diagonal entries TC and
TU. These outcomes are referred to as True Negative (TN) and
True Positive (TP) in the standard confusion matrix, respectively.
The following quantitative performance metrics that purely and
objectively quantify the prediction uncertainty estimations are
produced as a result of these combinations of correctness and
confidence groups:

(i) Uncertainty sensitivity (USen):

USen =
TU

TU + FC
(14)

The classic confusion matrix’s sensitivity (recall) or true positive
(TP) rate corresponds to USen or (URec), respectively. USen is
very important in that it quantifies the model’s power to express
confidence in incorrectly classified samples.

(ii) Uncertainty Specificity (USpe):

USpe =
TC

TC + FU
(15)

USpe is equivalent to the specificity performance metric derived
from the tradional confusion matrix.

(iii) Uncertainty precision (UPre):

UPre =
TU

TU + FU
(16)

UPre is equivalent to precision derived from the traditional
confusion maytrix

(iv) Uncertainty accuracy (UAcc):

UAcc =
TU + TC

TU + TC + FU + FC
(17)

A model with a high UAcc is considered reliable.
Other metrics that are used to evaluate the performance of

the models include the area under curve receiver operating curve
(AUC-ROC), confidence, and the expected calibration error (ECE)
described below.
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TABLE 4 Confusion matrix for calculating uncertainty quantification metrics (Asgharnezhad et al., 2022).

(v) AUC-ROC:
The results of the classification task are further cross-

validate using the area under curve receiver operating curve
(AUC-ROC). AUC-ROC is a probability curve that represents
a degree or measure of separability. This means that we can
measure how a model can distinguish between classes. The
AUC-ROC is a function of sensitivity and specificity.

(vi) Expected Calibration Error (ECE) and Brier Score:
Predictions are categorized into different M bins (based

on the value of the maximum softmax output) according to
their confidence in order to calculate the ECE. The calibration
errors in each bin quantify the discrepancy between the
percentage of correctly classified predictions (accuracy)
and the probability average (confidence). The calisensitivity
(USensebration errors across all bins are weighted to produce
the ECE.

ECE =

M
∑

m=1

|Bm|

n
|acc(Bm)− conf (Bm)| (18)

where acc(Bm) and conf (Bm) are the accuracy and confidence
in them-th bin:

Additionally, we examine the Brier score, as described
in Brier (1950). The Brier score is a metric used to evaluate
the accuracy of probabilistic predictions made by a model. A
lower Brier score indicates better calibration and accuracy of
the model’s predictions.

4 Results and discussions

4.1 DNNwithout uncertainty quantification

Features were extracted from chest X-ray (CXR) images in the
Pneumonia, Normal, and COVID-19 datasets using two distinct
pre-trained DenseNet models. For the Pneumonia and Normal
datasets, we employed the DenseNet121 model, trained on various
sources, including the RSNA Pneumonia Challenge, CheXpert, and
normal CXR images. Each CXR image was resized to a standard
dimension of 224 × 224 pixels, converted into an array, and pre-
processed to meet the model’s input requirements. The images
were then processed through the DenseNet121 model, from which
features were extracted from the feature layer and subsequently
flattened into a one-dimensional vector.

For the COVID-19 dataset, we utilized a DenseNet model
with “all” weights. The images were read in grayscale, resized to
224 × 224 pixels, and passed through the PyTorch-implemented

DenseNet model. Features were extracted from the feature layer,
detached from the computational graph, converted to a NumPy
array, and flattened into a one-dimensional vector. These feature
vectors, along with their corresponding labels (Normal: “Label”:
Class 0, COVID-19: “Label”: Class 1, Pneumonia: “Label”: Class
2) and filenames, were systematically organized in a Pandas
DataFrame (Features), which was subsequently used for model
training and UQ quantification using different techniques.

After pretraining a DenseNet121 model using normal chest X-
ray images to extract essential features, we trained DNN on Class 0
vs. All, on Class 1 vs. All, and on Class 2 vs. All without uncertainty
quantification to give a normal confusion matrix and subsequently
evaluate the performance metrics for each class.

Table 5 shows the results of the one vs. all classifications without
uncertainty quantification.

Table 5 shows that DNN has high discriminative performance
across all classes, with AUC-ROC values of 96.5% for normal
images, 97.3% for COVID-19 images, and 93.6% for pneumonia
images. The model’s high AUC-ROC values indicate excellent
effectiveness in discriminating each class from others. The model
achieves good overall accuracy, with 92.8% for normal images,
93.4% for COVID-19 images, and 91.7% for pneumonia images,
demonstrating effective classification across image types. Sensitivity
and specificity measures are important in real-world applications,
especially in the medical industry. The DNN accurately detected
normal images with a sensitivity of 90.4% and specificity of 94.2%,
minimizing false positives. For COVID-19 images, the sensitivity
is 91.7% and specificity is 94.3%, underscoring the model’s
ability to accurately detect COVID-19 cases while minimizing
the misclassification of other conditions as COVID-19. In the
case of pneumonia images, the sensitivity is slightly lower at
83.5%, but the specificity remains high at 95.1%, demonstrating
the model’s effectiveness in identifying true pneumonia cases
and reducing the likelihood of misclassifying other conditions
as pneumonia.

These results have significant implications for real-life
healthcare settings. High sensitivity in detecting COVID-
19 and pneumonia images is crucial for early diagnosis and
treatment, which can prevent the spread of infections and
mitigate complications. On the other hand, high specificity across
all classes ensures that healthy individuals are not subjected
to unnecessary medical interventions, while patients receive
appropriate treatments for their conditions. Additionally, high
precision for each class indicates that the model reliably identifies
true cases, enhancing trust in the diagnostic process and ensuring
efficient allocation of medical resources. Overall, the DNN’s strong

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2024.1410841
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Whata et al. 10.3389/frai.2024.1410841

TABLE 5 Results of the “One vs. All” (OvA) multi-class classification of chest-xray images using DNN without uncertainty quantification.

Class AUC-ROC Accuracy (%) F1 score (%) Sensitivity (%) Specificity (%) Precision (%)

Class 0 vs. all 96.5 92.8 90.0 90.4 94.2 89.7

Class 1 vs. all 97.3 93.4 90.6 91.7 94.3 89.6

Class 2 vs. all 93.6 91.7 85.4 83.5 95.1 89.9

TABLE 6 Calibration metrics for each class.

Class ECE Brier score

Class 0 vs. All 0.0134 0.123

Class 1 vs. All 0.0128 0.234

Class 2 vs. All 0.0130 0.345

performance metrics suggest its potential as a valuable tool in
medical diagnostics, contributing to improved patient care and
public health outcomes.

While the results demonstrate that DNN is suitable for “OvA”
multiclassifying tasks, it lacks the ability to quantify uncertainty,
which can be crucial in certain scenarios such as identifying for
example chest X-rays of pneumonia patients. To quantify predictive
uncertainty, we start by assessing the calibrations of the predictions
produced by the DNN.

4.2 Expected calibration error

The expected calibration error (ECE) values for the different
multi-class classification tasks are presented in Table 6. These
ECE values, derived from 19, provide a quantitative evaluation
of the alignment between the actual outcomes and the predicted
probabilities by the DNN. For Class 0 vs. All, Class 1 vs. All, Class 2
vs. All the ECE values are 0.0134, 0.0128, and 0.0130, respectively.
These ECE values are much lower, indicating better calibration by
the DNN. This shows that the probabilities that are predicted by the
DNN are closely aligned with the actual outcomes across the three
multi-class classification scenarios.

In addition, Table 6 presents the Brier scores that evaluate
the DNN’s calibration and accuracy performances across the
multi-class classification scenarios. For Class 0 vs. All, the Brier
score is 0.123, indicating that predictions are well-calibrated and
accurate. For Class 1 vs. All, the Brier score of 0.234 is slightly
higher, showing that the calibration and accuracy are reasonable,
with some indication of uncertainty. On the other hand, Class
2 vs. All has the highest Brier score (0.345), suggesting that
it may be more challenging to predict this class correctly than
the others.

To quantify uncertainty, we employ a specialized type of DNN
called the Bayesian neural network (BNN). This BNN incorporates
various dropout techniques, including Monte Carlo (MC) dropout,
Ensemble Monte Carlo (EMC), and Ensemble Bayesian neural
networks (EBNN) to quantify uncertainty.

4.3 Uncertainty quantification using
Bayesian neural networks

The results presented in Table 7 reveal varying performance
metrics across different classes in the “One vs. All” (OvA) multi-
class classification of chest X-ray images. For Class 0 vs. All,
the model achieves an AUC-ROC of 89.8%, indicating strong
discriminative ability in distinguishing normal images from others,
supported by high sensitivity (82.2%) and specificity (83.0%).
However, the F1 score of 77.4% suggests a moderate balance
between precision and recall. In contrast, Class 1 vs. All shows a
lower AUC-ROC of 79.2%, reflecting greater difficulty in accurately
identifying COVID-19 cases, with sensitivity and precision at 77.1
and 72.1%, respectively. Class 2 vs. All exhibits challenges in
achieving precision (F1 score 58.9%), despite a reasonable AUC-
ROC of 77.6% and high specificity (84.3%).

4.4 Uncertainty quantification using deep
neural networks

Uncertainty quantification was performed for each of Class
0 vs. All, Class 1 vs. All, and Class 2 vs. All. Table 7 presents a
comparison of the uncertainty-aware evaluation metrics produced
by the BBNN, MC Dropout, EBNN, Ensemble, and EMC Dropout
uncertainty quantification techniques for Class 0 vs. All.

4.4.1 Class 0 vs. all
The results show that EBNN outperforms the other models

achieving the highest UAcc of 92.6% and a UAUC-ROC value
of 87.9%, indicating its superior ability in accurately classifying
the OvA instances while quantifying uncertainty. EBNN also
demonstrates superiority across other metrics such as Brier Score,
with a score of 0.1567, re-affirming its overall effectiveness in
predictive uncertainty quantification.

UF1 Score, UPrec, USens, and USpec were also employed
to quantify prediction uncertainty. These metrics are important
because they provide insights into a model’s ability to make
predictions. In this study we used a threshold of 0.30, following
Asgharnezhad et al. (2022)’s recommendation, to calculate these
performance metrics. The best-performing model, EBNN, showed
outstanding performance across these metrics: UF1 Score = 90.0%,
UPrec = 86.9%, USens = 93.3%, and USpec = 92.1%. These
results emphasize EBNN’s reliability and accuracy in estimating
uncertainty.

The results in Table 8 show that the Bayesian Neural Network
(BNN) employed for “One vs. All” multi-class classification of
chest X-ray images exhibits varying performance across classes,
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TABLE 7 Comparison of the uncertainty-aware evaluation metrics produced by DNN with uncertainty quantification techniques (MC Dropout, EBNN,

Ensemble, and EMC Dropout) for Class 0 vs. All.

Model UAcc UF1 Score UPrec USens USpec UAUC-ROC Brier score

MCDropout 81.0 75.5 70.3 81.5 80.7 87.9 0.168

EBNN 92.6 90.0 86.9 93.3 92.1 95.0 0.157

EMC Dropout 87.5 80.7 90.7 72.6 95.9 95.1 0.178

TABLE 8 Results of the “One vs. All” (OvA) multi-class classification of chest-X ray images using Bayesian Neural Networks (BNN).

Class UAcc UF1 Score UPrec USens USpec UAUC-ROC Brier score

Class 0 vs. All 82.7 77.4 73.0 82.2 83.0 89.8 0.161

Class 1 vs. All 72.9 69.0 72.1 77.1 92.2 79.2 0.194

Class 2 vs. All 76.6 58.9 60.0 57.8 84.3 77.6 0.194

with the highest accuracy (82.7%) achieved by Class 0 vs. All. In
addition, Class 0 vs. All’s AUC-ROC is 89.8%, indicating better
discriminative ability compared to the other classes. However,
Class 2 vs. All achieved the lowest F1 score of 58.9%, suggesting
it had challenges in correctly identifying the true positives. The
Brier Scores ranged from 0.161 to 0.194, reflecting reasonable
but not perfect calibration of predicted probabilities across
all classes.

Notably, Table 9, shows that the different multi-class
classification models perform differently quantifying the
percentage uncertainty in chest X-ray image classification for
the Class 0 vs. All case.

EBNN emerges as the best-performing model, achieving the
lowest uncertainty values across several performance metrics
for Class 0 vs. All. Specifically, EBNN achieves the lowest
uncertainty in accuracy (UAcc = 0.2%), signifying its robustness in
making accurate predictions. Moreover, for Class 0 vs. All, EBNN
exhibits high discriminatory power with the lowest uncertainty in
UROC-AUC = 1.5%. Furthermore, EBNN produces outstanding
performance not only in achieving lower uncertainty in overall
accuracy but also in achieving the lowest percent uncertainty
in precision (UPrec = 2.8%). This indicates that the model
correctly identifies Class 0 instances among all positive predictions.
Additionally, EBNN produces the lowest percent uncertainty in
sensitivity (USens = 2.9%), demonstrating its effectiveness in
capturing the true positive instances of Class 0 while reducing false
negatives.

The superior performance of EBNN’s indicates that it provides
more reliable uncertainty estimates across various key metrics
compared to other models. This enhances its suitability for
deployment in critical healthcare applications.

4.4.2 Class 1 vs. all
Table 10 presents a comparison of the uncertainty-aware

evaluation metrics produced by the DNN, MC Dropout,
EBNN, Ensemble, and EMC Dropout uncertainty quantification
techniques for the Class 1 vs. All scenario.

Table 10 shows that the EMC Dropout model is the best-
performing model for Class 1 vs. All classification, as indicated by
the different performance evaluationmetrics. Themodel achieved a
UAcc of 83.5% and aUF1 Score of 72.3%, indicating its accuracy in

TABLE 9 Comparison of the percentage uncertainty (%) in the di�erent

uncertainty-aware evaluation metrics produced by the DNN, MC Dropout,

EBNN, Ensemble, and EMC Dropout uncertainty quantification techniques

for Class 0 vs. All.

Model UAcc (%) UROC-
AUC

UPrec (%) USens
(%)

MC
Dropout

11.8 8.6 19.4 8.9

EBNN 0.2 1.5 2.8 2.9

EMC
Dropout

5.3 1.4 1.0 17.8

correctly classifying Class 1 vs. All instances. In addition, the model
has superior UPrec (88.0%) and USpec values (95.5%), showing
good predictive performance. Although itsUSens is relatively lower
at 61.7% compared to other metrics, it still demonstrates solid
sensitivity. The high UAUC-ROC value of 95.8% and a low Brier
Score of 0.165 further indicate that the EMC Dropout model
performs well in predictive uncertainty estimation.

Table 11 summarizes the percentage uncertainty for different
metrics produced by the uncertainty quantification techniques for
the Class 1 vs. All scenario.

The results show that EMC Dropout emerges as the best-
performing model by achieving the lowest uncertainty percentage
values across most metrics for Class 1 vs. All. Specifically, EMC
Dropout achieves the lowest uncertainty in accuracy (UAcc
= 9.9%), UROC-AUC (1.5%), precision (UPrec = 1.6%), and
sensitivity (USens = 30%). The results indicate that the EMC
Dropout model is capable of providing more reliable uncertainty
estimates compared to other models.

4.4.3 Class 2 vs. all
Table 12 presents a comparison of the uncertainty-aware

evaluation metrics produced by the DNN, MC Dropout,
EBNN, Ensemble, and EMC Dropout uncertainty quantification
techniques for Class 2 vs. All. The Ensemble Bayesian Neural
Network (EBNN) model outperforms the other models evaluated
for Class 2 vs. All classification, showing very good classification
performance across various evaluation metrics. EBNN accurately
classifies Class 2 and Rest instances, with an UAccuracy of 87.8%
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TABLE 10 Comparison of the uncertainty-aware evaluation metrics produced by the DNN, MC Dropout, EBNN, Ensemble, and EMC Dropout uncertainty

quantification techniques for Class 1 vs. All.

Model UAcc UF1 Score UPrec USens USpec UAUC-ROC Brier score

MCDropout 74.7 53.1 76.0 59.9 93.0 80.0 0.189

EBNN 70.7 73.7 82.4 71.4 97.5 93.4 0.182

EMC Dropout 83.5 72.3 88.0 61.7 95.5 95.8 0.165

TABLE 11 Comparison of the percent uncertainty (%) in the di�erent

uncertainty-aware evaluation metrics produced by the DNN, MC Dropout,

EBNN, Ensemble, and EMC Dropout uncertainty quantification techniques

for Class 1 vs. All.

Model UAcc (%) UROC-
AUC

UPrec (%) USens
(%)

MC
Dropout

18.7 17.3 13.6 31.8

EBNN 22.7 3.9 7.2 20.3

EMC
Dropout

9.9 1.5 1.6 30

and a UF1 Score of 75.5%. Also, it has a high UPrec 89.9%,
which indicates accurate positive cases predictions, and a USpec
of 97.00%, which highlights its accuracy in identifying negative
cases. Nevertheless, It is noteworthy that its USens, is just 65.1%,
indicating room for improvement in classifying all positive
instances. This results show that EBNN model performs very
well in predictive uncertainty estimation, as evidenced by its high
UAUC-ROC value of 0.91 and comparatively low Brier Score of
0.19. These results confirm the model’s reliability and efficiency
in handling uncertain predictions for Class 2 vs. All classification
tasks. Futhermore, we quantified the percentage uncertainty
produced by the different uncertainty quantification techniques
across different evaluation metrics and the results are shown in
Table 13.

The results in Table 13 indicate that EBNN has the lowest
percentage uncertainty across all the different evaluation metrics
(UAcc =12.766%, UAUC-ROC = 9.405%, UPrec = 10.127%, and
USens = 34.862%).

5 Discussion

This paper presented an in-depth quantification of uncertainty
across different evaluation metrics using various uncertainty
quantification methods deployed on multi-class classification tasks:
Class 0 vs. All, Class 1 vs. All, and Class 2 vs. All. A chest X-
ray image dataset with three classes (COVID-19, Pneumonia, and
Normal images) was used to perform the multi-class classification
tasks. Several uncertainty quantification techniques (MC dropout,
EBNN, Ensemble, and EMC dropout) were employed for all
classifications in chest X-ray analysis. Through the evaluation
of these techniques, the percentage uncertainty estimates were
obtained for each method across different evaluation metrics. The
quantified uncertainty provides insights into the reliability and
predictive performance of these quantification techniques.

A comparative analysis of Bayesian Neural Networks (BNN)
and Deep Neural Networks with Uncertainty Quantification (DNN

with UQ) techniques for multi-class classification of chest X-ray
images shows notable differences in performance metrics for Class
0 vs. All, Class 1 vs. All, and Class 2 vs. All scenarios. For Class 0 vs.
All, the EBNN method achieved a UAcc of 92.6%, UAUC-ROC of
95.0%, and a Brier Score of 0.157, significantly outperforming the
BNN’s Acc of 82.7%, AUC-ROC of 89.8%, and Brier Score of 0.161.
Similarly, for Class 1 vs. All, the EMC Dropout technique showed
superior results with aUAcc of 83.5%,UAUC-ROC of 95.8%, and a
Brier Score of 0.165, compared to the BNN’s Acc of 72.9%, AUC-
ROC of 79.2%, and Brier Score of 0.194. In the Class 2 vs. All
scenario, the EBNN also excelled with a UAcc of 87.8%, UAUC-
ROC of 90.6%, and a Brier Score of 0.185, versus the BNN’s Acc of
76.6%, AUC-ROC of 77.6%, and Brier Score of 0.194.

Across all classes, DNNs with UQ techniques, especially
EBNN and EMC Dropout, consistently demonstrated superior
performance metrics compared to BNNs. They achieved higher
UAcc and UAUC-ROC values, indicating better classification
accuracy and discriminative capability. Additionally, these models
reported lower Brier Scores, reflecting more accurate probabilistic
predictions. Further analysis of metrics such as F1 Score, Precision,
Sensitivity, and Specificity revealed that DNNswithUQmaintained
a better balance between precision and recall and exhibited
greater robustness in identifying both positive and negative cases.
Overall, the advanced DNNs with UQ not only provided enhanced
performance but also ensured reliable uncertainty quantification,
making them more suitable for critical healthcare applications like
chest X-ray image classification.

6 Conclusion

This study made important contributions to the existing
literature by providing novel insights into uncertainty
quantification in the classification of COVID-19, particularly
by extending the binary classification of COVID-19 task to the
multi-class classification task. In addition, we have demonstrated
that uncertainty-aware estimates of evaluation metrics can
effectively be obtained from uncertainty quantification techniques
across different multi-class classification scenarios, particularly in
the context of medical image analysis. For example, the EBNN
demonstrated superior performance in quantifying uncertainty,
paving the way for improved model reliability and interpretability.

This study has offered substantial clinical relevance by
integrating advanced UQ techniques into deep neural networks
(DNNs), thereby significantly enhancing the interpretability and
reliability of diagnostic predictions an essential factor for clinical
decision-making. With UQ, clinicians can better gauge the
confidence inmodel predictions, enablingmore informed decisions
regarding patient referrals and treatment plans. For instance, if a
DNN model indicates high uncertainty in classifying a chest X-ray,
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TABLE 12 Comparison of the uncertainty-aware evaluation metrics produced by the DNN, MC Dropout, EBNN, Ensemble, and EMC Dropout uncertainty

quantification techniques for Class 2 vs. All.

Model UAcc UF1 Score UPrec USens USpec UAUC-ROC Brier Score

MCDropout 74.4 53.9 56.5 51.6 83.7 75.8 0.196

EBNN 87.8 75.5 87.5 65.1 97.0 90.6 0.185

EMC Dropout 71.8 65.0 77.2 62.8 91.0 84.4 0.190

TABLE 13 Comparison of the percentage uncertainty (%) in the di�erent

uncertainty-aware evaluation metrics produced by the DNN, MC Dropout,

EBNN, Ensemble, and EMC Dropout uncertainty quantification techniques

for Class 2 vs. All.

Model UAcc
(%)

UROC-
AUC

UPrec
(%)

USens
(%)

MC
Dropout

17.3 17.8 31.0 31.9

EBNN 3.9 3.0 2.4 18.4

EMC
Dropout

19.9 9.2 12.7 20.7

it prompts clinicians to investigate further or refer the patient to a
specialist, potentially leading to earlier diagnosis and intervention.

Accurately estimating the uncertainty associated with
predictions helps mitigate the risks of misdiagnosis, especially
in critical conditions like COVID-19 and pneumonia, where
timely and accurate diagnosis is vital. Our findings demonstrate
that models that are equipped with UQ achieve higher accuracy
and thus, offer probabilistic predictions that may guide clinical
actions more effectively than traditional models. Implementing
the UQ techniques employed in this study in clinical settings
can significantly improve diagnostic outcomes and patient care,
underscoring its clinical implications and value in medical practice.

A limitation of this study is that uncertainty quantification
relies on a specific chest X-ray image dataset, and the results may
not generalize well to other image datasets. For future studies, we
will explore the use of different image datasets, model architectures,
and training strategies to investigate their impact on uncertainty
quantification in the multi-class classification of COVID-19.
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