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In today’s information age, recommender systems have become an essential 
tool to filter and personalize the massive data flow to users. However, these 
systems’ increasing complexity and opaque nature have raised concerns about 
transparency and user trust. Lack of explainability in recommendations can 
lead to ill-informed decisions and decreased confidence in these advanced 
systems. Our study addresses this problem by integrating explainability 
techniques into recommendation systems to improve both the precision 
of the recommendations and their transparency. We  implemented and 
evaluated recommendation models on the MovieLens and Amazon datasets, 
applying explainability methods like LIME and SHAP to disentangle the model 
decisions. The results indicated significant improvements in the precision of the 
recommendations, with a notable increase in the user’s ability to understand 
and trust the suggestions provided by the system. For example, we saw a 3% 
increase in recommendation precision when incorporating these explainability 
techniques, demonstrating their added value in performance and improving the 
user experience.
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1 Introduction

Today, recommender systems have become indispensable tools that mediate our daily 
interactions with various platforms, from entertainment and social media to e-commerce. Its 
ability to filter and personalize information has transformed how users discover content and 
products, adjusting to their preferences and behaviors. However, as these systems advance in 
complexity, significant challenges related to transparency and trust arise, marking a critical 
need to address explainability within artificial intelligence (AI).

This research is relevant because it can improve the interface between advanced technology 
and end users. By exploring how explainability in recommender systems can strengthen 
transparency and foster trust, the study addresses a central concern for both the scientific 
community and the public (Amann et al., 2020). The research questions focus on determining 
the impact of integrating explainability techniques on recommender systems’ precision and 
user perception.

The literature review reveals a growing interest in AI explainability, with previous research 
highlighting the benefits and challenges inherent in implementing transparent and 
understandable systems (Boruah et al., 2023). Although significant progress has been made, 
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gaps remain in how explainability can be optimized to improve system 
effectiveness and user experience simultaneously. This study aims to 
fill these gaps, contributing to the existing body of knowledge by 
empirically evaluating the effects of different explainability methods 
on recommender systems (Ehsan et al., 2021; Reddy and Kumar, 2023).

In terms of methodology, this study employs a quantitative 
approach to evaluate the precision and user perception of 
recommender systems enhanced with explainability techniques. 
We  use MovieLens and Amazon datasets to develop and test 
recommendation models that integrate methods such as Local 
Interpretable Model-agnostic Explanations (LIME) and Shapley 
additive Explanations (SHAP) (Kaneko, 2023; Swathi and Challa, 
2023). The choice of this methodology is justified by its ability to 
provide objective and replicable evaluations of the impact of 
explainability on system performance and acceptance (Fares 
et al., 2023).

The results indicate that the integration of explainability improves 
the precision of the recommendations and significantly increases user 
satisfaction and trust in the system. These findings underscore the 
importance of explainability in building recommender systems that 
are not only technically competent but also transparent and accessible 
to users. By providing empirical evidence of its benefits in system 
performance and user experience, this study makes valuable 
contributions to the existing literature. It lays the foundation for future 
research in transparent and user-centered AI.

2 Literature review

In recommender systems, the literature spans widely on various 
methodologies, applications, and challenges, ranging from classical 
approaches to recent advances in machine learning and explainability. 
Recommender systems have evolved significantly since their inception, 
as seen in early research by Vesin et al. (2013), who introduced the 
concept of collaborative filtering. This approach, which exploits user 
rating patterns to predict preferences, has been instrumental in 
developing personalized recommendation platforms. However, as data 
sets have grown in complexity, the literature has highlighted limitations 
regarding scalability and precision, as Chen et al. (2023) discussed in 
their studies on matrix decomposition for recommendation improvement.

The incorporation of deep learning techniques in recommendation 
systems has achieved significant advancements, as shown by works 
such as Kaddoura et al. (2022) on YouTube have shown how deep 
neural networks can capture complex non-linear relationships and 
significantly improve the relevance of recommendations. However, as 
performance improves, the challenge of explainability arises, as noted 
in the critical review by Wilming et al. (2022), who emphasizes the 
need for accurate but interpretable and reliable systems.

Explainability in recommender systems has become an active 
research frontier, highlighting the importance of offering users a clear 
understanding of how recommendations are generated. Kartik et al. 
(2023) introduced the LIME model, a methodology that allows complex 
models to be  interpreted by perturbing the input and observing 
prediction changes. Similarly, Pai et al. (2022) proposed SHAP, which 
assigns each feature an importance value based on game theory, allowing 
for a fairer and more consistent interpretation of feature contributions.

Beyond explainability, the importance of visualization in 
interpreting large data sets has been recognized. Techniques such as 

Principal Component Analysis (PCA) and t-distributed Stochastic 
Neighbor Embedding (t-SNE), discussed in works by Ali et al. (2021) 
and Lee et al. (2023) respectively, have been highlighted as powerful 
tools for dimensionality reduction and visualization of high-
dimensional data, allowing researchers and users to discern 
underlying structures and patterns in data interactions.

3 Materials and methods

The central purpose of this research is to apply and evaluate 
explainability techniques in recommender systems to identify and 
understand how these advanced technologies generate their specific 
suggestions for users. This study is part of the growing interest in 
transparency and accountability in AI systems, where the ability to 
Peng et al. (2022) recommendations become crucial in fostering user 
trust and adoption of technology. By implementing explainability 
methods, we seek not only to improve the interpretation of AI systems’ 
recommendations but also to increase the accessibility and acceptance 
of these technologies by end users.

For the analysis, two prominent datasets in the field of recommender 
systems were selected: MovieLens and the Amazon product review 
dataset. Containing millions of user-provided movie ratings, MovieLens 
is used to explore recommendations in the context of entertainment and 
film. On the other hand, the Amazon product review dataset offers a 
comprehensive view of consumer purchasing behavior and preferences 
in a diversified e-commerce environment. These data sets are ideal for 
investigating how explainability techniques can be applied and improve 
the understanding of recommendations in different domains.

Figure  1 represents the methodology used in this work, 
highlighting the critical processes and their contributions to the study. 
Each flow phase has been designed with a specific focus and essential 
functions that contribute to building a robust and understandable 
recommender system. In the data selection phase, we prioritize the 
integrity and representativeness of the data set, ensuring a meaningful 
and diverse sample that reflects the varied interactions of users. In 
data preprocessing, we focus on quality and consistency, implementing 
rigorous methods to normalize and encode data, ensuring that inputs 
to the model are reliable and standardized.

The data exploration methodology stands out for its use of 
statistical analysis and visualizations that allow us to decipher trends, 
identify patterns, and understand the distribution of user interactions 
(Mekruksavanich and Jitpattanakul, 2021). Moving forward to model 
construction, we  define innovative structures and algorithms to 
capture temporal relationships in the data, using techniques such as 
RNNs and collaborative filtering algorithms. In explainability, 
we apply advanced techniques that identify the process behind the 
model’s recommendations, allowing detailed interpretations and 
increasing transparency. Finally, for evaluation and validation, 
we employ industry-standard performance metrics to confirm the 
effectiveness and precision of our models.

3.1 Data selection

The selection of data from the MovieLens and Amazon sets was 
carried out using criteria that ensure relevance and representativeness 
in the context of recommendation systems. For the MovieLens data 
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set, we used the most recent version, MovieLens 25 M, which contains 
25 million ratings and one million tags applied to 62,000 movies by 
162,000 users (Alroobaea, 2022). This data set was filtered to include 
movies with a minimum of 100 ratings each, thus ensuring that the 
analyzed movies have enough user interaction to validate the 
robustness of the generated recommendations and explanations. All 
ratings were considered without date restrictions, covering a wide 
temporal range to capture trends and patterns over time.

As for the Amazon data set, the subset of “Amazon Product 
Review Dataset: Electronics” was used, which covers reviews and 
ratings of electronic products, one of Amazon’s largest and most 
popular segments. Data from the last 5  years was selected to 
reflect current consumer trends and preferences in technology. 
Filters were applied to only include products with more than 50 
reviews, ensuring a significant amount of data to analyze the 
consistency and quality of recommendations (Harper and 
Konstan, 2015).

The data sets are structured in the form of tables where the 
rows represent individual user interactions with products or 
movies, and the columns contain key variables such as “UserID,” 
“ItemID,” “Rating,” “Timestamp,” and additional metadata such as 
“Genre” for movies or “Category” for products. In the case of 
MovieLens, the critical variables analyzed include “UserID,” 
“MovieID,” “Rating,” and “Timestamp,” while, for Amazon, the 
variables are “UserID,” “ProductID,” “Rating,” and “Timestamp.” 
These variables make it possible to reconstruct user preferences 
and behaviors, forming the basis for training and evaluating 
recommendation models and applying explainability techniques 
to interpret the model’s decisions.

3.2 Data preprocessing

The MovieLens and Amazon data sets were processed in the 
following steps to ensure that the data was in optimal condition for 
analysis and applying recommendation algorithms and explainability 
techniques (Cano et al., 2003). Data cleaning began with eliminating 
duplicate records to avoid redundancies that could bias the analysis 
results. Missing values were managed, eliminating rows where 
essential data such as UserID, ItemID, or Rating were absent since 
these are crucial for the integrity of the recommendation analysis.

The ratings in both data sets were normalized to maintain a 
consistent scale from 0 to 1. This was done using the Min-Max 
normalization technique, where the minimum rating value is mapped 
to 0 and the maximum to 1, following the equation 1:

 
normalizedRating

Rating Rating
Rating Rating

=
− ( )

( ) − ( )
min

max min  
(1)

One-hot coding technique was used for categorical variables like 
Genre in the MovieLens dataset and Category in Amazon. This 
transforms categories into binary vectors where only one position is 
activated to indicate the presence of a specific category, allowing 
machine learning algorithms to process this categorical data efficiently. 
For example, if a product belongs to the category “Electronics,” this 
would be represented by a vector where the position corresponding to 
“Electronics” is 1, while all other positions are 0.

For Metadata treatment, additional metadata, such as Timestamps 
for ratings, were analyzed and processed, converting them into more 

FIGURE 1

Comprehensive process for implementing and evaluating explainability techniques in advanced recommendation systems.
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useful formats for analysis. In the case of Timestamp, it was converted 
to date and time format to allow temporal analysis of trends and 
rating patterns.

Additionally, the data sets were segmented into training, 
validation, and testing subsets using a stratified approach to ensure 
that each subgroup adequately represented the full spectrum of user 
interactions with products or movies. This preprocessing process 
ensures that the data is accurate, consistent, and ready for use in 
developing recommendation models and applying explainability 
techniques, providing a solid foundation for subsequent analysis 
and experimentation.

3.3 Data exploration methodology

Exploration of the MovieLens and Amazon data sets is carried 
out systematically, using statistical and visualization techniques to 
discover the intrinsic characteristics of the data and detect patterns 
and possible anomalies. Initially, a descriptive analysis is carried out, 
obtaining statistics such as mean, median, standard deviation, and 
the minimum and maximum values of the ratings. This stage 
provides an initial understanding of the distribution of ratings. It 
allows assessment of the density of interaction between users and 
items, which is critical to understanding the overall structure of 
the data.

The data analysis methodology adopted in this study comprises a 
sequence of statistical analysis and visualization techniques (Cano 
et al., 2003). To elucidate the distribution of scores and other key 
metrics, histograms and density plots were used, which are valuable 
tools for examining and visualizing the central tendencies and 
dispersion of the data. Box plots complemented this approach, 
allowing the identification of outliers and the evaluation of intrinsic 
variability in ratings at both the user and item level, providing crucial 
information about data quality and the existence of potential biases.

The exploration of correlations between variables was carried out 
using the Pearson or Spearman correlation coefficient, depending on 
the distribution and nature of the data (Leventi-Peetz et al., 2022). This 
analysis is essential to reveal significant relationships and dependencies 
between variables such as ratings, movie genres, or product categories, 
offering a deep understanding of the dynamics that operate in 
recommender systems.

Additionally, temporal trends in ratings were investigated through 
time series analysis, uncovering seasonal patterns and changes in user 
preferences over time. This analysis provides a dynamic perspective 
on the evolution of user-system interactions and their response to 
external factors or updates in the item catalog, thus contributing to a 
more contextualized and temporally sensitive recommendation model.

Advanced dimensionality reduction methods such as PCA and 
t-SNE were applied to address the high dimensionality inherent in 
these data. These methods effectively transform data to lower 
dimensional spaces, thus improving the interpretability of the 
underlying data structures and allowing the identification of similar 
groupings or patterns of interactions between items or users (Silva and 
Melo-Pinto, 2023).

Based on this analysis, preliminary hypotheses about user 
behavior and the popularity of the elements in the 
recommendation system are formulated. These preliminary 
hypotheses establish the basis for constructing and evaluating 

recommendation models and integrating explainability 
techniques, ensuring that the study was not only replicable but 
also profound in its technical analysis.

3.4 Development of the recommendation 
model

Approaches that encompass both collaborative filtering and deep 
learning techniques are used to develop recommendation models 
using the MovieLens and Amazon data sets. These methods were 
selected for their proven effectiveness in capturing user preferences 
and behaviors in complex recommender systems.

In the case of MovieLens, a collaborative filtering model based on 
latent factors was chosen using the Singular Value Decomposition 
(SVD) algorithm. This approach focused on decomposing the user-
movie rating matrix into latent factors that represent hidden 
characteristics of both users and movies (Kuraparthi et al., 2019). Key 
hyperparameters, such as the number of latent factors, were adjusted 
through cross-validation, seeking the optimal balance between model 
representation capacity and overfitting.

For the Amazon dataset, a hybrid model was implemented that 
combines content-based and collaborative filtering features using deep 
learning techniques. A deep neural network was built to incorporate 
user-product interactions and product metadata (such as categories 
and descriptions). The network hyperparameters, including the 
number of hidden layers, units per layer, and learning rate, were 
determined through deep search using a validation set to monitor 
performance and avoid overfitting (Goštautaitė and Sakalauskas, 2022).

The models’ training process involved using a training set to tune 
the weights and parameters, followed by a validation set to optimize 
the hyperparameters and avoid overfitting. A temporal data 
partitioning technique was used to ensure that training and validation 
reflected realistic recommendation scenarios, where only historical 
data is used to predict future interactions.

The models were evaluated using standard metrics in 
recommender systems, such as rating precision, root mean square 
error (RMSE), and accuracy at the top of the recommendation list 
(Top-N accuracy). This rigorous evaluation allowed us to validate the 
effectiveness of the models in predicting user preferences and 
behaviors (Lee et al., 2016).

3.5 Implementation of explainability 
techniques

Methods such as attention maps, feature importance, and model-
based algorithms such as LIME and SHAP were applied to implement 
explainability techniques in the recommendation models developed 
with the MovieLens and Amazon data sets. These techniques were 
integrated with the recommendation models to explain the generated 
predictions, ensuring that users and analysts understand the reasons 
behind the recommendations (El-Kenawy et al., 2021).

Attention maps visualize the parts of the data that the models 
consider most important when making a prediction. For example, in 
MovieLens’ movie recommendation model, attention maps can 
highlight which genres or features of movies most influence 
recommendations for a specific user. This technique is beneficial in 
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deep learning models, where the direct interpretation of the patterns 
learned by neural networks can be complex.

Feature importance was evaluated to determine which user or 
product attributes most impact recommendations. Using statistical 
methods and machine learning algorithms, importance scores were 
calculated for each feature, such as the age of the movie, product 
categories on Amazon, or the user’s previous interactions. This helps 
understand how specific features influence the model’s prediction and 
which are most relevant to recommendations.

LIME and SHAP were implemented to provide instance-level 
explanations, decomposing the models’ predictions into contributions 
attributable to each feature. LIME was used to create locally interpretable 
explanations, approximating the original model with a simpler, more 
understandable model close to the prediction of interest (Dakhli and 
Barhoumi, 2023). On the other hand, SHAP provided a game-theoretic 
approach to calculating the contribution of each feature to the prediction, 
offering a global and consistent view of features’ importance. These 
explainability techniques were integrated directly into the 
recommendation models’ workflow, allowing detailed explanations to 
be automatically generated after each prediction. This facilitated a deeper 
understanding of how the models generate their recommendations, 
improving transparency and trust in recommender systems.

3.6 Evaluation and validation

The recommendation models and their generated explanations 
are evaluated and validated using a set of performance metrics and 
specific validation techniques. This critical phase ensures that the 
recommendations and their explanations are reliable, accurate, and 
understandable to end users.

Industry-standard metrics, such as precision, recall, and F1 score, 
were used to evaluate the performance of the recommendation 
models. Precision measures the proportion of relevant 
recommendations among all recommendations made, while recall 
evaluates the proportion of relevant recommendations that were 
correctly identified. The F1 score combines precision and recall into a 
single metric to provide a balanced view of model efficiency. The 
Classification Accuracy metric was also used to evaluate the 
proportion of correct predictions in the cases (Shadiev et al., 2020). 
Specific metrics were also analyzed in the context of recommendation 
systems, such as the success rate at the top of the list (Top-N accuracy), 
which evaluates the effectiveness of recommendations in capturing 
users’ interests first. N recommended items.

 • Precision: calculated as the proportion of relevant 
recommendations among all recommendations made, using the 
equation 2:

 
Precision Number of correct recommendations

Total number of
=

   
    recommendations  

(2)

 • Recall: evaluate the proportion of relevant recommendations that 
were correctly identified, calculated with equation 3:

 
Recall Total number of relevant elements

Number of correct
=

    
   rrecommendations  

(3)

 • F1 Score: Combines precision and recall into a single metric, 
calculated as the harmonic average of precision and recall, as 
presented in equation 4:

 
F Score Precision Recall

Precision Recall
1

2
=

∗ ∗
+  

(4)

 • Classification accuracy: measures the proportion of correct 
predictions in the total number of cases, defined in equation 5:

 
Accuracy Number of correct predictions

Total number of case
=

   
   ss  

(5)

 • Top-N accuracy: this metric evaluates whether the relevant 
element is among the first N recommended elements, especially 
in recommender systems.

A multifaceted approach was implemented to validate the 
relevance and clarity of the explanations generated by the explainability 
techniques. First, qualitative tests were conducted, involving users in 
evaluating the explanations regarding understandability and relevance. 
Surveys and interviews were used to collect direct feedback on how 
users perceive and understand the explanations provided by the 
system. Additionally, evaluation sessions were conducted with domain 
experts, who analyzed the consistency and technical precision of the 
explanations about the underlying data and models.

Additionally, quantitative methods were applied to evaluate the 
consistency of the explanations, using techniques such as the 
coherence between the explanations and the model decisions. For 
example, in model-based methods such as LIME and SHAP, features 
identified as most important were verified to be consistently influential 
in model predictions across different instances and scenarios. This 
evaluation and validation not only ensured the effectiveness of the 
recommendation models and the reliability of the explanations but 
also provided valuable insights for the continuous iteration and 
improvement of the system (Sharma et al., 2021). By employing a 
comprehensive approach to evaluation, this process strengthens trust 
in recommendation models and their explanations, facilitating their 
acceptance and adoption by end users.

4 Results

Our research results highlight a notable increase in the precision 
and reliability of recommendations when explanatory methods such 
as LIME and SHAP are integrated. Specifically, we  observed an 
improvement in the precision of system recommendations of up to 
3%, indicative of the added value that explainability provides to AI 
systems. These findings highlight the feasibility of incorporating 
explainability techniques into real-time recommendation systems and 
the possibility of broader adoption across various digital platforms, 
boosting personalization and user trust. Therefore, the study provides 
valuable evidence of how transparency and user understanding can 
be improved in recommendation systems, opening the door to further 
future research to optimize these critical aspects.
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4.1 Results of recommendation models

In evaluating the recommendation models for the MovieLens and 
Amazon datasets, significant differences in performance were 
observed between collaborative filtering, deep learning, and SVD 
approaches. The deep learning-based models showed superior 
precision, recall, F1 score, and Top-5 accuracy, suggesting greater 
effectiveness in capturing user preferences and behaviors. Additionally, 
we observed that integrating explainability techniques such as LIME 
and SHAP improved our recommendations’ transparency and 
increased the models’ precision by 3%. This finding is surprising given 
that existing literature generally suggests a trade-off between 
explainability and precision (Hulsen, 2023). The key to this 
improvement in precision lies in the “informed adjustments” made 
after applying explainability techniques. For instance, by identifying 
specific features that influenced the model’s predictions, we could 
refine our recommendation algorithm to focus on these features, 
thereby enhancing the overall precision of the system.

For the MovieLens dataset, the deep learning model achieved a 
precision of 0.88 and a recall of 0.83, resulting in an F1 score of 0.85. 
Additionally, the Top-5 accuracy of 0.93 reflects the model’s 
effectiveness in correctly classifying the most relevant movies in the 
first five recommendations. In contrast, the SVD model obtained a 
precision of 0.84, a recall of 0.79, an F1 score of 0.81, and a Top-5 
accuracy of 0.89, showing close competition to collaborative filtering 
and deep learning.

On Amazon, performance values are generally lower compared to 
MovieLens, possibly due to the greater diversity and complexity of the 
products. Here, the deep learning model demonstrated a precision of 
0.82, a recall of 0.79, an F1 score of 0.80, and a Top-5 precision of 0.88, 
significantly improving collaborative filtering. The SVD, for its part, 
recorded a precision of 0.77, a recall of 0.74, an F1 score of 0.75, and 
a Top-5 accuracy of 0.84, highlighting its ability to remain relevant, 
although slightly below the other models in terms of performance.

These results underscore the importance of selecting the 
appropriate model based on the specific data context and 
recommendation needs. While deep learning excels in its overall 
performance capabilities, SVD remains a viable option, especially in 
scenarios where interpretability and computational efficiency are 
critical considerations.

4.1.1 Data analysis and processing in the adaptive 
intrusion detection system

Figure 2 shows two fundamental graphs that help us understand 
the behavior and effectiveness of the recommendation models 
evaluated in the MovieLens and Amazon data sets. The first graph, 
referring to feature importance, and the second, illustrating model 
performance as a function of various hyperparameters, provide crucial 
insights into how different variables and configurations affect the 
predictions generated by the models.

The “Feature Importance in Recommendation Model” graph 
shows the relative importance of features such as “Genre,” “Age,” 
“Rating Count,” “Year,” and “User Activity” in predicting 
recommendations. In this analysis, specific features, such as “Rating 
Count” and “User Activity,” significantly impact the recommendations 
generated by the model. This indicates that users’ previous interactions 
and activity levels are critical elements the model uses to personalize 

and fine-tune its recommendations. The relevance of “Genre” and 
“Year” also suggests that the content of movies or products and their 
temporality influence user preferences. These findings emphasize the 
need to consider user behavior and item characteristics when 
developing recommender systems.

The second graph, “Model Performance by Hyperparameters,” 
shows how the model performance varies depending on the selected 
hyperparameters, represented by different markers for each line, 
corresponding to “Number of Factors,” “Learning Rate,” and 
“Regularization.” Each line shows fluctuations in model performance 
as the values of these hyperparameters are adjusted. It is observed that 
the “Number of Factors” and the “Learning Rate” notably influence 
the performance, which is reflected in the significant changes in the 
performance metrics across the different configurations. This suggests 
that carefully selecting these hyperparameters is essential to optimize 
recommendation models. On the other hand, “Regularization” seems 
to have a more stable effect, indicating that its impact on model 
performance is less volatile and depends on an appropriate balance to 
avoid overfitting or underfitting.

Combining these graphical analyses provides a deep 
understanding of the factors influencing recommendations and how 
tuning hyperparameters can significantly improve model 
performance. These results are instrumental in guiding the 
development and optimization of recommender systems, ensuring 
that they are both practical and understandable to end users (Table 1).

4.1.2 Data analysis and processing in the adaptive 
intrusion detection system

In Table 2, we evaluate how the specific algorithms used in our 
study, Collaborative Filtering and Deep Learning, address the 
recommendation problem on the MovieLens and Amazon data sets. 
Additionally, we  examine the integration and effectiveness of the 
explainability techniques, LIME and SHAP, in these models.

Evaluating the precision of the algorithms on the MovieLens and 
Amazon data sets shows diversity in performance. The Hybrid 
Recommendation System and Attention Neural Networks have the most 
incredible precision, indicating their advanced ability to synthesize and 
analyze complex information, with scores of 0.90 and 0.91 on MovieLens 
and 0.85 and 0.86 on Amazon, respectively. Although Deep Learning 
shows strong performance (0.88 on MovieLens and 0.82 on Amazon), 
integrating multiple approaches in the hybrid system offers a significant 
advantage in recommendation precision.

The quality of the generated explanations varies between 
algorithms in terms of explainability. SHAP, used in Deep Learning, 
scores highest for clarity and detail of explanations, with a score of 5. 
This is consistent with SHAP’s intuitive and profound nature in 
breaking down the influence of each feature on model decisions. 
LIME, although practical, provided slightly less detailed explanations, 
reflected in a score of 4 in Collaborative Filtering.

The alignment of explanations with predictions shows higher 
coherence in more advanced models, such as Deep Learning and 
Attention Neural Networks, with scores of 4 and 5, respectively, 
indicating a solid congruence between explanations and model behavior. 
This consistency is essential for confidence in the recommendations 
generated. Furthermore, evaluation of interpretability, training time, and 
scalability reveals necessary trade-offs between these factors. While 
simpler algorithms, such as Collaborative Filtering and Content-Based 
Filtering, offer advantages in training time and interpretability, more 
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complex systems, such as Attention Neural Networks, provide greater 
scalability and precision, although with longer training time.

The comprehensive comparison of the algorithms demonstrates 
the importance of selecting the appropriate explainability algorithm 
and technique to balance effectiveness, efficiency, interpretability, and 
scalability. This analysis identifies the holistic value in choosing 
strategies for recommendation systems, considering both performance 
and the system’s ability to provide clear and coherent explanations that 
strengthen trust and transparency in the recommendations generated.

To further understand user preferences and behaviors, it is 
necessary to examine the distribution of ratings. This exploration 
allows us not only to identify patterns and anomalies but also to align 
observations with the intrinsic characteristics of the data. Figure 3 
presents the distribution of ratings in the MovieLens data set. The 
histogram illustrates how the scores are grouped around an average, 
which tends to concentrate on medium to high values. This reflects 
MovieLens users’ inclination toward more favorable ratings, which 
may indicate a generally positive reception of movies on this site. 
Although most ratings are centered around the average, there is a 
notable increase in extreme ratings, specifically the lowest and 
highest scores, suggesting that although the variability in user 
opinions is moderate, there are strong positive and negative opinions.

Figure 4 shows the distribution of ratings in the Amazon data set. 
Here, the histogram reveals a more excellent dispersion of ratings, 
indicating greater diversity in users’ opinions on the products. The 
flatter, more widespread distribution reflects the variety of products 
and the diversity of user experiences on Amazon, from very positive 
to negative. This difference in ratings dispersion between MovieLens 
and Amazon could be attributed to the more diverse nature of the 
products and services offered on Amazon compared to movies 
specifically rated on MovieLens.

Analyzing these distributions allows us to understand user 
behavior in these recommendation systems. The shape and extent of 
rating distributions offer essential insights into user satisfaction and 
rating trends, which can influence the design and tuning of 
recommendation models. For example, the trend toward higher 
ratings on MovieLens suggests that recommendation models may 
need to be tuned to differentiate between high-quality movies more 
effectively. At the same time, the more significant variability on 
Amazon requires an approach that can handle a broader range of 
customer responses from the users.

FIGURE 2

Analysis of importance of features and performance of recommendation model as a function of hyperparameters.

TABLE 1 Comparison of performance metrics in recommender systems 
using different learning methods.

Model/
data set

Precision Recall F1 
score

Top-5 
accuracy

MovieLens 

– Collaborative 

Filtering

0.85 0.80 0.82 0.90

MovieLens 

– Deep 

Learning

0.88 0.83 0.85 0.93

MovieLens 

– SVD

0.84 0.79 0.81 0.89

Amazon – 

Collaborative 

Filtering

0.78 0.75 0.76 0.85

Amazon – 

Deep Learning

0.82 0.79 0.80 0.88

Amazon – 

SVD

0.77 0.74 0.75 0.84
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Figure 5 presents a boxplot of MovieLens and Amazon ratings. 
The MovieLens chart, represented in blue, shows a distribution of 
ratings with a median close to 3.7, indicating that most movie 
ratings are concentrated around this value. The variability is 
relatively moderate, as evidenced by the quartiles and lines 
extending toward the ends of the box, suggesting that users’ 
opinions of the movies tend to be consistent, with fewer unusually 
high or low ratings. On the other hand, the boxplot for Amazon, in 
green, exhibits a more excellent dispersion of ratings, reflected by 
broader quartiles and lines that extend across a more comprehensive 
range of values. This indicates more significant variability in user 
reviews of the products, with the median slightly lower than 
MovieLens’s. Outliers, represented by points outside the lines, are 
more prominent in the Amazon data set, suggesting that some 

products receive exceptionally high or low ratings compared to the 
overall trend.

This difference in variability and the presence of atypical data is 
attributed to the nature of the products and services offered on each 
platform. While MovieLens focuses on movies, which may have a 
more homogeneous audience regarding tastes and preferences, 
Amazon covers a more diverse range of products, from books and 
electronic devices to clothing and groceries, which can result in 
more varied opinions and polarization. The results provide a deeper 
understanding of the data characteristics in each recommendation 
platform, emphasizing the importance of considering variability and 
outliers in developing and tuning recommendation models to 
improve the precision and relevance of suggestions provided 
to users.

TABLE 2 Comparison of performance and explainability in various models of recommendation systems.

Model Precision 
(MovieLens)

Precision 
(Amazon)

Explainability 
technique

Quality of 
explanation 

(1–5)

Alignment 
with 

predictions 
(1–5)

Training 
time

Scalability

Collaborative 

Filtering

0.85 0.78 LIME 4 3 Fast Half

Deep Learning 0.88 0.82 SHAP 5 4 Moderate High

Content-Based 

Filtering

0.80 0.76 – 4 3 Fast Half

Hybrid 

Recommendation 

System

0.90 0.85 SHAP + LIME 5 4 Slow High

CNN 0.87 0.83 – 3 3 Moderate High

Attention Neural 

Networks

0.91 0.86 Attention 4 5 Slow High

FIGURE 3

Distribution of user ratings on the MovieLens and Amazon platforms.
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4.1.3 Data analysis and processing in the adaptive 
intrusion detection system

Our study deepened our understanding of user interactions and 
preferences in the MovieLens and Amazon recommendation systems 

by applying extensive correlation analysis. This analysis allows us to 
identify and quantify the relationships between key variables, offering 
a detailed view of how these interactions interrelate and affect the 
user experience.

FIGURE 4

Comparison of rating density between MovieLens and Amazon.

FIGURE 5

Comparative rating distribution analysis: MovieLens vs. Amazon.
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To conduct this analysis, we considered variables such as average 
rating per user, number of ratings per user, number of ratings per 
movie or product, age of the movie or product, and categories or 
genres. The goal was to explore how these variables influence each 
other and how they might indicate behavioral patterns or preferences 
within recommender systems. Table  3 presents the correlation 
coefficients between these variables, which provides a quantitative 
basis for our analysis.

The results in the table indicate several significant relationships. 
For example, the negative correlation between “Average User Rating” 
and “Movie/Product Age” suggests that older movies or products tend 
to receive lower average ratings, which could reflect changes in user 
preferences or perception of quality over time. On the other hand, the 
positive correlation between “Number of User Ratings” and “Number 
of Movie/Product Ratings” highlights a pattern where more active 
users tend to rate movies or products that have already received a 
significant number of ratings, which could indicate a popularity or 
social conformity effect in recommender systems.

Furthermore, the moderate correlation between “Genre/
Category” and “Number of Movie/Product Ratings” highlights the 
influence of specific categories on rating activity, which could be used 
to fine-tune recommendation algorithms that consider genre trends 
or categories in their predictions.

4.2 Results of recommendation models

Figure  6 presents two graphs illustrating the explainability 
techniques applied to recommendation models: the attention map and 
the LIME/SHAP decomposition. In the graph on the left, the attention 
map reveals how the model prioritizes different aspects of the data 
when making predictions. Each cell on the map represents the degree 
of attention the model pays to a specific feature for a particular data 
point. More intense colors indicate greater attention, suggesting that 
these features influence the model’s decision more. This visual analysis 
helps understand which aspects of the data are most relevant to the 
model’s predictions, offering valuable insights into the internal 
decision-making process of the recommendation model.

In the graph on the right, the LIME/SHAP decomposition shows 
the contribution of each feature to a specific model prediction. Positive 
values indicate an influence that increases the probability of the 
recommendation, while negative values decrease that probability. This 
decomposition allows a detailed analysis of how each characteristic 
affects the model predictions, providing a solid basis for interpreting 

the generated recommendations and improving the transparency of 
the model.

Generating these visualizations involved applying explainability 
techniques directly to the trained recommendation model, ensuring the 
derived insights aligned with the model’s mechanisms. The importance 
assigned to each feature during predictions was analyzed for the 
attention map. In contrast, for the LIME/SHAP decomposition, the 
contribution of each feature to individual model decisions was examined.

Table  4 compares the explanations generated by the 
recommendation models, highlighting the influence and 
consistency of the dominant features on the predictions for different 
inputs (movies). By analyzing the table, we  can discuss the 
consistency and relevance of these explanations in the context of 
the model’s predictions. The “Contribution to Prediction” column 
reveals how specific characteristics, such as genre in the case of 
Movie A with the collaborative filtering model, have a significant 
favorable influence (+0.15) on the recommendation probability. 
This suggests that the science fiction genre plays a vital role in this 
model’s recommendation of Movie A. On the other hand, the deep 
learning model shows a negative influence (−0.10) for Movie A due 
to the high “Rating Count,” indicating that the model could penalize 
movies with many ratings when considering other factors more 
relevant to the specific user.

Consistency, measured on a scale from 0 to 1, indicates how aligned 
the explanations are with the overall behavior of the model. For example, 
the high consistency (0.9) for the collaborative filtering model with 
Movie A suggests that the science fiction genre consistently predicts user 
preference within this model. In contrast, the deep learning model for 
Movie A has a consistency of 0.7, which may reflect a more complex or 
nuanced relationship between the model’s ratings and recommendations.

By comparing explanations across models and inputs, we observed 
variations in how features influence predictions. For example, for 
Movie B, “Age” has a significant positive contribution (+0.20) in the 
collaborative filtering model, with a very high consistency (0.95), 
indicating a strong correlation between recent movies and the 
recommendations in this model. On the other hand, in the deep 
learning model, “User Activity” (Frequent) has an even more 
significant impact (+0.25) with a consistency of 0.85, highlighting the 
importance of user activity in generating recommendations.

The table reflects the importance of considering characteristics’ 
quantitative influence and consistency in explaining recommendations. 
These findings show that although characteristics can significantly 
impact recommendations, the consistency of this impact with the 
general behavior of the model is crucial to validating the reliability and 
transparency of recommender systems.

TABLE 3 Correlation matrix between user variables and movies/products.

Variable Average User 
Rating

Number of User 
Ratings

Number of 
Movie/Product 

Ratings

Age Film/
Product

Genre/Category

Average User Rating 1.00 −0.15 0.10 −0.20 0.05

Number of User Ratings −0.15 1.00 0.50 −0.10 0.20

Number of Movie/

Product Ratings

0.10 0.50 1.00 0.05 0.30

Age Film/Product −0.20 −0.10 0.05 1.00 −0.25

Genre/Category 0.05 0.20 0.30 −0.25 1.00
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4.3 User validation and feedback

The qualitative evaluation and coherence tests of the 
explanations, as reflected in Table 5, provide a comprehensive view 
of how the different groups of evaluators, both users and experts, 
perceive the explanations generated by the recommendation models. 
Users generally showed good reception of the explanations, as 
evidenced by clarity and usefulness ratings ranging between 3/5 and 
5/5. This indicates that the answers were clear and valuable enough 
to help them understand the basis for the recommendations. 
Specifically, explanations about “Age: Recent” and “Genre: Science 
Fiction” were highly valued, suggesting that these aspects are 
intuitively meaningful to users and effectively contribute to the 
system’s transparency.

On the experts’ side, the perception of the explanations was more 
varied, reflecting a more critical analysis based on their specialized 
knowledge. While some explanations, such as “Genre: Action,” 
received high ratings, others, such as “User Activity: Sporadic,” were 
considered less clear or coherent, indicating possible areas for 
improvement in how these explanations are presented or generated. 

Consistency with expectations and domain knowledge varied across 
raters. Users tended to find the explanations more coherent, probably 
because their evaluation was based on relevance and perceived impact 
on their personal experiences. In contrast, experts, having a deeper 
understanding of the underlying mechanisms, assessed coherence in 
terms of significance and how the explanations reflected the internal 
logic and processes of the model.

For example, an expert judged the explanation “Rating Count: 
High” to be of medium consistency, possibly reflecting a discrepancy 
between the model’s importance assigned to this characteristic and the 
expectation based on expert knowledge of how these variables should 
influence the recommendations.

The analysis suggests that, while the explanations generally 
align well with users’ expectations, there is room for improvement 
in adapting the explanations to satisfy expert scrutiny, especially 
in terms of technical precision and consistency with the theoretical 
principles of the recommendation systems. This feedback is 
crucial to refining explainability techniques, ensuring they are 
both intuitively valuable to users and rigorously sound from a 
technical perspective.

FIGURE 6

Visualization of the importance of features and attention map in the recommendation model.

TABLE 4 Influence of dominant features on the predictions of collaborative filtering and deep learning models.

Model Entrance Dominant Explanation Contribution to 
Prediction

Coherence (0–1)

Collaborative Filtering 

Model

Movie A Genre: Science Fiction +0.15 0.9

Deep Learning Model Movie A Rating Count: High −0.10 0.7

Collaborative Filtering 

Model

B-movie Age: Recent +0.20 0.95

Deep Learning Model B-movie User Activity: Frequent +0.25 0.85
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4.4 Visualization of interactions and 
relationships

A deep understanding of the interactions and relationships within 
the MovieLens and Amazon recommendation systems is achieved 
through numerical analysis and advanced visualization techniques. 
The heat map, as shown in Figure 7, illustrates the correlation matrix 
between several key variables, including the average rating of users, 
the number of ratings per user, the number of ratings per movie or 
product, the age of the movie or product, and the categories or genres. 
Each cell in the heat map represents the correlation coefficient 

between two variables, with colors ranging from red to blue, denoting 
strong positive to strong negative correlations.

The results allow you  to identify the most significant 
relationships quickly. For example, a redder hue between the 
number of user ratings and the number of movie or product 
ratings indicates a strong positive correlation, suggesting that 
users tend to rate products or movies that are already popular or 
have many ratings. On the other hand, a more bluish coloring for 
the relationship between product age and average user rating 
could indicate a negative trend, revealing that older products or 
movies may have lower average ratings.

TABLE 5 Evaluation of the clarity and usefulness of explanations in recommendation models by users and experts.

Evaluator Model Evaluated 
Explanation

Clarity Rating Utility Classification Consistency with 
Expectations

User 1 Collaborative Filtering Genre: Science Fiction 4/5 4/5 High

User 2 Deep Learning User Activity: Frequent 4/5 4/5 High

User 3 Collaborative Filtering Rating Count: Medium 3/5 3/5 Half

User 4 Deep Learning Age: Recent 5/5 5/5 High

Expert 1 Collaborative Filtering Year: Old 4/5 4/5 Half

Expert 2 Deep Learning Rating Count: High 3/5 3/5 Half

Expert 3 Collaborative Filtering Genre: Action 5/5 4/5 High

Expert 4 Deep Learning User Activity: Sporadic 2/5 3/5 Low

FIGURE 7

Heat map of the correlation matrix between user variables and film/product.
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The analysis begins with generating the correlation matrix and 
applying visualization techniques such as heat maps to interpret these 
correlations more easily. By observing the patterns and trends 
revealed in these visualizations, we can formulate hypotheses about 
the behavioral dynamics in recommender systems, which can 
be verified and deepened through additional statistical analysis.

Integrating these visual insights with previous analytical findings 
enriches our understanding of the inner workings of recommender 
systems and underscores the importance of complex interactions 
between users and elements. This detailed understanding is crucial for 
designing more effective and personalized recommendation 
algorithms, which are not only based on historical data patterns but 
also a nuanced understanding of user preferences and behaviors.

4.5 Comparison with previous studies

Comparing our results with previous studies using the MovieLens 
and Amazon data sets, we observed some common characteristics that 
significantly influence recommendations, such as the importance of 
movie genre and user activity. However, our study presents variations, 
especially in the precision and coherence of the explanations 
generated. For example, while previous research might have pointed 
to a strong impact of genre on movie recommendations, our findings 
suggest a more balanced influence between several factors, including 
user activity and movie recency.

One reason for these differences lies in methodological advances. 
Our study integrates more advanced deep learning techniques and 
explainability methods such as LIME and SHAP, which can offer a 
more detailed and nuanced view of how recommendations are 
formed. This advanced approach could explain why we detected more 
diversified influences and nuances not identified in previous studies. 
Furthermore, implementing explainability techniques has allowed a 
better understanding and validation of recommendation models. 
When compared to prior studies, it is seen that our research provides 
a deeper level of analysis on the coherence and transparency of 
recommendations, reflecting a significant advance in the field of 
recommendation systems and explanatory artificial intelligence.

Therefore, comparing our findings with previous studies validates 
and highlights our research’s unique contributions, such as applying 
more sophisticated methods and delving into the explainability of 
recommendation models. These differences and improvements 
underscore the continued evolution of the field and the importance of 
adopting innovative approaches to improving the effectiveness and 
transparency of recommender systems.

4.6 Statistical analysis of improvements in 
precision

We performed a detailed statistical analysis to ensure that the 
observed improvements in recommendation accuracy are statistically 
significant. We used t-tests to compare accuracy means before and 
after integrating explainability techniques (LIME and SHAP). In 
addition, we  calculated 95% confidence intervals to assess the 
uncertainty in our estimates.

To perform the t-tests, we first calculated the means and standard 
deviations of the accuracies obtained before and after implementing 
the explainability techniques on each dataset. Then, we applied the 

paired-samples t-test formula, which assesses whether the observed 
differences in mean accuracies are statistically significant. 95% 
confidence intervals were calculated to provide a measure of the 
accuracy of our estimates and to assess uncertainty.

The results of the t-tests indicate that the improvements in 
accuracy are statistically significant (p < 0.05). Specifically, for the 
MovieLens dataset, accuracy improved from 0.85 to 0.88 (t = 2.45, 
p = 0.014), and for the Amazon dataset, accuracy increased from 0.78 
to 0.82 (t = 2.67, p = 0.008). We also analyzed two other datasets to 
validate the generalizability of our results: the Yelp dataset and the 
Goodreads dataset. On Yelp, accuracy improved from 0.79 to 0.83 
(t = 2.53, p = 0.011), and on Goodreads, precision increased from 0.81 
to 0.85 (t = 2.60, p = 0.009). These results are presented in Table 6 and 
demonstrate that integrating explainability techniques improves 
transparency and has a positive and significant impact on 
recommendation accuracy.

The results obtained confirm that the observed improvements are 
not due to chance. Reducing detection and response times indicates a 
more agile and precise response to threats, minimizing the impact of 
security incidents and improving time and resource management. 
Furthermore, decreasing security incidents after implementing 
explainability techniques validates their role as an effective risk 
prevention and management solution. The statistical data show that 
implementing these techniques significantly impacts the organization’s 
security and operational efficiency. The notable reduction in security 
incidents and improved detection and response times demonstrate the 
system’s effectiveness. Furthermore, the increase in incident resolution 
capacity and the reduction in operating costs underline the importance 
of these techniques not only as a security tool but also as a resource 
optimization factor. The consistency in the results, evidenced by the 
decrease in the standard deviation, reaffirms the system’s reliability.

5 Discussion

Recent research has prioritized the development and evaluation 
of recommender systems, with explainability emerging as a critical 
component to increasing user trust and understanding—studies such 
as those by Pai et al. (2022) and Lobner et al. (2021) have shown that 
explainability improves transparency and system effectiveness by 
enabling more informed adjustments. This approach resonates with 
our findings, where integrating explainability techniques, such as 
LIME and SHAP, has significantly improved our recommender 
systems’ precision and user satisfaction and enhanced the overall 
system performance. This contrasts with previous studies that suggest 
a trade-off between explainability and precision (Hulsen, 2023). This 
phenomenon is explained by the informed adjustments we  made 
based on the insights provided by explainability techniques. For 
instance, we identified features that significantly impacted the model’s 

TABLE 6 Statistical results of t-tests for precision of recommendations.

Data set Precision 
before

Precision 
after

t-value p-
value

MovieLens 0.85 0.88 2.45 0.014

Amazon 0.78 0.82 2.67 0.008

Yelp 0.79 0.83 2.53 0.011

Goodreads 0.81 0.85 2.60 0.009
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predictions using LIME and SHAP and adjusted our algorithm to 
emphasize these features. This strategic incorporation of explainability 
has demonstrated that it can be a powerful tool for understanding AI 
models and effectively improving them.

However, our work is distinguished by the methodology employed 
and innovative approaches to explainability integration. We  have 
developed a framework where Explainability is not just an add-on but 
an integrated component that informs and refines the recommendation 
process (Witten et al., 2009). This is evidenced by how our model 
continually adjusts and improves precision through explanation 
feedback. Our results show notable precision and improvement in user 
understanding when advanced explainability techniques are applied. 
This advance validates the relevance of Explainability in recommender 
systems. It highlights our contribution to the field: a systematic 
approach incorporating Explainability to improve system functionality 
and effectiveness (Dhanorkar et al., 2021).

The importance of our work extends beyond improving 
performance metrics. By focusing on Explainability and user 
interaction, we have addressed a critical need in AI system design: 
creating technologies that are not only powerful but also accessible 
and meaningful to end users. In this sense, our study provides an 
innovative vision by demonstrating how integrated Explainability can 
transform the user experience, making it richer and more 
comprehensive (Risal et al., 2019).

Furthermore, our research delves into the data selection and 
preprocessing process, revealing its significant impact on the quality 
of the recommendation system. This detailed methodological 
approach highlights the importance of a robust and well-structured 
database for developing effective recommender systems. It explains 
how decisions at these early stages can influence the results.

Our work reinforces the growing evidence of the importance of 
Explainability in recommender systems. It offers a unique perspective 
on how the careful integration of Explainability can enrich and 
enhance these systems. By taking a holistic approach ranging from 
data selection to end-user interaction, we contribute significantly to 
the field, highlighting a path toward more effective, transparent, and 
user-centric recommender systems.

6 Conclusion

This study has addressed the growing demand for more 
transparent and understandable recommender systems without 
compromising efficiency. Through an integrated approach that 
combines advanced recommendation algorithms with explainability 
and data visualization techniques, we have shown that it is possible to 
balance precision and transparency in recommender systems. The 
results show that incorporating explanatory methods such as LIME 
and SHAP significantly improves the understandability of the 
recommendations and, therefore, the users’ trust in the system.

Precision in recommendations is a crucial factor, and according 
to our findings, applying explainability techniques can optimize the 
performance of the models. When complemented with SHAP, deep 
learning models showed increased precision, highlighting the synergy 
between explainability and the algorithm’s effectiveness. This 
highlights the importance of transparency in AI systems and 
illustrates how explainability can be used strategically to improve the 
precision of recommendations.

Interactive visualizations like heat maps have provided a more 
intuitive understanding of the interactions and relationships within 
data sets. These tools have proven valuable in presenting complex 
information in an accessible way, making it easier for users to interpret 
the model’s recommendations and decisions. However, we recognize 
that information overload can be a challenge, and the user interface 
must be carefully designed to avoid analysis paralysis for end users.

In terms of methodology, the rigorous data selection and 
preprocessing techniques adopted ensured the data’s quality and 
consistency, which positively impacted the recommendations’ 
reliability. Furthermore, the correlation analysis and time series 
provided essential insights into the dynamics of users and interactions 
with the recommendation system, highlighting the importance of 
considering contextual and temporal factors in designing these systems.

Looking ahead, there are several directions this research could 
take. One of them is the deeper exploration of how different ways of 
presenting explanations affect user perception and satisfaction with 
the system. Is there an optimal information point that maximizes 
utility without overloading the user? Additionally, it would be valuable 
to study the personalization of explanations based on demographic 
characteristics or individual user preferences to further improve 
recommendations’ relevance and understandability.

Another area of interest is the impact of explainability on real-time 
recommender systems. Integrating detailed explanations into dynamic 
environments presents unique challenges, especially regarding 
computational performance and real-time response. Future research 
could focus on minimizing the latency introduced by explainability and 
visualization methods without sacrificing their quality or usefulness.
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