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Cancer research encompasses data across various scales, modalities, and

resolutions, from screening and diagnostic imaging to digitized histopathology

slides to various types of molecular data and clinical records. The integration

of these diverse data types for personalized cancer care and predictive

modeling holds the promise of enhancing the accuracy and reliability of cancer

screening, diagnosis, and treatment. Traditional analytical methods, which

often focus on isolated or unimodal information, fall short of capturing the

complex and heterogeneous nature of cancer data. The advent of deep neural

networks has spurred the development of sophisticated multimodal data fusion

techniques capable of extracting and synthesizing information from disparate

sources. Among these, Graph Neural Networks (GNNs) and Transformers have

emerged as powerful tools for multimodal learning, demonstrating significant

success. This review presents the foundational principles of multimodal learning

including oncology data modalities, taxonomy of multimodal learning, and

fusion strategies. We delve into the recent advancements in GNNs and

Transformers for the fusion of multimodal data in oncology, spotlighting key

studies and their pivotal findings.We discuss the unique challenges ofmultimodal

learning, such as data heterogeneity and integration complexities, alongside the

opportunities it presents for a more nuanced and comprehensive understanding

of cancer. Finally, we present some of the latest comprehensive multimodal

pan-cancer data sources. By surveying the landscape of multimodal data

integration in oncology, our goal is to underline the transformative potential

of multimodal GNNs and Transformers. Through technological advancements

and the methodological innovations presented in this review, we aim to chart

a course for future research in this promising field. This review may be the first

that highlights the current state of multimodal modeling applications in cancer

using GNNs and transformers, presents comprehensive multimodal oncology

data sources, and sets the stage for multimodal evolution, encouraging further

exploration and development in personalized cancer care.

KEYWORDS

multimodal, graph neural networks, transformers, oncology, deep learning, cancer,
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1 Introduction

Cancer represents a significant global health challenge, characterized by the

uncontrolled growth of abnormal cells, leading to millions of deaths annually.

In 2023, the United States had around 1.9 million new cancer diagnoses, with

cancer being the second leading cause of death and anticipated to result in

approximately 1670 deaths daily (Siegel et al., 2023). However, advancements in

oncology research hold the promise of preventing nearly 42% of these cases
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through early detection and lifestyle modifications. The complexity

of cancer, involving intricate changes at both the microscopic

and macroscopic levels, requires innovative approaches to its

understanding and management. In recent years, the application

of machine learning (ML) techniques, especially deep learning

(DL), has emerged as a transformative force in oncology. DL

employs deep neural networks to analyze vast datasets, offering

unprecedented insights into cancer’s development and progression

(Çalışkan and Tazaki, 2023; Chen et al., 2023; Siam et al., 2023;

Muhammad et al., 2024; Talebi et al., 2024). This approach has

led to the development of computer-aided diagnostic systems

capable of detecting and classifying cancerous tissues in medical

images, such as mammograms and MRI scans, with increasing

accuracy. Beyond imaging, DL also plays a crucial role in analyzing

molecular data, aiding in the prediction of treatment responses,

and the identification of new biomarkers (Dera et al., 2019, 2021;

Waqas et al., 2021; Barhoumi et al., 2023; Khan et al., 2023;

Muhammad and Bria, 2023; Varlamova et al., 2024). DL methods

can be categorized based on the level of supervision involved.

Supervised learning includes techniques like Convolutional Neural

Networks (CNNs) for tumor image classification and Recurrent

Neural Networks (RNNs) for predicting patient outcomes, both

requiring labeled data (LeCun et al., 2015; Iqbal et al., 2019, 2022).

Unsupervised deep learning methods, such as Autoencoders and

Generative Adversarial Networks (GANs), learn from unlabeled

data to perform tasks like clustering patients based on gene

expression profiles or generating synthetic medical images. Semi-

supervised deep learning methods, like Semi-Supervised GANs,

leverage a mix of labeled and unlabeled data to enhance

model performance when labeled medical data is limited. Self-

supervised learning methods, such as BERT (Bidirectional Encoder

Representations from Transformers) and GPT (Generative Pre-

trained Transformer), use the structure of training data itself

for supervision, enabling tasks like predicting patient outcomes

or understanding the progression of cancer with limited labeled

examples. Reinforcement learning in cancer studies, exemplified

by Deep Q-Networks (DQN) and Proximal Policy Optimization

(PPO), involves an agent learning optimal treatment strategies

through rewards and penalties.

As the volume of oncology data continues to grow, DL stands at

the forefront of this field, enhancing our understanding of cancer,

improving diagnostic precision, predicting clinical outcomes, and

paving the way for innovative treatments. This review explores

the latest advancements in DL applications within oncology,

highlighting its potential to revolutionize cancer care (Chan et al.,

2020; Ibrahim et al., 2022; Ghaffari Laleh et al., 2023; Tripathi et al.,

2024a).

Multimodal Learning (MML) enhances task accuracy and

reliability by leveraging information from various data sources or

modalities (Huang et al., 2021). This approach has witnessed a surge

in popularity, as indicated by the growing body of MML-related

publications (see Figure 1). By facilitating the fusion of multimodal

data, such as radiological images, digitized pathology slides,

molecular data, and electronic health records (EHR), MML offers a

richer understanding of complex problems (Tripathi et al., 2024c).

It enables the extraction and integration of relevant features that

might be overlooked when analyzing data modalities separately.

Recent advancements in MML, powered by Deep Neural Networks

(DNNs), have shown remarkable capability in learning from diverse

data sources, including computer vision (CV) and natural language

processing (NLP) (Bommasani et al., 2022; Achiam et al., 2023).

Prominent multimodal foundation models such as Contrastive

Language-Image Pretraining (CLIP) and Generative Pretraining

Transformer (GPT-4) by OpenAI have set new benchmarks in the

field (Radford et al., 2021; Achiam et al., 2023). Additionally, the

Foundational Language And Vision Alignment Model (FLAVA)

represents another significant stride, merging vision and language

representation learning to facilitate multimodal reasoning (Singh

et al., 2022). Within the realm of oncology, innovative applications

of MML are emerging. The RadGenNets model, for instance,

integrates clinical and genomics data with Positron Emission

Tomography (PET) scans and gene mutation data, employing

a combination of Convolutional Neural Networks (CNNs) and

Dense Neural Networks to predict gene mutations in Non-small

cell lung cancer (NSCLC) patients (Tripathi et al., 2022). Moreover,

GNNs and Transformers are being explored for a variety of

oncology-related tasks, such as tumor classification (Khan et al.,

2020), prognosis prediction (Schulz et al., 2021), and assessing

treatment response (Joo et al., 2021).

Recent literature has seen an influx of survey and review

articles exploringMML (Baltrušaitis et al., 2018; Boehm et al., 2021;

Ektefaie et al., 2023; Xu et al., 2023; Hartsock and Rasool, 2024).

These works have provided valuable insights into the evolving

landscape of MML, charting key trends and challenges within the

field. Despite this growing body of knowledge, there remains a

notable gap in the literature regarding the application of advanced

multimodal DL models, such as Graph Neural Networks (GNNs)

and Transformers, in the domain of oncology. Our article aims to

fill this gap by offering the following contributions:

1. Identifying large-scale MML approaches in oncology. We provide

an overview of the state-of-the-art MML with a special focus

on GNNs and Transformers for multimodal data fusion in

oncology.

2. Highlighting the challenges and limitations of MML in oncology

data fusion. We discuss the challenges and limitations of

implementing multimodal data-fusion models in oncology,

including the need for large datasets, the complexity of

integrating diverse data types, data alignment, and missing data

modalities and samples.

3. Providing a taxonomy for describing multimodal architectures.

We present a comprehensive taxonomy for describing MML

architectures, including both traditional ML and DL, to facilitate

future research in this area.

4. Identifying future directions for multimodal data fusion in

oncology. We identify GNNs and Transformers as potential

solutions for comprehensive multimodal integration and

present the associated challenges.

By addressing these aspects, our article seeks to advance the

understanding of MML’s potential in oncology, paving the way for

innovative solutions that could revolutionize cancer diagnosis and

treatment through comprehensive data integration.

Our paper is organized as follows. Section 2 covers the

fundamentals of MML, including data modalities, taxonomy, data
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FIGURE 1

Number of publications involving DL, GNNs, GNNs in the medical domain, overall multimodal and multimodal in biomedical and clinical sciences in

the period 2015–2024 (Hook et al., 2018).

fusion stages, and neural network architectures. Section 3 focuses

on GNNs in MML, explaining graph data, learning on graphs,

architectures, and applications to unimodal and multimodal

oncology datasets. Section 4 discusses Transformers in MML,

including architecture, multimodal Transformers, applications to

oncology datasets, and methods of fusing data modalities. Section 5

highlights challenges in MML, such as data availability, alignment,

generalization, missing data, explainability, and others. Section 6

provides information on data sources. Finally, we conclude by

emphasizing the promise of integrating data across modalities and

the need for scalable DL frameworks with desirable properties.

2 Fundamentals of multimodal
learning (MML)

2.1 Data modalities in oncology

A data modality represents the expression of an entity or a

particular form of sensory perception, such as the characters’ visual

actions, sounds of spoken dialogues, or the background music

(Sleeman et al., 2022). A collective notion of these modalities is

called multi-modality (Baltrušaitis et al., 2018). Traditional data

analysis and ML methods to study cancer data use single data

modalities [e.g., EHR (Miotto et al., 2016), radiology (Waqas et al.,

2021), pathology (Litjens et al., 2017), or molecular, including

genomics (Angermueller et al., 2017), transcriptomics (Yousefi

et al., 2017), proteomics (Wang et al., 2017), etc.]. However, the

data is inherently multimodal, as it includes information from

multiple sources or modalities that are related in many ways.

Figure 2 provides a view of multiple modalities of cancer at various

scales, from the population level to single-cell analysis. Oncology

data can be broadly classified into 3 categories: clinical, molecular,

and imaging, where each category provides complementary

information about the patient’s disease. Figure 2 highlights different

clinical, molecular, and imaging modalities. Multimodal analysis

endeavors to gain holistic insights into the disease process using

multimodal data.

2.1.1 Molecular data
Molecular data modalities provide information about the

underlying genetic changes and alterations in the cancer cells (Liu

et al., 2021). Efforts toward integrating molecular data resulted

in the multi-omics research field (Waqas et al., 2024a). Two

principal areas of molecular analysis in oncology are proteomics

and genomics. Proteomics is the study of proteins and their changes

in response to cancer, and it provides information about the

biological processes taking place in cancer cells. Genomics is the

study of the entire genome of cancer cells, including changes in

DNA sequence, gene expression, and structural variations (Boehm

et al., 2021). Other molecular modalities include transcriptomics,

pathomics, radiomics and their combinations, radiogenomics, and

proteogenomics. Many publicly available datasets provide access

to molecular data, including the Proteomics Data Commons for

proteomics data and the Genome Data Commons for genetic

data (Grossman et al., 2016; Thangudu et al., 2020).

2.1.2 Imaging data
Imaging modalities play a crucial role in diagnosing and

monitoring cancer. The imaging category can be divided into

2 main categories: (1) radiological imaging and (2) digitized

histopathology slides, referred to as Whole Slide Imaging (WSI).
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FIGURE 2

We present various data modalities that capture specific aspects of cancer at di�erent scales. For example, radiological images capture organ or

sub-organ level abnormalities, while tissue analysis may provide changes in the cellular structure and morphology. On the other hand, various

molecular data types may provide insights into genetic mutations and epigenetic changes. (A) An overview of data collected from population to a

tissue. (B) Detailed look into data modalities acquired for cancer care.

Radiological imaging encompasses various techniques such as X-

rays, CT scans, MRI, PET, and others, which provide information

about the location and extent of cancer within the body. These

images can be used to determine the size and shape of a tumor,

monitor its growth, and assess the effectiveness of treatments.

Histopathological imaging is the examination of tissue samples

obtained through biopsy or surgery (Rowe and Pomper, 2022;

Waqas et al., 2023). Digitized slides, saved asWSIs, provide detailed

information about the micro-structural changes in cancer cells and

can be used to diagnose cancer and determine its subtype.

2.1.3 Clinical data
Clinical data provides information about the patient’s medical

history, physical examination, and laboratory results, saved in

the patient’s electronic health records (EHR) at the clinic. EHR

consists of digital records of a patient’s health information stored

in a centralized database. These records provide a comprehensive

view of a patient’s medical history, past diagnoses, treatments,

laboratory test results, and other information, which helps

clinicians understand the disease (Asan et al., 2018). Within EHR,

time-series data may refer to the clinical data recorded over time,

such as repeated blood tests, lab values, or physical attributes. Such

data informs the changes in the patient’s condition and monitors

the disease progression (Quinn et al., 2019).

2.2 Taxonomy of MML

We follow the taxonomy proposed by Sleeman et al. (2022) (see

Figure 3), which defines 5 main stages of multimodal classification:

preprocessing, feature extraction, data fusion, primary learner, and

final classifier, as given below:
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FIGURE 3

Taxonomy, stages, and techniques of multimodal data fusion are presented. Early, late, cross-modality fusion methods integrate individual data

modalities (or extracted features) before, after, or at the primary learning step, respectively.

2.2.1 Pre-processing
Pre-processing involves modifying the input data to a suitable

format before feeding it into the model for training. It includes data

cleaning, normalization, class balancing, and augmentation. Data

cleaning removes unwanted noise or bias, errors, and missing data

points (Al-jabery et al., 2020). Normalization scales the input data

within a specific range to ensure that each modality contributes

equally to the training (Gonzalez Zelaya, 2019). Class balancing

is done in cases where one class may have a significantly larger

number of samples than another, resulting in a model bias toward

the dominant class. Data augmentation artificially increases the size

of the dataset by generating new samples based on the existing data

to improve the model’s robustness and generalizability (Al-jabery

et al., 2020).

2.2.2 Feature extraction
Different data modalities may have different features, and

extracting relevant features may improve model learning. Several

manual and automated feature engineering techniques generate

representations (or embeddings) for each data modality. Feature

engineering involves designing features relevant to the task and

extracting them from the input data. This can be time-consuming

but may allow the model to incorporate prior knowledge about

the problem. Text encoding techniques, such as bag-of-words,

word embeddings, and topic models (Devlin et al., 2019; Zhuang

et al., 2021), transform textual data into a numerical representation,

which can be used as input to an ML model (Wang et al., 2020a).

In DL, feature extraction is learned automatically during model

training (Dara and Tumma, 2018).

2.2.3 Data fusion
Data fusion combines raw features, extracted features, or class

prediction vectors from multiple modalities to create a single data

representation. Fusion enables themodel to use the complementary

information provided by each modality and improve its learning.

Data fusion can be done using early, late, or intermediate fusion.

Section 2.3 discusses these fusion stages. The choice of fusion

technique depends on the characteristics of the data and the specific

problem being addressed (Jiang et al., 2022).

2.2.4 Primary learner
The primary learner stage is training the model on the

pre-processed data or extracted features. Depending on the

problem and data, the primary learner can be implemented using

various ML techniques. DNNs are a popular choice for primary

learners in MML because they can automatically learn high-level

representations from the input data and have demonstrated state-

of-the-art performance in many applications. CNNs are often used

for image and video data, while recurrent neural networks (RNNs)

and Transformers are commonly used for text and sequential data.

The primary learner can be implemented independently for each

modality or shared between modalities, depending on the problem

and data.
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2.2.5 Final classifier
The final stage of MML is the classifier, which produces

category labels or class scores and can be trained on the output

of the primary learner or the fused data. The final classifier can be

implemented using a shallow neural network, a decision tree, or

an ensemble model (Sleeman et al., 2022). Ensemble methods, such

as stacking or boosting, are often used to improve and robustify

the performance of the final classifier. Stacking involves training

multiple models and then combining their predictions at the output

stage, while boosting involves repeatedly training weak learners

and adjusting their weights based on the errors made by previous

learners (Borisov et al., 2022).

2.3 Data fusion strategies

Fusion in MML can be performed at different levels, including

early (feature level), intermediate (model level), or late (decision

level) stages, as illustrated in Figure 3. Each fusion stage has its

advantages and challenges, and the choice of fusion stage depends

on the characteristics of the data and the task.

2.3.1 Early fusion
The early fusion involves merging features extracted from

different data modalities into a single feature vector before model

training. The feature vectors of the different modalities are

combined into a single vector, which is used as the input to the

ML model (Sleeman et al., 2022). This approach can be used

when the modalities have complementary information and can be

easily aligned, such as combining visual and audio features in a

video analysis application. The main challenge with early fusion is

ensuring that the features extracted from different modalities are

compatible and provide complementary information.

2.3.2 Intermediate fusion
Intermediate fusion involves training separate models for each

data modality and then combining the outputs of these models

for inference/prediction (Sleeman et al., 2022). This approach

is suitable when the data modalities are independent of each

other and cannot be easily combined at the feature level using

average, weighted average, or other methods. The main challenge

with intermediate fusion is selecting an appropriate method for

combining the output of different models.

2.3.3 Late fusion
In late fusion, the output of each modality-specific model is

used to make a decision independently. All decisions are later

combined to make a final decision. This approach is suitable when

the modalities provide complementary information but are not

necessarily independent of each other. Themain challenge with late

fusion is selecting an appropriate method for combining individual

predictions. This can be done using majority voting, weighted

voting, or employing other ML models.

2.4 MML for oncology datasets

Syed et al. (2021) used a Random Forest classifier to fuse

radiology image representations learned from the singular value

decomposition method with the textual annotation representation

learned from the fastText algorithm for prostate and lung cancer

patients. Liu et al. (2022) proposed a hybrid DL framework

for combining breast cancer patients’ genomic and pathology

data using fully-connected (FC) network for genomic data, CNN

for radiology data and a Simulated Annealing algorithm for

late fusion. Multiview multimodal network (MVMM-Net) (Song

J. et al., 2021) combined 2 different modalities (low-energy

and dual-energy subtracted) from contrast-enhanced spectral

mammography images, each learned through CNN and late-fusion

through FC network in breast cancer detection task. Yap et al.

(2018) used a late-fusion method to fuse image representations

from ResNet50 and clinical representations from a random

forest model for a multimodal skin lesion classification task.

An award-winning work (Ma and Jia, 2020) on brain tumor

grade classification adopted the late-fusionmethod (concatenation)

for fusing outputs from two CNNs (radiology and pathology

images). SeNMo, a self-normalizing deep learning model has

shown that integrative analysis on 33 cancers having five different

molecular (multi-omics) data modalities can improve the patient

outcome predictions and primary cancer type classification (Waqas

et al., 2024a). Recently, GNNs-based pan-squamous cell carcinoma

analysis on lung, bladder, cervicall, esophageal, and head and neck

cancers has outperformed different classical and deep learning

models (Waqas et al., 2024b).

The single-cell unimodal data alignment is one technique

in MML. Jansen et al. (2019) devised an approach (SOMatic)

to combine ATAC-seq regions with RNA-seq genes using self-

organizing maps. Single-Cell data Integration via Matching (SCIM)

matched cells in multiple datasets in low-dimensional latent space

using autoencoder (AEs) (Stark et al., 2020). Graph-linked unified

embedding (GLUE) model learned regulatory interactions across

omics layers and aligned the cells using variational AEs (Cao and

Gao, 2022). These aforementioned methods cannot incorporate

high-order interactions among cells or different modalities. Single-

cell data integration using multiple modalities is mostly based on

AEs [scDART (Zhang Z. et al., 2022), Cross-modal Autoencoders

(Yang K. D. et al., 2021), Mutual Information Learning for

Integration of Single Cell Omics Data (SMILE) (Xu et al., 2022)].

The relevant works discussed in this section is summarized in

Table 1.

3 Graph Neural Networks in
multimodal learning

Graphs are commonly used to represent the relational

connectivity of any system that has interacting entities (Li M.

et al., 2022). Graphs have been used in various fields, such as to

study brain networks (Farooq et al., 2019), analyze driving maps

(Derrow-Pinion et al., 2021), and explore the structure of DNNs

themselves (Waqas et al., 2022). GNNs are specifically designed to

process data represented as a graph (Waikhom and Patgiri, 2022),

which makes them well-suited for analyzing multimodal oncology
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TABLE 1 References discussed in Section 2.

Sections References

Data modalities in oncology Molecular Grossman et al., 2016; Thangudu et al., 2020; Boehm et al., 2021; Liu et al., 2021; Waqas et al., 2024a

Imaging Rowe and Pomper, 2022; Waqas et al., 2023

Clinical Asan et al., 2018; Quinn et al., 2019

Taxonomy of MML Dara and Tumma, 2018; Devlin et al., 2019; Gonzalez Zelaya, 2019; Al-jabery et al., 2020; Wang et al.,

2020a; Zhuang et al., 2021; Borisov et al., 2022; Jiang et al., 2022; Sleeman et al., 2022

Data fusion strategies Sleeman et al., 2022

MML for oncology datasets Yap et al., 2018; Jansen et al., 2019; Ma and Jia, 2020; Stark et al., 2020; Song J. et al., 2021; Syed et al.,

2021; Yang K. D. et al., 2021; Cao and Gao, 2022; Liu et al., 2022; Xu et al., 2022; Zhang Z. et al., 2022;

Waqas et al., 2024a,b

data as each data modality (or sub-modality) can be considered as

a single node and the structures/patterns that exist between data

modalities can be modeled as edges (Ektefaie et al., 2023).

3.1 The graph data

A graph is represented as G=(V ,E) having node-set

V={v1, v2, ..., vn}, where node v has feature vector xv, and

edge set E={(vi, vj) | vi, vj ∈ V}. The neighborhood of node v is

defined as N(v)={u | (u, v) ∈ E}.

3.1.1 Graph types
As illustrated in Figure 4A, the common types of graphs

include undirected, directed, homogeneous, heterogeneous, static,

dynamic, unattributed, and attributed. Undirected graphs comprise

undirected edges, i.e., the direction of relation is not important

between any ordered pair of nodes. In the directed graphs, the nodes

have a directional relationship(s). Homogeneous graphs have the

same type of nodes, whereas heterogeneous graphs have different

types of nodes within a single graph (Yang T. et al., 2021). Static

graphs do not change over time with respect to the existence of

edges and nodes. In contrast, dynamic graphs change over time,

resulting in changes in structure, attributes, and node relationships.

Unattributed graphs have unweighted edges, indicating that the

weighted value for all edges in a graph is the same, i.e., 1 if present, 0

if absent. Attributed graphs have different edge weights that capture

the strength of relational importance (Waikhom and Patgiri, 2022).

3.1.2 Tasks for graph data
In Figure 4B, we present 3 major types of tasks defined on

graphs, including (1) node-level tasks - these may include node

classification, regression, clustering, attributions, and generation,

(2) edge-level task - edge classification and prediction (presence

or absence) are 2 common edge-level tasks, (3) graph-level tasks -

these tasks involve predictions on the graph level, such as graph

classification and generation.

3.2 ML for graph data

Representing data as graphs can enable capturing and encoding

the relationships among entities of the samples (Wu et al., 2020).

Based on the way the nodes are encoded, representation learning

on graphs can be categorized into the traditional (or shallow) and

DNN-based methods, as illustrated in Figure 4C (Wu et al., 2020;

Jiao et al., 2022).

3.2.1 Traditional (shallow) methods
These methods usually employ classical ML methods, and

their two categories commonly found in the literature are graph

embedding and probabilistic methods. Graph embedding methods

represent a graph with low-dimensional vectors (graph embedding

and node embedding), preserving the structural properties of the

graph. The learning tasks in graph embedding usually involve

dimensionality reduction through linear (principal component

or discriminant analysis), kernel (nonlinear mapping), or tensor

(higher-order structures) methods (Jiao et al., 2022). Probabilistic

graphical methods use graph data to represent probability

distribution, where nodes are considered random variables,

and edges depict the probability relations among nodes (Jiao

et al., 2022). Bayesian networks, Markov’s networks, variational

inference, variable elimination, and others are used in probabilistic

methods (Jiao et al., 2022).

3.2.2 DNN-based methods - GNNs
GNNs are gaining popularity in the ML community, as evident

from Figure 1. In GNNs, the information aggregation from the

neighborhood is fused into a node’s representation. Traditional DL

methods such as CNNs and their variants have shown remarkable

success in processing the data in Euclidean space; however, they

fail to perform well when faced with non-Euclidean or relational

datasets. Compared to CNNs, where the locality of the nodes

in the input is fixed, GNNs have no canonical ordering of the

neighborhood of a node. They can learn the given task for any

permutation of the input data, as depicted in Figure 5. GNNs

often employ a message-passing mechanism in which a node’s

representation is derived from its neighbors’ representations via a
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FIGURE 4

(A) The commonly occurring graph types are presented, including (1) undirected and directed, (2) homogeneous and heterogeneous, (3) dynamic

and static, (4) attributed (edges) and unattributed. (B) Three di�erent types of tasks performed using the graph data are presented and include (1)

node-level, (2) link-level, and (3) graph-level analyses. (C) Various categories of representation learning for graphs are presented.

recursive computation. The message passing for a GNN is given as

follows:

h(l+1)
v =σ



Wl

∑

u∈N(v)

h
(l)
u

|N(v)|
+ Blh

(l)
v



 (1)

where h
(l+1)
v is the updated embedding of node v after l+1 layer,

σ is the non-linear function (e.g., rectified linear unit or ReLU),

h
(l)
u and h

(l)
v represent the embeddings of nodes u and v at layer

l. Wl and Bl are the trainable weight matrices for neighborhood

aggregation and (self)hidden vector transformation, respectively.

The message passing can encode high-order structural information

in node embedding through multiple aggregation layers. GNNs

smooth the features by aggregating neighbors’ embedding and

filter eigenvalues of graph Laplacian, which provides an extra

denoisingmechanism (Ma Y. et al., 2021). GNNs comprise multiple

permutation equivariant and invariant functions, and they can

handle heterogeneous data (Jin et al., 2022). As described earlier,

traditional ML models deal with Euclidean data. In oncology data,
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FIGURE 5

Convolution operation for graphs vs. image data. The canonical order of the input is important in CNNs, whereas in GNNs, the order of the input

nodes is not important. From the convolution operation perspective, CNNs can be considered a subset of GNNs (Hamilton, 2020).

the correlations may not exist in Euclidean space; instead, its

features may be highly correlated in the non-Euclidean space (Yi

et al., 2022). Based on the information fusion and aggregation

methodology, GNNs-based deep methods are classified into the

following:

3.2.2.1 Recurrent GNNs

RecGNNs are built on top of the standard Recurrent Neural

Network (RNN) by combining with GNN. RecGNNs can operate

on graphs with variable sizes and topologies. The recurrent

component of the RecGNN captures temporal dependencies and

learns latent states over time, whereas the GNN component

captures the local structure. The information fusion process is

repeated a fixed number of times until an equilibrium or the desired

state is achieved (Hamilton et al., 2017). RecGNNs employ the

model given by:

h(l+1)
v = RecNN

(

h(l)u ,Msg
(l)
N(v)

)

, (2)

where, RecNN is any RNN, and Msg
(l)
N(v)

is the neighborhood

message-passing at layer l.

3.2.2.2 Convolutional GNNs

ConvGNNs undertake the convolution operation on graphs

by aggregating neighboring nodes’ embeddings through a stack

of multiple layers. ConvGNNs use the symmetric and normalized

summation of the neighborhood and self-loops for updating the

node embeddings given by:

h(l+1)
v = σ



Wl

∑

u∈N(v)∪v

hv
√

|N(v)||N(u)|



 . (3)

The ConvGNN can be spatial or spectral, depending on the type

of convolution they implement. Convolution in spatial ConvGNNs

involves taking a weighted average of the neighboring vertices.

Examples of spatial ConvGNNs include GraphSAGE (Hamilton

et al., 2017), Message Passing Neural Network (MPNN) (Gilmer

et al., 2017), andGraphAttentionNetwork (GAT) (Veličković et al.,

2017). The spectral ConvGNNs operate in the spectral domain by

using the eigendecomposition of the graph Laplacian matrix. The

convolution operation is performed on the eigenvalues, which can

be high-dimensional. Popular spectral ConvGNNs are ChebNet

(Defferrard et al., 2016) and Graph Convolutional Network (GCN)

(Kipf andWelling, 2016). An interesting aspect of these approaches

is representational containment, which is defined as: convolution ⊆

attention ⊆ message passing.

3.2.2.3 Graph Auto-Encoder Networks

GAEs are unsupervised graph learning networks for

dimensionality reduction, anomaly detection, and graph

generation. They are built on top of the standard AEs to

work with graph data. The encoder component of the GAE maps
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the input graph to a low-dimensional latent space, while the

decoder component maps the latent space back to the original

graph (Park et al., 2021).

3.2.2.4 Graph Adversarial Networks

Based on Generative Adversarial Networks, GraphANs are

designed to work with graph-structured data and can learn to

generate new graphs with similar properties to the input data.

The generator component of the GraphAN maps a random noise

vector to a new graph, while the discriminator component tries

to distinguish between the generated vs. the actual input. The

generator generates graphs to fool the discriminator, while the

discriminator tries to classify the given graph as real or generated.

3.2.2.5 Other GNNs

Other categories of GNNs may include scalable GNNs (Ma

et al., 2019), dynamic GNNs (Sankar et al., 2018), hypergraph

GNNs (Bai et al., 2021), heterogeneous GNNs (Wei et al., 2019),

and many others (Ma and Tang, 2021).

3.2.3 Graph-based reinforcement learning
GNNs have been combined with Reinforcement Learning

(RL) to solve complex problems involving graph-structured data

(Jiang et al., 2018). GNNs enable RL agents to effectively

process and reason about relational information in environments

represented as graphs (Nie et al., 2023). This combination

has shown promise in various domains, including multi-agent

systems, robotics, and combinatorial optimization (Almasan

et al., 2022; Fathinezhad et al., 2023). However, the use of

Graph-based RL on cancer data is still less-explored area

of research.

3.3 GNNs and ML using unimodal
oncology datasets

3.3.1 Pathology datasets
Traditionally, CNN-based models are used to learn features

from digital pathology data (Iqbal et al., 2022). However, unlike

GNNs, CNNs fail to capture the global contextual information

important in the tissue phenotypical and structural micro and

macro environment (Ahmedt-Aristizabal et al., 2022). For using

histology images in GNNs, the cells, tissue regions, or image patches

are depicted as nodes. The relations and interactions among these

nodes are represented as (un)weighted edges. Usually, a graph

of the patient histology slide is used along with a patient-level

label for training a GNN, as illustrated in Figure 6A. Here, we

review a few GNN-based pathology publications representative

of a trove of works in this field. Histographs (Anand et al.,

2020) used breast cancer histology data to distinguish cancerous

and non-cancerous images. Pre-trained VGG-UNet was used

for nuclei detection, micro-features of the nuclei were used

as node features, and Euclidean distance among nuclei was

incorporated as edge features. The resulting cell graphs were

used to train the GCN-based robust spatial filtering (RSF)

model, which performed superior to the CNN-based classification.

citewang2020weakly analyzed grade classification in tissue micro-

arrays of prostate cancer using the weakly-supervised technique on

a variant of GraphSAGE with self-attention pooling (SAGPool).

Cell-Graph Signature (CGsignature) (Wang et al., 2022) predicted

patient survival in gastric cancer using cell-graphs of multiplexed

immunohistochemistry images processed through two types of

GNNs (GCNs and GINs) with two types of pooling (SAGPool,

TopKPool). Besides the above-mentioned cell graphs, there is an

elaborate review of GNN-based tissue graphs or patch-graphs

methods implemented on unimodal pathology cancer data given

in Ahmedt-Aristizabal et al. (2022). Instead of individual cell-

and tissue-graphs, a combination of the multilevel information

in histology slides can help understand the intrinsic features of

the disease.

3.3.2 Radiology datasets
GNNs have been used in radiology-based cancer data for

segmentation, classification, and prediction tasks, especially on X-

rays, mammograms, MRI, PET, and CT scans. Figure 6B illustrates

a general pipeline of using radiology-based data to train GNNs.

Here we give a non-exhaustive review of GNNs-based works on

radiological oncology data as a single modality input. Mo et al.

(2020) proposed a framework that improved the liver cancer lesion

segmentation in the MRI-T1WI scans through guided learning

of MRI-T2WI modality priors. Learned embeddings from fully

convolutional networks on separate MRI modalities are projected

into the graph domain for learning by GCNs through the co-

attention mechanism and finally to get the refined segmentation

by re-projection. Radiologists usually review radiology images by

zooming into the region of interest (ROIs) on high-resolution

monitors. Du et al. (2019) used a hierarchical GNN framework

to automatically zoom into the abnormal lesion region of the

mammograms and classify breast cancer. The pre-trained CNN

model extracts image features, whereas a GAT model is used

to classify the nodes for deciding whether to zoom in or not

based on whether it is benign or malignant. Based on the

established knowledge that lymph nodes (LNs) have connected

lymphatic system and LNs cancer cells spread on certain pathways,

Chao et al. (2020) proposed a lymph node gross tumor volume

learning framework. The framework was able to delineate the

LN appearance as well as the inter-LN relationship. The end-

to-end learning framework was superior to the state-of-the-art

on esophageal cancer radiotherapy dataset. Tian et al. (2020)

suggested interactive segmentation of MRI scans of prostate cancer

patients through a combination of CNN and two GCNs. CNN

model outputs a segmentation feature map of MRI, and the GCNs

predict the prostate contour from this feature map. Saueressig

et al. (2021) used GNNs to segment brain tumors in 3D MRI

images, formed by stacking different modalities of MRI (T1, T2,

T1-CE, FLAIR) and representing them as supervoxel graph. The

authors reported that GraphSAGE-pool was best for segmenting

brain tumors. Besides radiology, a parallel field of radiomics has

recently gained attraction. Radiomics is the automated extraction

of quantitative features from radiology scans. A survey of radiomics

and radiogenomic analysis on brain tumors is presented by Singh

et al. (2021).
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FIGURE 6

(A) Data processing pipeline for histopathology images using GNNs (Chen et al., 2020). (B) Graph processing pipeline on radiology data. Adapted

from Singh et al. (2021).

3.3.3 Molecular datasets
Graphs are a natural choice for representing molecular data

such as omic-centric (DNA, RNA, or proteins) or single-cell

centric. Individual modalities are processed separately to generate

graph representations that are then processed through GNNs

followed by the classifier to predict the downstream task, as

illustrated in Figure 7. One method of representing proteins

as graphs is to depict the amino acid residue in the protein

as the node and the relationship between residues denoted by

edge (Fout et al., 2017). The residue information is depicted as

node embedding, whereas the relational information between two

residues is represented as the edge feature vector. Fout et al.

(2017) used spatial ConvGNNs to predict interfaces between

proteins which is important in drug discovery problems. Deep

predictor of drug-drug interactions (DPDDI) predicted the drug-

drug interactions using GCN followed by a 5-layer classical neural

network (Feng et al., 2020). Molecular pre-training graph net

(MPG) is a powerful framework based on GNN and Bidirectional

Encoder Representations from Transformers (BERT) to learn

drug-drug and drug-target interactions (Li et al., 2021b). Graph-

based Attention Model (GRAM) handled the data inefficiency by

supplementing EHRs with hierarchical knowledge in the medical

ontology (Choi et al., 2017). A few recent works have applied

GNNs to single-cell data. scGCN is a knowledge transfer framework

in single-cell omics data such as mRNA or DNA (Song Q.

et al., 2021). scGNN processed cell-cell relations through GNNs

for the task of missing-data imputation and cell clustering on

single-cell RNA sequencing (scRNA-seq) data (Wang J. et al.,

2021).

3.4 MML—Data fusion at the pre-learning
stage

The first and most primitive form of MML is the pre-learning

fusion (see Figure 3), where features extracted from individual

modalities of data are merged, and the fused representations are

then used for training the multimodal primary learner model.

In the context of GNNs being the primary learning model,

the extraction step of individual modality representations can

be hand-engineered (e.g., dimensionality reduction) or learned

by DL models (e.g., CNNs, Transformers). Cui et al. (2021)

proposed a GNN-based early fusion framework to learn latent

representations from radiological and clinical modalities for Lymph

node metastasis (LNM) prediction in esophageal squamous cell

carcinoma (ESCC). The extracted features from the two modalities

using UNet and CNN-based encoders were fused together with

category-wise attention as node representation. The message

passing from conventional GAT and correlation-based GAT

learned the neighborhood weights. The attention attributes were

used to update the final node features before classification by a

3-layer fully connected network. For Autism spectrum disorder,

Alzheimer’s disease, and ocular diseases, a multimodal learning

framework called Edge-Variational GCN (EV-GCN) fuses the

radiology features extracted from fMRI images with clinical feature

vectors for each patient (Huang and Chung, 2020). An MLP-based

pairwise association encoder is used to fuse the input feature vectors

and to generate the edge weights of the population graph. The

partially labeled population graph is then processed through GCN

layers to generate the diagnostic graph of patients.
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FIGURE 7

Graph data processing pipeline for non-imagery data, including molecular and textual data. Adapted from Wang T. et al. (2021). GNN, graph neural

network, FC, Fully-Connected; MLP, Multi-Layer Perception.

3.5 MML—Data fusion using
cross-modality learning

Cross-MML involves intermediate fusion and/or cross-links

among the models being trained on individual modalities

(see Figure 3). For this survey, we consider the GNN-based

hierarchical learning mechanisms as the cross-MML methods.

Hierarchical frameworks involve learning for one modality and

using the learned latent embeddings in tandem with other data

modalities sequentially to get the final desired low-dimensional

representations. Lian et al. (2022) used a sequential learning

framework where tumor features learned from CT images using

the ViT model were used as node features of the patient population

graph for subsequent processing by the GraphSAGE model. The

hierarchical learning from radiological and clinical data using

Transformer-GNN outperformed the ResNet-Graph framework in

survival prediction of early-stage NSCLC. scMoGNN is the first

method to apply GNNs in multimodal single-cell data integration

using a cross-learning fusion-based GNN framework (Wen et al.,

2022). Officially winning first place in modality prediction task

at the NeurIPS 2021 competition, scMoGNN showed superior

performance on various tasks by using paired data to generate cell-

feature graphs. Hierarchical cell-to-tissue-graph network (HACT-

Net) combined the low-level cell-graph features with the high-

level tissue-graph features through two hierarchical GINs on

breast cancer multi-class prediction (Pati et al., 2020). Data

imputation, a method of populating the missing values or false

zero counts in single-cell data mostly done using DL autoencoders

(AE) architecture, has recently been accomplished using GNNs.

scGNN (Wang J. et al., 2021) used imputation AE and graph AE

in an iterative manner for imputation, and GraphSCI (Rao et al.,

2021) used GCN with AE to impute the single-cell RNA-seq data

using the cross-learning fusion between the GCN and the AE

networks. Clustering is a method of characterizing cell types within

a tissue sample. Graph-SCC clustered cells based on scRNA-seq

data through self-supervised cross-learning between GCN and a

denoising AE network (Zeng et al., 2020). Recently, a multilayer

GNN framework, Explainable Multilayer GNN (EMGNN), has

been proposed for cancer gene prediction tasks using multi-omics

data from 16 different cancer types (Chatzianastasis et al., 2023).

3.6 MML—Data fusion in post-learning
regime

Post-learning fusion methods include processing individual

data modalities and later fusing them for the downstream

predictive task (Tortora et al., 2023). In the post-learning fusion

paradigm, the hand-crafted features perform better than the

deep features when the dimensionality of input data is low,

and vice versa (Tortora et al., 2023). Many interesting GNN-

based works involving the post-learning fusion mechanism have

recently been published. Decagon used a multimodal approach

on GCNs using proteins and drug interactions to predict exact

side effects as a multi-relational link prediction task (Zitnik

et al., 2018). Drug-target affinity (DTA) experimented with four

different flavors of GNNs (GCN, GAT, GIN, GAT-GCN) along

with a CNN to fuse together molecular embeddings and protein

sequences for predicting drug-target affinity (Nguyen et al., 2021).

PathomicFusion combined the morphological features extracted
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from image patches (using CNNs), cell-graph features from

cell-graphs of histology images (GraphSAGE-based GCNs), and

genomic features (using a feed-forward network) for survival

prediction on glioma and clear cell renal cell carcinoma (Chen

et al., 2020). Shi et al. (2019) proposed a late-fusion technique to

study screening of cervical cancer at early stages by using CNNs

to extract features from histology images, followed by K-means

clustering to generate graphs which are processed through two-

layer GCN. BDR-CNN-GCN (batch normalized, dropout, rank-

based pooling) used the same mammographic images to extract

image-level features using CNN and relation-aware features using

GCN (Zhang et al., 2021). The two feature sets are fused using a dot

product followed by a trainable linear projection for breast cancer

classification. Under the umbrella of multi-omics data, many

GNN-based frameworks have been proposed recently. Molecular

omics network(MOOMIN), a multi-modal heterogeneous GNN

to predict oncology drug combinations, processed molecular

structure, protein features, and cell lines through GCN-based

encoders, followed by late-fusion using a bipartite drug-protein

interaction graph (Rozemberczki et al., 2022). Multi-omics graph

convolutional networks (MOGONET) used a GCN-GAN late

fusion technique for the classification of four different diseases,

including three cancer types: breast, kidney, and glioma (Wang

T. et al., 2021). Leng et al. (2022) extended MOGONET to

benchmark three multi-omics datasets on two different tasks using

sixteen DL networks and concluded that GAT-based GNN had the

best classification performance. Multi-Omics Graph Contrastive

Learner(MOGCL) used graph structure and contrastive learning

information to generate representations for improved downstream

classification tasks on the breast cancer multi-omics dataset using

late-fusion (Rajadhyaksha and Chitkara, 2023). Similar toMOGCL,

Park et al. (2022) developed a GNN-based multi-omics model

that integrated mRNA expression, DNA methylation, and DNA

sequencing data for NSCLC diagnosis.

The relevant works discussed in this section is summarized in

Table 2.

4 Transformers in MML

Transformers are attention-based DNN models originally

proposed for NLP (Vaswani et al., 2017). Transformers implement

scaled dot-product of the input with itself and can process various

types of data in parallel (Vaswani et al., 2017). Transformers

can handle sequential data and learn long-range dependencies,

making them well-suited for tasks such as language translation,

language modeling, question answering, and many more (Otter

et al., 2021). Unlike Recurrent Neural Networks (RNNs) and

CNNs, Transformers use self-attention operations to weigh the

importance of different input tokens (or embeddings) at each time

step. This allows them to handle sequences of arbitrary length and

to capture dependencies between input tokens that are far apart in

the sequence (Vaswani et al., 2017). Transformers can be viewed

as a type of GNN (Xu et al., 2023). Transformers are used to

process other data types, such as images (Dosovitskiy et al., 2020),

audio (Zhang, 2020), and time-series analysis (Ahmed et al., 2022b),

resulting in a new wave of multi-modal applications. Transformers

can handle input sequences of different modalities in a unified

way, using the same self-attention mechanism, which processes

the inputs as a fully connected graph (Xu et al., 2023). This

allows Transformers to capture complex dependencies between

different modalities, such as visual and textual information in visual

question-answering (VQA) tasks (Ma J. et al., 2021).

Pre-training Transformers on large amounts of data, using

unsupervised or self-supervised learning, and then fine-tuning

for specific downstream tasks, has led to the development of

foundation models (Boehm et al., 2021), such as BERT (Devlin

et al., 2019), GPT (Radford et al., 2018), RoBERTa (Zhuang et al.,

2021), CLIP (Radford et al., 2021), T5 (Raffel et al., 2020), BART

(Lewis et al., 2019), BLOOM (Scao et al., 2022), ALIGN (Jia

et al., 2021), CoCa (Yu et al., 2022) and more. Multimodal

Transformers are a recent development in the field of MML,

which extends the capabilities of traditional Transformers to

handle multiple data modalities. The inter-modality dependencies

are captured by the cross-attention mechanism in multimodal

Transformers, allowing the model to jointly reason and extract

rich data representations. There are various types of multimodal

Transformers, such as Unified Transformer (UniT) (Hu and Singh,

2021), Multi-way Multimodal Transformer (MMT) (Tang et al.,

2022), CLIP (Radford et al., 2021), Flamingo (Alayrac et al., 2022),

CoCa (Yu et al., 2022), Perceiver IO (Jaegle et al., 2021), and GPT-4

(Achiam et al., 2023).

4.1 Model architecture

The original Transformer (Figure 8) was composed of multiple

encoder and decoder blocks, each made up of several layers of

self-attention and feed-forward neural networks. The encoder takes

the input sequence and generates hidden representations, which

are then fed to the decoder. The decoder generates the output

sequence by attending to the encoder’s hidden representations

and the previous tokens (i.e., auto-regressive). The self-attention

operation (or scaled dot-product) is a crucial component of the

Transformer. It determines the significance of each element in

the input sequence with respect to the whole input. Self-attention

operates by computing a weighted sum of the input sequence’s

hidden representations, where the weights are determined by the

dot product between the query vector and the key vector, followed

by a scaling operation to stabilize the gradients. The resulting

weighted sum is multiplied by a value vector to obtain the output of

the self-attention operation. There has been a tremendous amount

of work on various facets of Transformer architecture. The readers

are referred to relevant review papers (Galassi et al., 2021; Otter

et al., 2021; Han et al., 2023; Xu et al., 2023).

4.2 Multimodal transformers

Self-attention allows a Transformer model to process each

input as a fully connected graph and attend to (or equivalently

learn from) the global patterns present in the input. This makes

Transformers compatible with various data modalities by treating

each token (or its embedding) as a node in the graph. To use

Transformers for a data modality, we need to tokenize the input

and select an embedding space for the tokens. Tokenization and

embedding selections are flexible and can be done at multiple
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TABLE 2 References Discussed in Section 3.

Sections References

Graphs and GNNs Defferrard et al., 2016; Kipf and Welling, 2016; Gilmer et al., 2017; Hamilton et al., 2017; Veličković

et al., 2017; Jiang et al., 2018; Sankar et al., 2018; Farooq et al., 2019; Ma et al., 2019; Wei et al., 2019;

Wu et al., 2020; Bai et al., 2021; Derrow-Pinion et al., 2021; Ma and Tang, 2021; Ma Y. et al., 2021;

Park et al., 2021; Yang T. et al., 2021; Almasan et al., 2022; Jiao et al., 2022; Jin et al., 2022; Li M. et al.,

2022; Waikhom and Patgiri, 2022; Waqas et al., 2022; Yi et al., 2022; Ektefaie et al., 2023; Fathinezhad

et al., 2023; Nie et al., 2023

GNNs and ML using Unimodal

Oncology Datasets

Pathology Anand et al., 2020; Wang et al., 2020b, 2022; Ahmedt-Aristizabal et al., 2022; Iqbal et al., 2022

Radiology Du et al., 2019; Chao et al., 2020; Mo et al., 2020; Tian et al., 2020; Saueressig et al., 2021; Singh et al.,

2021

Molecular Choi et al., 2017; Fout et al., 2017; Feng et al., 2020; Li et al., 2021b; Song Q. et al., 2021; Wang J. et al.,

2021

MML data fusion stages

Zitnik et al., 2018; Shi et al., 2019; Chen et al., 2020; Huang and Chung, 2020; Pati et al., 2020; Zeng

et al., 2020; Cui et al., 2021; Nguyen et al., 2021; Rao et al., 2021; Wang J. et al., 2021; Wang T. et al.,

2021; Zhang et al., 2021; Leng et al., 2022; Lian et al., 2022; Park et al., 2022; Rozemberczki et al., 2022;

Wen et al., 2022; Chatzianastasis et al., 2023; Rajadhyaksha and Chitkara, 2023; Tortora et al., 2023

FIGURE 8

The original Transformer architecture is presented (Vaswani et al., 2017). A Transformer can have multiple encoder and decoder blocks, as well as

some additional layers.

granularity levels, such as using raw features, ML-extracted

features, patches from the input image, or graph nodes. Table 3

summarizes some common practices used for various types of

data in cancer data sets. Handling inter-modality interactions is

the main challenge in developing multimodal Transformer models.

Usually, it is done through one of these fusionmethods: early fusion

of data modalities, cross-attention, hierarchical attention, and late

fusion, as illustrated in Figure 9. In the following, we present and

compare data processing steps for these four methods using two

data modalities as an example. The same analysis can be extended

to multiple modalities.

4.2.1 Early fusion
Early fusion is the simplest way to combine data from multiple

modalities. The data from different modalities are concatenated

to a single input before being fed to the Transformer model,

which processes the input as a single entity. Mathematically,

the concatenation operation is represented as xcat=[x1, x2], where

x1 and x2 are the inputs from two data modalities, and xcat
is the concatenated input to the model. Early fusion is simple

and efficient. However, it assumes that all modalities are equally

important and relevant for the task at hand (Kalfaoglu et al., 2020),

which may not always be practically true (Zhong et al., 2023).
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TABLE 3 Oncology data modalities and their respective tokenization and

embeddings selection techniques.

Data
modalities

Tokenization
level

Token embeddings model

Pathology

images

Patch CNNs (Chen et al., 2021)

Radiology

images

Patch CNNs (Xie et al., 2021)

EHR data ICD code GNNs (Shang et al., 2019),

ML models (Rasmy et al., 2021)

-Omics Graphs GNNs (Kaczmarek et al., 2021)

K-mers ML model (Ji et al., 2020)

Clinical notes Word BERT (Devlin et al., 2019)

RoBERTa (Zhuang et al., 2021)

BioBERT (Lee et al., 2019)

4.2.2 Cross-attention fusion
Cross-attention is a relatively more flexible approach

to modeling the interactions between data modalities and

learning their joint representations. The self-attention

layers attend to different modalities at different stages

of data processing. Cross-attention allows the model to

selectively attend to different modalities based on their

relevance to the task (Li et al., 2021a) and capture complex

interactions between the modalities (Rombach et al.,

2022).

4.2.3 Hierarchical fusion
Hierarchical fusion is a complex approach to combining

multiple modalities. For instance, the Depth-supervised Fusion

Transformer for Salient Object Detection (DFTR) employs

hierarchical feature extraction to improve salient object detection

performance by fusing low-level spatial features and high-

level semantic features from different scales (Zhu et al.,

2022). Yang et al. (2020) introduced a hierarchical approach

to fine-grained classification using a fusion Transformer.

Furthermore, the Hierarchical Multimodal Transformer (HMT)

for video summarization can capture global dependencies

and multi-hop relationships among video frames (Zhao et al.,

2022).

4.2.4 Late fusion
In late fusion, each data modality is processed independently by

its own Transformer model, the branch outputs are concatenated

and passed through the final classifier. Late fusion allows the

model to capture the unique features of each modality while still

learning their joint representation. Sun et al. (2021) proposed

a multi-modal adaptive late fusion Transformer network for

estimating the levels of depression. Their model extracts long-term

temporal information from audio and visual data independently

and then fuses weights at the end to learn a joint representation

of data.

4.3 Transformers for processing oncology
datasets

Transformers have been successfully applied to various tasks

in oncology, including cancer screening, diagnosis, prognosis,

treatment selection, and prediction of clinical variables (Boehm

et al., 2021; Chen et al., 2021; Shao et al., 2021; Lian et al.,

2022; Liang J. et al., 2022). For instance, a Transformer-based

model was used to predict the presence and grade of breast

cancer using a combination of imaging and genomics data

(Boehm et al., 2021). TransMIL (Shao et al., 2021), a Transformer

model, was proposed to process histopathology images using

self-attention to learn and classify histopathology slides by

overcoming the challenges faced by multi-instance learning

(MIL). Recently, a Transformer and convolution parallel network,

TransConv (Liang J. et al., 2022), was proposed for automatic

brain tumor segmentation using MRI data. Transformers and

GNNs have also been combined in MML for early-stage

NSCLC prognostic prediction using the patient’s clinical and

pathological features and by modeling the patient’s physiological

network (Lian et al., 2022). Similarly, a multimodal co-attention

Transformer was proposed for survival prediction using WSIs and

genomic sequences (Chen et al., 2021). The authors used a co-

attention mechanism to learn the interactions between the two

data modalities.

Reinforcement learning with human feedback (RLHF) has

emerged as a promising technique to infuse large language

models with domain knowledge and human preferences for

healthcare applications. Sun et al. (2023) proposed an approach

to continuously improve a conversational agent for behavioral

interventions by integrating few-shot generation, prompt

engineering, and RLHF to leverage human feedback from

therapists and clients. Giuffrè et al. (2024) discussed strategies

to optimize large language models for digestive disease by using

RLHF to infuse domain knowledge through supervised fine-tuning.

Basit et al. (2024) introduced MedAide, an on-premise healthcare

chatbot that employs RLHF during training to enhance its medical

diagnostic capabilities on edge devices. Dai et al. (2023) presented

Safe RLHF, a novel algorithm that decouples human preferences

for helpfulness and harmlessness during RLHF to improve the

safety and value alignment of large language models in sensitive

healthcare domains.

The relevant works discussed in this section is summarized in

Table 4.

5 MML—Challenges and opportunities

Learning from multimodal oncology data is a complex

and rapidly growing field that presents both challenges and

opportunities. While MML has shown significant promise,

there are many challenges owing to the inductive biases

of the ML models (Ektefaie et al., 2023). In this context,

we present major challenges of MML in oncology settings
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FIGURE 9

Four di�erent strategies of fusing information from various data modalities in multimodal Transformers are presented. (A) Early Fusion. (B) late Fusion.

(C) Hierarchial Attention. (D) Cross Attention.

TABLE 4 References discussed in Section 4.

Sections References

Multimodal

transformers

Vaswani et al., 2017; Radford et al., 2018,

2021; Devlin et al., 2019; Lewis et al., 2019;

Dosovitskiy et al., 2020; Raffel et al., 2020;

Zhang, 2020; Boehm et al., 2021; Galassi

et al., 2021; Hu and Singh, 2021; Jaegle et al.,

2021; Jia et al., 2021; Ma J. et al., 2021; Otter

et al., 2021; Zhuang et al., 2021; Ahmed et al.,

2022b; Alayrac et al., 2022; Scao et al., 2022;

Tang et al., 2022; Yu et al., 2022; Achiam

et al., 2023; Han et al., 2023; Xu et al., 2023

MML data fusion stages Kalfaoglu et al., 2020; Yang et al., 2020; Li

et al., 2021a; Sun et al., 2021; Rombach et al.,

2022; Zhao et al., 2022; Zhu et al., 2022;

Zhong et al., 2023

Transformers for

oncology datasets

Boehm et al., 2021; Chen et al., 2021; Shao

et al., 2021; Lian et al., 2022; Liang J. et al.,

2022; Dai et al., 2023; Sun et al., 2023; Basit

et al., 2024; Giuffrè et al., 2024

that, if addressed, could unlock the full potential of this

emerging field.

5.1 Large amounts of high-quality data

DL models are traditionally trained on large datasets with

enough samples for training, validation, and testing, such as JFT-

300M (Sun et al., 2017) and YFCC100M (Thomee et al., 2016),

which are not available in the cancer domain. For example, the

largest genomics data repository, the Gene Expression Omnibus

(GEO) database, has approximately 1.1 million samples with

the keyword ‘cancer’ compared to 3 billion images in JFT-

300M (Jiang et al., 2022). Annotating medical and oncology

data is a time-consuming and manual process that requires

significant expertise in many different areas of medical sciences.

Factors like heterogeneity of the disease, noise in data recording,

background, and training of medical professionals leading to
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inter- and intra-operator variability cause lack of reproducibility

and inconsistent clinical outcomes (Lipkova et al., 2022).

5.2 Data registration and alignment

Data alignment and registration refer to the process of

combining and aligning data from different modalities in a useful

manner (Zhao et al., 2023). In multimodal oncology data, this

process involves aligning data from multiple modalities such as

CT, MRI, PET, and WSIs, as well as genomics, transcriptomics,

and clinical records. Data registration involves aligning the

data modalities to a common reference frame and may involve

identifying common landmarks or fiducial markers. If the data

is not registered or aligned correctly, it may be difficult to fuse

the information from different modalities (Liang P. P. et al.,

2022).

5.3 Pan-cancer generalization and
transference

Transference in MML aims to transfer knowledge between

modalities and their representations to improve the performance

of a model trained on a primary modality (Liang P. P. et al., 2022).

Because of the unique characteristics of each cancer type and site, it

is challenging to developmodels that can generalize across different

cancer sites. Furthermore, models trained on a specific modality,

such as radiology images, will not perform well with other imaging

modalities, such as histopathology slides. Fine-tuning the model

on a secondary modality, multimodal co-learning, and model

induction are techniques to achieve transference and generalization

(Wei et al., 2020). To overcome this challenge, mechanisms for

improved universality of ML models need to be devised.

5.4 Missing data samples and modalities

The unavailability of one or more modalities or the absence

of samples in a modality affects the model learning, as most of

the existing DL models cannot process the “missing information”.

This requirement, in turn, constrains the already insufficient size of

datasets in oncology. Almost all publicly available oncology datasets

have missing data for a large number of samples (Jiang et al.,

2022). Various approaches for handling missing data samples and

modalities are gradually gaining traction. However, this is still an

open challenge (Mirza et al., 2019).

5.5 Imbalanced data

Class imbalance refers to the phenomenon when one class

(e.g., cancer negative/positive) is represented significantly more

in the data than another class. Class imbalance is common in

oncology data (Mirza et al., 2019). DL models struggle to classify

underrepresented classes accurately. Techniques such as data

augmentation, ensemble, continual learning, and transfer learning

are used to counter the class imbalance challenge (Mirza et al.,

2019).

5.6 Explainability and trustworthiness

The explainability in DL, e.g., how GNNs and Transformers

make a specific decision, is still an area of active research (Li P.

et al., 2022; Nielsen et al., 2022). GNNExplainer (Ying et al., 2019),

PGM-Explainer (Vu and Thai, 2020), and SubgraphX (Yuan et al.,

2021) are some attempts to explain the decision-making process

of GNNs. The explainability methods for Transformers have been

analyzed in Remmer (2022). Existing efforts and a roadmap to

improve the trustworthiness of GNNs have been presented in the

latest survey (Zhang H. et al., 2022). However, the explainability

and trustworthiness of multimodal GNNs and Transformers is an

open challenge.

5.7 Over-smoothing in GNNs

One particular challenge in using GNNs is over-smoothing,

which occurs when the GNN is trained for too long, causing the

node representations to become almost similar (Wu et al., 2020).

This leads to a loss of information, a decrease in the model’s

performance, and a lack of generalization (Valsesia et al., 2021).

Regularization techniques such as dropout, weight decay, skip-

connection, and incorporating higher-order structures, such as

motifs and graphlets, have been proposed. However, building deep

architectures that can scale and adapt to varying structural patterns

of graphs is still an open challenge.

5.8 Modality collapse

Modality collapse is a phenomenon that occurs in MML, where

a model trained on multiple modalities may become over-reliant

on a single modality, to the point where it ignores or neglects the

other modalities (Javaloy et al., 2022). Recent work explored the

reasons and theoretical understanding of modality collapse (Huang

et al., 2022). However, the counter-actions needed to balance model

dependence on data modalities require active investigation by the

ML community.

5.9 Dynamic and temporal data

Dynamic and temporal data refers to the data that changes

over time (Wu et al., 2020). Tumor surveillance is a well-known

technique to study longitudinal cancer growth over multiple data

modalities (Waqas et al., 2021). Spatio-temporal methods such

as multiple instance learning, GNNs, and hybrid of multiple

models can capture complex change in the data relationships over

time; however, learning from multimodal dynamic data is very

challenging and an active area of research (Fritz et al., 2022).
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5.10 Data privacy

Given the sensitive nature of medical data, privacy and security

are critical considerations in the development and deployment

of MML models for oncology applications. With the increased

adoption of MML in healthcare settings, it is essential to adapt

these techniques to enable local data processing and protect patient

privacy while fostering collaborative research and analysis across

different sites and institutions. Federated learning (FL) has emerged

as a promising approach to train large multimodal models across

various sites without the need for direct data sharing (Pati et al.,

2022). In an FL setup, each participating site trains a local model

on its own data and shares only the model updates with a central

server, which aggregates the updates and sends the updated global

model back to the sites. This allows for collaborative model

development while keeping the raw data securely within each site’s

premises.

To further enhance privacy protection in FL and other

distributed learning scenarios, differential privacy (DP) can be

integrated into the model training process. DP is a rigorous

mathematical framework that involves adding carefully calibrated

noise to data or model updates before sharing, in order to protect

individual privacy while preserving the utility of the data for

analysis (Akter et al., 2022; Islam et al., 2022; Nampalle et al., 2023).

Secure multi-party computation (SMPC) is another powerful

technique for enabling joint analysis and model training on

private datasets held by different healthcare providers or research

institutions, without revealing the raw data to each other (Şahinbaş

and Catak, 2021; Alghamdi et al., 2023; Yogi and Mundru, 2024).

SMPC protocols leverage advanced cryptographic techniques to

allow multiple parties to compute a function over their combined

data inputs securely, such that each party learns only the output

of the computation and nothing about the other parties’ inputs.

In addition to these solutions, implementing appropriate access

control and authentication mechanisms is crucial for restricting

access to sensitive healthcare data to only authorized individuals

and entities (Orii et al., 2024). This involves defining and enforcing

strict policies and procedures for granting, managing, and

revoking access privileges based on the principle of least privilege

and the need-to-know basis. Regular security risk assessments

should also be conducted to identify and mitigate potential

vulnerabilities proactively, ensuring the ongoing protection of

patient data.

5.11 Other challenges

MML requires extensive computational resources to train

models on a variety of datasets and tasks. Robustness and

failure detection (Ahmed et al., 2022a) are critical aspects of

MML, particularly in applications such as oncology. Uncertainty

quantification techniques, such as Bayesian neural networks (Dera

et al., 2021), are still under-explored avenues in the MML. By

addressing these challenges, it is possible to develop MML models

that are able to surpass the performance offered by single-modality

models.

5.12 Potential future directions

The future of MML in oncology holds immense potential.

A critical direction is the integration of large amounts of high-

quality data from diverse modalities, such as imaging, genomic,

and clinical data, to enhance the accuracy and comprehensiveness

of cancer diagnostics and treatment predictions in an end-to-end

manner. Overcoming challenges in data registration and alignment

is crucial to ensure seamless integration and accurate interpretation

of multimodal data. Developing robust models capable of pan-

cancer generalization and transference can enable more universal

applications across different cancer types. Addressing issues of

missing data samples and modalities, and tackling imbalanced

datasets, will be essential to improve model robustness and

fairness. Enhancing explainability and trustworthiness in these

models is vital for clinical adoption, necessitating transparent and

interpretable AI systems. Preventing modality collapse is important

for maintaining the distinct contributions of each data modality.

Moreover, leveraging dynamic and temporal data can offer deeper

insights into cancer progression and treatment responses. Ensuring

data privacy and ethical considerations will be paramount as the

field advances, balancing innovation with the protection of patient

information. Lastly, implementing MML applications in clinical

settings is crucial to fully realize the benefits of MML in cancer

research.

5.13 Limitations of the study

MML is a broad research field that has recently gained

traction. In this review, we have focused on the application of

MML on oncology data. However, MML is widely being adopted

in applications such as autonomous vehicles, education, earth

science, climate change, and space exploration (Xiao et al., 2020;

Sanders et al., 2023; Hadid et al., 2024; Li et al., 2024). Moreover,

beyond GNNs and Transformers, MML has been explored using

encoder-decoder methods, constraint-based methods, canonical

correlations, Restricted Boltzmann Machines (RBMs), and many

more (Qi et al., 2020; Zhao et al., 2024). Each of these topics require

an extensive review of the literature in the form of separate articles.

The relevant works discussed in this section is summarized in

Table 5.

6 Multimodal oncology data sources

Unifying the various collections of oncology data into central

archives necessitates a focused effort. We have assembled a

list of datasets from data portals maintained by the National

Institute of Health and other organizations, although this list is

not exhaustive. The goal of this compilation is to offer machine

learning researchers in oncology a consolidated data resource.

The collection, which is updated regularly, can be accessed at

https://lab-rasool.github.io/pan-cancer-dataset-sources/ (Tripathi

et al., 2024a). The compilation of pan-cancer datasets from sources

such as The Cancer Imaging Archive (TCIA), Genomic Data

Commons (GDC), and Proteomic Data Commons (PDC) serves as

a valuable resource for cancer research. By providing a unified view
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TABLE 5 References discussed in Section 5.

Sections References

Large amounts of high-quality

data

Thomee et al., 2016; Sun et al., 2017;

Lipkova et al., 2022; Ektefaie et al., 2023

Data registration and

alignment

Liang P. P. et al., 2022; Zhao et al., 2023

Pan-cancer generalization and

transference

Wei et al., 2020; Liang P. P. et al., 2022

Missing data samples and

modalities

Mirza et al., 2019; Jiang et al., 2022

Imbalanced Data Mirza et al., 2019

Explainability and

trustworthiness

Ying et al., 2019; Vu and Thai, 2020;

Yuan et al., 2021; Li P. et al., 2022;

Nielsen et al., 2022; Remmer, 2022;

Zhang H. et al., 2022

Over-smoothing in GNNs Wu et al., 2020; Valsesia et al., 2021

Modality Collapse Huang et al., 2022; Javaloy et al., 2022

Dynamic and Temporal Data Wu et al., 2020; Waqas et al., 2021; Fritz

et al., 2022

Data Privacy Şahinbaş and Catak, 2021; Akter et al.,

2022; Islam et al., 2022; Pati et al., 2022;

Alghamdi et al., 2023; Nampalle et al.,

2023; Orii et al., 2024; Yogi and

Mundru, 2024

Other Challenges Dera et al., 2021; Ahmed et al., 2022a

Limitations of the Study Qi et al., 2020; Xiao et al., 2020; Sanders

et al., 2023; Hadid et al., 2024; Li et al.,

2024; Zhao et al., 2024

of multimodal data that includes imaging, genomics, proteomics,

and clinical records, this compilation facilitates the development

of adaptable and scalable datasets specifically designed for machine

learning applications in oncology (Tripathi et al., 2024a). The

compiled datasets encompass a broad spectrum of data modalities,

such as radiology images (CT, MRI, PET), pathology slides,

genomic data (DNA, RNA), proteomics, and clinical records. This

multimodal nature enables the integration of different data types to

capture the intricacies of cancer. Moreover, the compilation covers

32 cancer types, ranging from prevalent cancers like breast, lung,

and colorectal to less common forms such as mesothelioma and

uveal melanoma. The inclusion of hundreds to thousands of cases

for each cancer type provides a substantial resource for training

machine learning models, especially deep learning algorithms.

Standardizing the diverse data formats, annotations, and

metadata across different sources is essential for creating datasets

that are suitable for machine learning. The HoneyBee framework,

a modular system designed to streamline the creation of machine

learning-ready multimodal oncology datasets from diverse sources,

can help address this challenge (Tripathi et al., 2024b). HoneyBee

supports data ingestion from various sources, handles different data

formats andmodalities, and ensures consistent data representation.

It also facilitates the integration of multimodal data, enabling the

creation of datasets that combine imaging, genomics, proteomics,

and clinical data for a holistic view of each patient case.

Furthermore, HoneyBee incorporates pre-trained foundational

embedding models for different data modalities, such as image

encoders, genomic sequence embedders, and clinical text encoders.

These embeddings can serve as input features for downstream

machine learningmodels, leveraging transfer learning and reducing

the need for extensive labeled data. The framework’s scalable

and modular architecture allows for efficient processing of

large-scale datasets and easy integration of new data sources,

preprocessing techniques, and embedding models. By utilizing

the HoneyBee framework, researchers can create high-quality,

multimodal oncology datasets tailored to their specific research

objectives, promoting collaboration and advancing machine

learning applications in cancer research.

7 Conclusion

Existing research into the integration of data across various

modalities has already yielded promising outcomes, highlighting

the potential for significant advancements in cancer research.

However, the lack of a comprehensive framework capable of

encompassing the full spectrum of cancer dataset modalities

presents a notable challenge. The synergy between diverse

methodologies and data across different scales could unlock deeper

insights into cancer, potentially leading tomore accurate prognostic

and predictive models than what is possible through single data

modalities alone. In our survey, we have explored the landscape of

multimodal learning applied to oncology datasets and the specific

tasks they can address. Looking ahead, the key to advancing this

field lies in the development of robust, deployment-ready MML

frameworks. These frameworks must not only scale efficiently

across all modalities of cancer data but also incorporate capabilities

for uncertainty quantification, interpretability, and generalizability.

Such advancements will be critical for effectively integrating

oncology data across multiple scales, modalities, and resolutions.

The journey toward achieving these goals is complex, yet essential

for the next leaps in cancer research. By focusing on these areas,

future research has the potential to significantly enhance our

understanding of cancer, leading to improved outcomes for patients

through more informed and personalized treatment strategies.
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