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Large language models have been shown to excel in many di�erent tasks across

disciplines and research sites. They provide novel opportunities to enhance

educational research and instruction in di�erent ways such as assessment.

However, these methods have also been shown to have fundamental limitations.

These relate, among others, to hallucinating knowledge, explainability of

model decisions, and resource expenditure. As such, more conventional

machine learning algorithms might be more convenient for specific research

problems because they allow researchers more control over their research.

Yet, the circumstances in which either conventional machine learning or large

language models are preferable choices are not well understood. This study

seeks to answer the question to what extent either conventional machine

learning algorithms or a recently advanced large language model performs

better in assessing students’ concept use in a physics problem-solving task.

We found that conventional machine learning algorithms in combination

outperformed the large language model. Model decisions were then analyzed

via closer examination of the models’ classifications. We conclude that in

specific contexts, conventionalmachine learning can supplement large language

models, especially when labeled data is available.

KEYWORDS

large languagemodels,machine learning, natural languageprocessing, problemsolving,

explainable AI

1 Introduction

The introduction of ChatGPT, a conversational artificial intelligence (AI)-based bot,

to the public in November 2022 directed attention to large language models (LLMs). As

of 2023, ChatGPT is based on a LLM called Generative Pre-trained Transformer (GPT;

versions 3.5, 4, 4V, or 4o) and has proven to perform surprisingly well on a wide range of

different tasks in various disciplines—including medicine, law, economics, mathematics,

chemistry, and physics (Hallal et al., 2023; West, 2023; Surameery and Shakor, 2023; Sinha

et al., 2023). A number of tasks in education (research) can be tackled using LLMs in

general, or ChatGPT more specifically. For example, LLMs were found to be able to write
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quality essays in physics (Yeadon et al., 2023), simulate student

preconceptions for physics concepts (Kieser et al., 2023), write

reflections in nursing education contexts (Li et al., 2023), and even

generate feedback that was considered equally correct and more

helpful by the students compared to human expert feedback (Wan

and Chen, 2024). In particular, prompt engineering with LLMs (i.e.,

specifically designing the inputs to the LLM) was found to notably

improve the capabilities and quality of outputs, to even become so-

called “zero-shot reasoners” (Wan and Chen, 2024; Kojima et al.,

2022).

The use of LLMs in education (research) is, however, not

without challenges. When confronted with conceptual questions,

LLMs may hallucinate knowledge (i.e., present false information

as facts) (Huang et al., 2023), which is then concealed by its fluent

language and verbose writing style (Gregorcic and Pendrill, 2023).

This issue is exacerbated by the intransparency of the decisions

made by LLMs (Chen et al., 2023; Manning, 2022). Intransparency

in the decision-making process of an LLMmay prevent researchers

from understanding the logic behind a prediction, and thus hinder

them from justifying their choices for certain LLMs. LLMs also

exhibit human-like biases through imbalanced training data; and

the extent to which LLMs truly extrapolate beyond their training

data or merely mimic patterns—in the sense of “stochastic parrots”

(Bender et al., 2021; Caliskan et al., 2017; Lake and Baroni, 2023)—

remains an open question. Many examples demonstrate that LLMs

such as GPT-4 cannot sufficiently abstract and reason (Mitchell

et al., 2023). Finally, the extensive use of LLMs significantly

contributes to environmental concerns, particularly in terms of

CO2 emissions and expenditure of energy, both by training the

foundation models and with every single request passed through

the model (de Vries, 2023; Dodge et al., 2022).

Consequently, we argue that the circumstances where

machine learning (ML) and LLMs excel respectively should be

critically evaluated to derive some guidance for researchers and

practitioners. Conventional AI approaches (i.e., ML algorithms)

are less complex and their decisions can commonly be explained

using established procedures (Lundberg et al., 2019). Given their

reduced complexity, conventional ML algorithms can be operated

in a controlled manner and might not generate unanticipated

outputs. For example, a trained binary classifier can by design only

output two categories, whereas generative LLMs used in a binary

classification problem might output the categories, however, it

might also produce further textual output. Whether conventional

ML or LLMs are used for solving a (research) problem in part

depends on the complexity of the problem. In some contexts, e.g.,

fourth-grade mathematics, it was found that conventional ML

can outperform LLMs on identifying incoherent student answers

(Urrutia and Araya, 2023). However, this research considered the

LLM GPT-3, which is now surpassed by GPT-4. Given the specific

potentials and limitations with either conventional ML and LLMs

it remains an open question what approach should be utilized

under which circumstances.

Given the successes of conventional ML such as explanability

of model decisions as well as the limitations such as the ability

to tackle complex problems, and the recent advances of LLMs

with their “emergent abilities” (Wei et al., 2022) and zero-shot

reasoning capabilities, this study compares the performances of

conventionalML algorithms and a recent LLMon a physics-specific

assessment problem. Our goal is to refine our understanding of the

circumstances under which either conventional ML algorithms or

LLMs might be better suited solutions.

2 Theoretical background

2.1 Natural language processing with
conventional ML and LLMs

Language data such as students’ written responses, interview

transcripts, or research articles is omnipresent in educational

research, and therefore integral for theory development.

Educational research often draws on content analysis as an

analytical method to analyze language data. One major task

in content analysis is to develop categories for certain events

occurring in the language data to be analyzed, such as a student

using a certain concept in an interview (transcript). The actual

assignment of codes to the content is guided by a coding

manual that specifies the rules for when a category applies or

not (Mayring, 2000; Krüger et al., 2014). Content analysis, in

particular the process of developing and assigning codes, is often

very time-consuming, thus limiting the amount of content (e.g.,

interview data) that can be analyzed. This leads to methodological

constraints. For any given language, there is a set of words that

frequently appears in texts, yet a much larger number of words

occurs only rarely (Newman, 2005; Wulff, 2023). Hence, rare

occurrences also appear only in large text corpora, making it

generally insufficient to analyze only small samples to validly

identify underlying patterns in textual data. Similarly, the decisions

and subjective judgments of researchers involved in the analysis

process can pose challenges in validating and reproducing the

results of qualitative analyses (Biernacki, 2014).

Natural Language Processing (NLP) enables the use of new

statistical approaches (often based on ML) to systematically

analyze large data sets that are no longer analyzable by humans

alone. A powerful tool that was developed by NLP researchers

are word and sentence vectors, also referred to as embeddings,

which can then be further processed, e.g., by ML algorithms. In

the simplest case, one can use so-called “bag-of-words” models

that list all words in a document and their frequencies of

occurrence while omitting positional information (Zhang et al.,

2010). Limitations of ’bag-of-words’ models include a missing

measure of similarity between individual words as these models

do not consider the particular meaning of words, and they do

not consider word order. To address these limitations, artificial

neural networks were trained with the aim to transform textual

input into (static) embeddings, i.e., numerical vectors of generally

high dimensionality, that incorporate contextual information of

individual words or sentences (Mikolov et al., 2013). These

embedding vectors can then be used as input features for ML

algorithms in further downstream tasks. ML refers to the inductive

learning of patterns from data (Rauf, 2021). VariousML techniques,

such as clustering or classification, can be applied based on these

embedding vectors. In early NLP research, oftentimes conventional

ML approaches such as logistic regressions or decision trees

were utilized to build these classifiers (Jurafsky and Martin, 2014;

Manning, 2022). Despite the simplicity of thesemodels, particularly
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with regard to clustering, good results can also be achieved in

difficult tasks such as argumentation mining (Stede and Schneider,

2019) or classification of elements of problem-solving approaches

(Tschisgale et al., 2023a).

Recently, significant advancements in the field of NLP have

occurred through the training of LLMs. In contrast to simple

“bag-of-words” models that merely capture word frequencies in

documents, and static embedding vectors, LLMs are able to more

dynamically encode and also generate language. LLMs can process

textual data at a much deeper level by quantifying relationships

between words (often based on co-occurrence in large training

corpora). The foundation for these advancements lies in a specific

artificial neural network architecture called transformers (Devlin

et al., 2018; Vaswani et al., 2017) that are trained on extensive

textual data. Transformers brought along a vast variety of different

models (Amatriain et al., 2023), such as Bi-direction Encoder

Representations for Transformers (BERT) or Generative Pre-

trained Transformers (GPT). The training of transformer LLMs

typically involves prediction of randomly omitted words from a

given sequence of context words. Surprisingly, this relatively simple

training objective enabled transformers to perform well on new

tasks that were not included within the training phase especially

if the LLM is also given some examples (few-shot learning) (Brown

et al., 2020). Two paradigms of application are differentiated: (i)

fine-tuning, i.e., the LLM is trained with labeled data to perform a

task, and (ii) prompting, i.e., huge-size language models (also called

foundation models) are given a few examples with blanks for the

model to fill in (few-shot or zero-shot learning) (Zhao et al., 2023).

Among the most widely used, popular, and performative

transformer models is the Generative Pre-trained Transformers

(GPT) family developed by OpenAI (Achiam et al., 2023). As

a generative transformer model, GPT relies on continuing an

input string, a so-called prompt. Manipulating this prompt to

achieve desirable outputs is termed prompt engineering (i.e.,

adding specific information to an input to influence the output)

and prompt chaining (i.e., concatenating subsequent prompts and

outputs to align the new outputs with the flow of conversation

and incorporating prior information), and was found to enable

researchers to utilize GPT models specifically for their research

purposes (Liu et al., 2021; White et al., 2023). One well-known

application (an assistant model, Zhao et al., 2023) of GPT models

is ChatGPT, a chatbot based on the GPT-3.5 (and later the GPT-

4, and GPT-4V with vision capabilities) architecture (Bubeck et al.,

2023). ChatGPT was particularly trained with human feedback and

prompt-response pairs to enable conversational turns. It has been

shown that this fine-tuning improves the performance of LLMs in

various tasks (Wei et al., 2021). ChatGPT has also made an impact

in the field of education (Kasneci et al., 2023), particularly in the

field of physics education (Kortemeyer, 2023; West, 2023).

2.2 ChatGPT in physics education

A growing number of studies in physics education explored

the potential of ChatGPT to solve physics problems. Some of

these studies suggested that ChatGPT is unreliable in terms of the

accuracy of its answers and that inconsistencies also occur within its

reasoning chains (Gregorcic and Pendrill, 2023; dos Santos, 2023).

However, it is argued that this apparent weakness of ChatGPT in

answering physics questions can be utilized as a learning experience

to promote critical thinking skills among students (Bitzenbauer,

2023). Other studies have tested the ability of ChatGPT (varying

between GPT-3.5 and GPT-4) to solve multiple-choice physics

questions. One of these studies found that ChatGPT was able

to correctly answer 22 out of 23 questions from the well-known

“Force-Concept-Inventory” (West, 2023). Kieser et al. even found

that GPT-4 is capable of mimicking various student preconceptions

known from physics education research when prompted to answer

the “Force-Concept-Inventory”. This opens up new possibilities

for the application of ChatGPT, including augmenting data sets

by adding simulated (i.e., synthetic) student responses (Kieser

et al., 2023). Another possibility was examined by Küchemann

et al. (2023) in a randomized controlled study comparing the

characteristics and quality of physics tasks created by prospective

physics teachers who used either ChatGPT or a textbook as a

tool. Küchemann et al. (2023) found that students in both groups

faced challenges in providing all the information necessary for

solving the tasks. Moreover, the authors noted that prospective

physics teachers used the tasks as provided by ChatGPT without

modification in 76% of cases (Küchemann et al., 2023). Krupp

et al. (2023) identified various strategies for utilizing ChatGPT as

an aid in solving physics problems and obtained a result similar to

that of Küchemann et al. (2023). More specifically, they found that

students often employed copy-and-paste techniques and accepted

the solutions presented by ChatGPT without critical reflection

(Krupp et al., 2023).

Wan and Chen (2024) conducted a study on the use of

ChatGPT (based on GPT-3.5) to provide feedback on students’

written responses to conceptual physics questions. They utilized

prompt engineering and few-shot learning techniques. Their

findings indicate that ChatGPT can serve as an effective tool for

generating feedback based on students’ responses. Even with a

relatively small number of examples in training, it is possible to

use LLMs through specific prompting to significantly reduce the

instructor’s effort required for evaluating student responses (Wan

and Chen, 2024). However, LLMsmay not always be the best choice

for computer-assisted assessment of student responses. Urrutia

and Araya (2023) found that conventional ML algorithms were

more effective than LLMs when examining text-based responses

from fourth-grade students to mathematics tasks. Moreover, LLMs

have been critiqued for taxing the environment in unprecedented

ways regarding average energy expenditure (de Vries, 2023). Also,

it is difficult to explain LLMs’ decisions, e.g., the generated text

of a generative LLM such as GPT. Given the size of a LLM’s

training corpus, the size of the LLM itself (i.e., its number of

its hyperparameters), and the complexity of the training process,

researchers have not come up with simple ways of inspecting and

explaining the generated outputs. In contrast, conventional ML

algorithms such as decision trees are much easier to explain and

hence control (Lundberg et al., 2019).

In sum, LLMs are quite capable tools that can be used for

many applications. However, they do not appear to be silver

bullets, given their tendency to hallucinate, i.e., to present false

information [ranging from 3 to 29 percent of the time, even in

innocuous tasks such as textual summarization (Hughes, 2023)],
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and their intransparency. Conventional ML might sometimes be

more advantageous. However, this is unclear for rather complex

tasks, e.g., those related to physics problem solving where learners

have to utilize physics concepts to solve intricate problems.

2.3 Physics problem solving

Physics-specific problem-solving abilities are essential for

students who intend to study physics and later plan to engage in

a physics-related career (Armour-Garb, 2017; Mulvey and Pold,

2020; Jang, 2015). However, students’ problem-solving abilities

were found to be rather poorly developed, even those of students

interested in science (Docktor et al., 2015; Kim and Pak, 2002).

To improve students’ problem-solving abilities, explicit instruction

that reflects problem-solving processes proved effective (Huffman,

1997; Gaigher et al., 2007; Mason and Singh, 2010). There exist

a variety of problem-solving process models (e.g., Polya, 1945;

Friege, 2001, however, they all share similar phases, among

them the phase of problem representation. Representing a given

problem from a physics perspective involves identifying relevant

physics concepts as well as making simplifying assumptions and

idealizations. Having constructed an adequate and convenient

problem representation comprises among the most important

phases in physics problem solving as it determines the solution

approach. Hence, the problem representation is often regarded

as the crucial phase in problem solving (Savelsbergh et al., 1997;

Fortus, 2008). In science domains, however, students often lack a

thorough understanding of central concepts which is necessary for

a useful problem representation in particular and for successful

problem solving in general (Kim and Pak, 2002; Docktor et al.,

2015; Hsu et al., 2004; Leonard et al., 1996). A potential reason

for this might be that school instruction more often focuses

on mathematical routines instead of conceptual understanding

(Mulhall and Gunstone, 2012; Gerace and Beatty, 2005).

Students with less developed problem-solving abilities profit

from short guidance during the problem-representation phase

that helps making the problem representation more coherent

and consistent (Savelsbergh et al., 1997). In order to do so, the

current state of students’ problem representations needs to be

assessed. Considering a typical school class consisting of about

thirty students and one teacher, or a decentralized learning setting

(e.g., online), providing timely feedback on each student’s problem

representation turns out to be an impossible task for the teacher.

However, if these problem representations are available in textual

form, NLP and ML methods can be used to automatically assess

students’ problem representations and provide adaptive feedback

in the form of short prompts to improve them. In general, such

computer-based feedback was shown to be effective for students’

learning in various settings (Graesser et al., 2018; VanLehn, 2011;

Bernius et al., 2022).

Timely assessment of a large number of problem

representations in textual form is daunting for teachers. Generally,

students’ problem representations can be regarded as well-

structured in the sense that there is a limited number of particular

physics concepts that ought to be included in order to make

sense of a physics situation. However, describing such physics

concepts in natural language may be difficult for students since

language can be ambiguous, particularly the technical language of

physics. For example, students could use their everyday language

to circumscribe a correct physics concept (Yore and Treagust,

2006), however, students’ language use could impede identifying

whether the concept was used correctly or used at all.

2.4 The present study

Even though LLMs were found to be valuable tools, for example

within physics education (West, 2023; Kieser et al., 2023), they

did not excel in all tasks, particularly those that require refined

conceptual knowledge or abstraction and reasoning (Gregorcic

and Pendrill, 2023; dos Santos, 2023; Urrutia and Araya, 2023;

Mitchell et al., 2023). Therefore, employing LLMs may not always

be the best choice for computer-based assessment of students’

responses and feedback provision. In particular, assessing problem

representations in textual form as outlined above might be more

suitable for conventional ML algorithms or LLMs such as GPT.

Conventional ML algorithms may be better suited due to increased

transparency of their decision-making processes, i.e., there is an

overall better explainability of the generated outputs in comparison

to the more black-box behavior of LLMs. Thus, we argue that in

addition to investigating the potential of an LLM for assessment

purposes, it is equally important to investigate the advantages

of conventional ML algorithms in comparison. Particularly when

aiming to assist students in the problem-representation phase

during physics problem solving, it remains unclear how LLMs

and conventional ML approaches perform when trying to assess

students’ usage of physics concepts.

Thus, this study aimed to answer the following research

questions (RQs):

RQ1: To what extent can conventional ML algorithms correctly

assess students’ usage of physics concepts within a physics

problem-solving task in comparison to ChatGPT based on

an engineered prompt and a baseline classifier?

RQ2: To what extent are decisions underlying the assessment

of both conventional ML algorithms and ChatGPT

explainable?

3 Methods

3.1 Study context

This study is based on data from the WinnerS research project,

which analyzed major problem-centered science competitions in

Germany, including the German Physics Olympiad (Petersen and

Wulff, 2017) in which physics problem solving plays a major role

(Tschisgale et al., 2024). In addition to collecting data of Physics

Olympiad participants, the research project also gathered data of

non-participating students that were comparable to participating

students in terms of age and school type. In total, there were 444

student responses to a problem-solving task detailed below. On

average, a response contained approximately 266 characters. The

complete data set which includes all student responses (Physics

Olympiad participants and non-participants) is freely accessible in
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FIGURE 1

Illustration of the vertical loop as presented in the online

assessment.

an Open Science Framework (OSF) repository (Tschisgale et al.,

2023b).

3.2 Problem-solving task

The task’s instruction was as follows (translated to English

by the authors): A very small mass slides along a track with

a vertical loop (see Figure 1). The mass starts from a height

above the highest point of the loop. Assume the motion to be

frictionless. Determine the minimum starting height above the

lowest point of the loop necessary for the mass to run through the

loop without falling down. Describe clearly and in full sentences

how you would solve this problem and what physics ideas you

would use.

Instead of letting students solve the physics problem-solving

task the typical (mathematics-centered) way, they were instructed

to write full sentences and particularly focus on the relevant physics

ideas. By prompting students to write full sentences, we intended

to reduce the amount of mathematical representations used by

students as students’ physics problem solving typically involves

using formulas and equations as representatives or clarifications

for specific physics concepts. By saying to focus on physics ideas,

students should mainly remain within the phase of problem

representation (Friege, 2001), i.e., students’ textual descriptions

should primarily entail physics assumptions and idealizations as

well as explanations around physics concepts that are regarded

important for the task. An ideal student response may therefore

entail simplifying assumptions such as considering a point mass,

neglecting friction, and modeling the loop as circular. Under

these assumptions, solving the loop task involves exactly two

physics concepts: (1) the law of conservation of energy and (2)

centripetal forces as the cause of circular motions (or considering

an equilibrium of the centrifugal and gravitational force in a

co-moving reference frame). The crux of this specific problem-

solving task is to apply these concepts to the uppermost point

within the loop. If the mass is just able to pass the loop, the

TABLE 1 Class distributions for energy and force codings.

Positive
class

Negative
class

Total

Energy coding 53 235 288

Force coding 40 244 284

gravitational force on the mass acts completely as the centripetal

force at the uppermost point. This idea in combination with

the law of conservation of mechanical energy, i.e., that the

initial potential energy of the mass due to its starting height

equals the potential and kinetic energy at the loop’s uppermost

point (neglecting rotational energy, given that only frictionless

sliding is considered), in theory allows to solve this task using

basic mathematics.

3.3 Coding manual

Generally, two fundamental physics concepts are necessary

for solving the introduced physics problem-solving task: the law

of conservation of energy and the concept of centripetal forces.

Two coders searched for these two physics concepts within each

student’s textual response andmarked the corresponding segments.

It should be noted that a segment’s start and ending did not need to

align with the start and ending of a sentence. Therefore, segments

could correspond to few words within a sentence or even go

beyond multiple sentences. Due to segments’ free start and ending,

determining a measure of interrater reliability proves difficult. A

proposed reliability measure that mitigates this issue is the gamma

agreement (Mathet et al., 2015).

Here is an example of the coded segments in a student response.

We indicated the segments containing the energy or force concept

using brackets and denoted the exact concept in italic font:

Example 1:

The approach is to first select the equilibrium of forces.

[Force concept: The centripetal force at the uppermost point of

the loop must be at least as great as the weight of the mass.]

[Energy concept: The minimum starting height can then be

calculated using the law of conservation of energy (kinetic and

potential energy within in the loop) using the required potential

energy at the starting point].

Example 2:

[Force concept: The centrifugal force in the loop depends

on the ball’s velocity, mass and the radius of the loop and must

exceed the gravitational force at the loop’s uppermost point.]

[Energy concept: The ball’s velocity in the loop’s uppermost

point depends on the height difference between the ball’s

starting point and the loop’s uppermost point.] Plug formulas

into each other, rearrange, and determine the minimum height

difference with regard to the loop’s uppermost point at which

the total force = 0. The result is the loop’s uppermost point plus

the height difference.
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Example 1 highlights that we only coded text segments in which

the physics concepts are directly applied to the task, e.g., simply

stating “conservation of energy holds” was not enough. For the

force concept, it was important that students specified the relevant

forces that act at the highest point of the loop. For the energy

concept, it was important which forms of energy occur and how

they relate. If the concepts are described in a too general manner,

they are not coded (see first sentence of the first example). Example

2 illustrates that while coding the force concept, we also allowed text

segments about an equilibrium of forces (involving the centrifugal

force), which is only correct in the co-moving reference system

of the mass. However, the data set showed that this approach

was frequently used among students, which is why it was also

considered as a correct usage of the force concept.

The data was coded by two independent human raters with

physics expertise (one graduate student and the first author). Both

raters coded a subset of the data. Afterwards, disagreements were

discussed and reconciled. Finally, the entire data set was coded by

both raters and gamma agreements was calculated to be .67 which

we consider reliable [comparing it to thresholds for Cohen’s kappa

and Krippendorff ’s alpha (Landis and Koch, 1977)].

3.4 Data pre-processing

In order to simplify the ML problem to a classification

problem on fixed units, we decided to split each response into its

constituting sentences. Checking the output of this segmentation

procedure revealed that it seemed to work well and provided

an accurate segmentation of the original student responses. The

original document-level human coding of the physics concepts was

transferred to sentence level in the following manner: If a word in

a sentence belonged to a coded segment in the original document-

level response, the whole sentence was assigned as including the

physics concept. For example, if in the original document-level

FIGURE 2

Illustration of the ML-based ensemble classifier, based on Raschka (2018).

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1408817
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Kieser et al. 10.3389/frai.2024.1408817

coding a physics concept spread out over two sentences (i.e.,

the coded segment began in the first sentence and ended within

the second sentence), both sentences would be considered as

incorporating the concept on sentence-level. We manually sorted

out sentences where the automated sentence splitting was incorrect

or where the coding no longer made sense after splitting. This way,

we ended up with 284 sentences that took into account the force

coding and 288 sentences for the energy coding (see Table 1). There

are 53 sentences that contain the energy concept and 40 sentences

that contain the force concept (we refer to them as the positive

class). We are therefore dealing with an unbalanced data set.

In summary, apart from the automatic sentence segmentation

and the corresponding transfer of codings from document

to sentence level, no further pre-processing, such as spelling

correction or removal of formulas, was conducted. The labeled

sentence corpus created this way was then used to answer our

research questions.

3.5 Analyses procedures

3.5.1 RQ1: comparing conventional ML
algorithms, ChatGPT, and a baseline model

In RQ1, we aimed to assess the performance of three different

approaches for correctly assessing students’ usage of physics

concepts within a physics problem-solving task. Each approach

corresponds to a specific classifier built to predict whether a

sentence of a student response either includes the energy concept

or the force concept.

For the conventional ML approach, we employed a stacking

classifier, which is a special case of so-called ensemble classifiers

(Dietterich, 2000). Such an ensemble classifier combines the

predictions of multiple ML-classifiers in order to improve

generalizability and robustness over an individual classifier by

combining the advantages of the individual classifiers. In this study,

we chose a stacking classifier from the mlxtend library (Raschka,

2018) which is written in the Python programming language (as

are all other libraries that are referred to later on). The classifier

inherently includes some form of cross validation (Bishop, 2006).

This logic of the classifier is depicted in Figure 2. This stacking

classifier consisted of four base classifiers and involved a 5-fold

cross validation. Specifically, we chose a gradient boosting classifier,

a nearest centroid classifier, and a support vector classifier from

scikit-learn (Pedregosa et al., 2011). The fourth base classifier

differed for the energy and the force concept. While a balanced

random forest classifier from imbalanced-learn (Lemaître

et al., 2017) was used for the energy-specific classifier, a random

forest classifier from scikit-learn (Pedregosa et al., 2011) was

used within the force-specific ensemble classifier. The decision for

the base classifiers within the stacking classifier was based on prior

experimentation on model performance.

In order to make students’ textual responses in the form of

sentences processable for any ML-based classifier, we generated

multiple features (i.e., numeric representations of the sentences)

based on the input sentences. More specifically, we used TF-

IDF (term-frequency inverse-document-frequency) weighted word

unigrams, character n-grams of the size 3 to 6, and sentence

embeddings from the spaCy library (Honnibal and Montani, 2017)

for feature generation. A sentence embedding is a numerical

representation of a sentence in the form of a vector (of

generally high dimensionality) that captures the meaning of a

sentence. We used sentence embeddings that originate from the

de-core-news-lg model. These embeddings are generated by

calculating the average of the vectors of the individual tokens. TF-

IDF weighting takes into account both the relative frequency of

a word among all documents and the inverse frequency of the

word in all documents (Qaiser and Ali, 2018). Moreover, two

additional binary features were included. The first feature checked

whether the sentence only contains a formula. The formulas could

be identified by searching for special characters. The second feature

checked whether the sentence contained words from a predefined

word list. One such word list was created for each relevant physics

concept (energy and force). These lists were selected according

to which words frequently occur in the positive class but not in

the negative class. Manual attempts were also made to identify

patterns in the data. As a result, words were added to the word

lists1. The energy-specific ensemble classifier used both additional

features while the force-specific ensemble classifier only used the

word list, as prior experimentation showed that the other feature

(the presence of a formula) minimally decreased performance.

We also want to point out that both ensemble classifiers, which

are in the following referred to as ML-based classifier (Energy)

and ML-based classifier (Force), were tested using variations in

pre-processing, used features, and the combination of classifiers.

Pre-processing experiments included lowercasing, lemmatizing

(transforming words to their base form), and the removal of

punctuation, special characters, and stop words. While the force

classifier achieved better results with lemmatization, the results

of the energy classifier improved through the removal of stop

words instead. Both performed better without punctuation and

special characters. Lowercasing had no positive influence on the

1 We present the word lists in German and English. Note that not all words

can be translated as single words and that other language-specific details

might be lost in the translation:

force = (“gewichtskraft,” “gewichts-,” “zentripetalkraft,” “zentripetal-,”

“zentrifugalkraft,” “zentrifugal-,” “flugkraft,” “flug-,” “erdanziehungskraft,”

“erdanziehungs-,” “anziehungskraft,” “anziehungs-,” “gravitationskraft,”

“gravitations-,” “fliehkraft,” “flieh-,” “radialkraft,” “radial-,” “schwerkraft,”

“schwer-,” “zentralkraft,” “zentral-,” “gravitation,” “mindestgeschwindigkeit,”

“kräftegleichgewicht,” and “kreisbewegung”);

force (translated) = (“weight force,” “weight,” “centripetal force,” “centripetal,”

“centrifugal force,” “centrifugal,” “flying force,” “flying,” “gravitational force,”

“gravitational pull,” “gravitational,” “attractive force,” “attractive,” “radial force,”

“radial,” “gravity,” “central force,” “central,” “gravitation,” “minimum speed,”

“balance of forces,” and “circular motion”);

energy = (“energie,” “kinetisch,” “potentiell,” “potenziell,”

“energieerhaltungssatz,” “startpunkt,” “energieerhaltung,” “lageenergie,”

“bewegungsenergie,” “höhendi�erenz,” “gesamtenergie,” “höhepunkt,”

“rotationsenergie,” “runterfallen,” and “herunterfallen”);

energy (translated) = (“energy,” “kinetic,” “potential,” “energy conservation

law,” “starting point,” “energy conservation,” “potential energy,” “kinetic

energy,” “height di�erence,” “total energy,” “maximum height,” “rotational

energy,” “fall down,” and “fall o�”).
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performance, so the upper case characters were left unchanged in

the end. Other approaches included BERT sentence embeddings

(Dietterich, 2000) from the transformers library (Wolf et al.,

2020) which were discarded because they resulted in a high

precision score, but a low recall score for the positive class.

Oversampling methods like SMOTE (Chawla et al., 2002) and

undersampling techniques to address the class imbalance were not

expedient either.

For the ChatGPT-based approach, we used ChatGPT

(gpt-3.5-turbo-instruct with standard settings) as a

binary classifier by means of prompting. We used the Python

programming language and ChatGPT’s API to automatically store

the binary outputs of the ChatGPT-based classifier (i.e., “Yes” or

“No”) in a list for further processing. Specifically, we used the

following prompts (translated into English by the authors):

Energy-specific prompt:

Can you tell me whether the following sentence from a

learner contains a statement about the law of conservation of

energy? Sentence: “(...)” Please answer yes or no first and do

not provide any reasoning.

Force-specific prompt:

Can you tell me whether the following sentence from

a learner contains a statement about the balance of forces?2

Sentence: “(..)” Please only answer yes or no first and do not

provide any reasoning.

We then attempted to improve the ChatGPT-based classifiers’

performance by using few-shot-learning, i.e., by providing

ChatGPT sample sentences and their assigned class through the

corresponding prompt. For the energy classifier, we have selected

sentences that do not contain the energy approach, and for the force

classifier, sentences that contain the force approach. Specifically, we

used the following prompts (translated into English by the authors):

Energy-specific few-shot-learning prompt:

Can you tell me whether the following sentence from a

student contains a statement about the law of conservation of

energy? Sentence: (...) To help you, here are some examples

that do not contain the law of conservation of energy:

1. At the highest point of the loop, the speed must be high

enough for the radial force, which is proportional to the square

of the speed and inversely proportional to the radius, to be at

least equal to the weight of the ball.

2. In this case, start height = loop height, because the energy is

converted immediately.

3. The mass would have to fall from a starting height that is at

least as high as the highest point of the looping

Please only answer yes or no and do not provide

any reasoning.

2 As we singled out in Section 3.2, arguing about centripetal force in

the inertial frame-of-reference would be more coherent, however, since

almost no student did so, we used the balance of forces in the co-moving

frame-of-reference here.

Force-specific few-shot-learning prompt:

Can you tell me whether the following sentence from a

learner contains a statement about the equilibrium of forces?

Sentence: (...) "To help you, here are some examples that

contain the force approach:

1. At the highest point of the loop, the speed must be high

enough for the radial force, which is proportional to the square

of the speed and inversely proportional to the radius, to be at

least equal to the weight of the ball.

2. At the top of the loop, the radial force must just

compensate for the weight of the mass so that the mass does

not fall downwards.

Please only answer yes or no and do not provide any

reasoning.

For the baseline approach, we established a simple rule-based

classifier that assigned a sentence to the positive class (i.e., sentence

includes one of the central physics concepts) if this sentence

included the character string “energie” or “kraft” (German words

for “energy” and “force,” respectively). We therefore refer to this

rule-based classifier as word-checking classifier.

To evaluate the performance of each classifiers, metrics such as

accuracy (proportion of correctly assigned sentences) can be used.

However, solely focusing on classifiers’ accuracy is not sufficient to

evaluate performance, particularly if data sets are unbalanced as

in our case. Unbalanced means that a specific class (e.g., sentence

includes energy concept) occurs much more frequently or rarely

than the other classes (e.g., sentence does not include energy

concept). In such cases, further performance metrics that also

take into account the type of incorrect classification (i.e., false-

positive or false-negative) are needed. Therefore, we also computed

precision, recall, and F1 values as further performance metrics.

Precision measures the accuracy of the positive predictions made

by a classifier. In our case, precision answers the question: “Of

all sentences that were predicted to include the energy (force)

concept, how many sentences actually include the energy (force

concept)?” Recall (or sensitivity) measures the completeness of

positive predictors. In simpler terms and framed to our context,

recall answers the question: “Of all sentences that actually include

the energy (force) concept, how many did the classifier correctly

identify?” The F1 score is the harmonic mean of precision and

recall, providing a single metric that balances the trade-off between

both precision and recall. All these metrics range from zero to one

and a higher value generally indicates better classification.

3.5.2 RQ2: making model decisions explainable
An essential aspect that builds trust in AI models and

opportunities for researchers to improve models is the possibility

to understand why the model makes certain decisions (Zhao

et al., 2023). This is also known as “explainable AI” (Lipton,

2018). Explainability refers to the ability to “explain or present the

behavior of models in human-understandable terms” (Zhao et al.,

2023, p. 1). There are many different ways to illuminate different

aspects of explainability for LLMs in the fine-tuning paradigm such

as calculating the attribution scores for each input that indicate

the respective impact on the classification (Zhao et al., 2023). For
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LLMs in the prompting paradigm, there also exist some methods

which are necessarily constrained if models are closed-source such

as ChatGPT (Zhao et al., 2023). Besides access restrictions, with

such LLMs as GPT-4 it is not yet possible to entirely explain internal

workings of the models and the generated outputs in human-

understandable terms. This is because these language models are

trained on extensive data and due to their complexity and diversity

of language patterns, they can produce unpredictable results. Even

if there are approaches to making the transformer architectures on

which large language models are based transparent (Vig, 2019).

It is unclear whether these methods have an impact on trust in

AI decisions (Conijn et al., 2023). There are no explicit rules or

methods to predict the exact output in advance. Instead, assessing

the quality of the output relies on experience and the model’s past

behavior, based on previous results or benchmarks. In short, the

versatility and complexity of LLMs makes it difficult to determine

the exact output in advance, and one must rely on experience to

evaluate their performance.

One method of making model decisions more explainable is

through analyzing model outputs. In such cases one distinguishes

local explanations and global explanations (Schrouff et al., 2021;

Zhao et al., 2023). Local explanations address the question of why a

specific student response is categorized in a particular way, while

global explanations try to answer the question of why a whole

group of student responses is categorized in a particular manner,

i.e., one tries to understand the model in more general terms. In

this study, we chose a global approach because we were interested in

overall model decisions which might provide insights into students’

text composition processes (e.g., which words are particularly

predictive for a certain classification). First, we grouped individual

sentences into separate documents based on their classifications

into a specific category (e.g., false positive). Thus, we obtained

four separate documents. Then, to identify patterns which might

explain the models’ classifications, we computed a term-frequency

inverse-document-frequency (TF-IDF) score for every word in

each of the four documents. Words with the highest TF-IDF scores

in each category-specific document can then be considered as

characteristic for this specific category (e.g., false positive), which

is why we refer to them as category-specific keywords. Finally,

these category-specific keywords may reveal patterns that provide

an understanding of the models’ decision-making. Analyzing the

words that are assigned to a specific class therefore provides an

approach for interpreting the assignment, as the words have a

strong influence on the classification. As both the machine learning

approach and the large language model approach are based on

the embeddings of the tokens that make up the words. The words

therefore have a major influence on the model output.

4 Results

4.1 RQ1: comparing correctness of
conventional ML and ChatGPT

In Tables 2, 3 we summarized the classification performance

for the ML-based classifier, the ChatGPT-based classifier, and the

Baseline classifier. Through the combination of the different ML

classifiers (ensemble classifier) and fine-tuning for the conventional

ML algorithms, a final F1 performance of 0.74, and 0.82 for energy

and force, respectively, could be achieved. Precision and recall were

always above 0.69 for both ML-based classifiers.

In contrast, both ChatGPT-based classifiers only achieved a low

precision (energy: 0.20; force: 0.16), i.e., both classifiers incorrectly

assigned a large proportion of sentences that did not contain the

relevant physics concepts as including the concepts. Hence, it

seemed that ChatGPT tended to classify sentences as including

the energy or force concept. This can also be seen by inspecting

Figure 3. The Figure is used to illustrate the relationships in codings

between different sets. The individual diagrams show three circles

that overlap and form a total of seven different areas. Each circle

represents a set, and the overlaps show the common elements

between the sets. Circle A represents the set of coded sentences.

Circle B represents the set of sentences that are assigned to the

positive class by the baseline classifier. Circle C represents the set of

sentences assigned to the positive class by the ChatGPT classifier.

The overlapping areas between two circles show the elements that

are contained in both sets, but not in the third set. The area in which

all three circles overlap represents the elements that are contained

in all three sets. The largest circle illustrates the sentences that were

assigned to the positive class (i.e., energy or force is in sentence)

by the ChatGPT-based classifier. The ChatCPT based classifier

therefore assigns a large number of sentences to the positive class.

We also attempted to improve the ChatGPT-based classifiers’

performance bymeans of few-shot learning, i.e., by showing sample

sentences including correct class labels to ChatGPT within the

prompt. For the ChatGPT-based classifier for the force concept,

the F1 score remained unchanged at 0.20 (see Table 3). For the

ChatGPT-based classifier for the energy concept, the F1 score

actually dropped through the few-shot-learning approach from

0.33 to 0.27 (see Table 2). Both ChatGPT-based classifiers thus

performed worse than the baseline word-checking classifier.

Compared to the two word-checking classifiers, which only

considered whether the strings “energy” or “force” were present in

a sentence, both ML-based classifiers showed satisfactory results

in the F1 value (see Tables 2, 3). The low precision value of

the ML-based classifier for energy, compared to the ML-based

classifier for force, suggests that the model incorrectly classified

some text segments as positive. This could be due to certain

student responses containing words related to “energy,” but without

explicitly demonstrating the application of the energy conservation

principle in the context of the task. This potentially posed a

challenge for the classifier. In Figure 4, the number of sentences

for the various intersections between encoded sentences, the ML-

based classifier, and the word-checking classifier are depicted. We

can read from the figure that a total of 11 sentences that were

positively coded were not recognized by the ML-based classifier for

energy. A comparison of Figures 3, 4 illustrates that the ML-based

classifications are much closer to the coded sentences by humans

(which we considered as the gold-standard).

4.2 RQ2: making model decisions
explainable

4.2.1 ChatGPT-based classifier
In Figure 3 we see that the ChatGPT-based classifiers tended

to assign sentences to the positive classes. This leads to poor
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TABLE 2 Performance metrics of the classifiers for the energy concept.

Classifier Accuracy Precision Recall F1

Word-checking 0.83 0.55 0.81 0.66

ChatGPT-based classifier 0.35 0.20 0.90 0.33

ChatGPT-based classifier incl.

few-shot

0.35 0.20 0.88 0.27

ML-based classifier 0.88 0.69 0.79 0.74

TABLE 3 Performance metrics of the classifiers for the force concept.

Classifier Accuracy Precision Recall F1

Word-checking 0.90 0.60 0.80 0.69

ChatGPT-based classifier 0.32 0.16 0.88 0.27

ChatGPT-based classifier incl.

few-shot

0.28 0.17 0.88 0.27

ML-based classifier 0.94 0.91 0.75 0.82

precision, recall, and F1 values for these classifiers. Due to these

poor performance metrics, it is not possible to interpret the outputs

of the classifier more precisely.

4.2.2 ML-based classifier
Now we want to evaluate the consistency of the different

classifiers, i.e. the extent to which two or three different classifiers

assign a sentence to the same categories or to different categories.

In Section 3.5.2, we explained that by understanding previous

decisions, you can gain clarity about how a classifier works. For

better comparability of the classifiers, it is advisable to analyze the

different assignments of a sentence by the classifiers. There are eight

different ways in which a sentence can be classified:

1. The sentence can be positively or negatively coded.

2. The baseline classifier can classify it as positive or negative.

3. The ML classifier can classify it as positive or negative.

As each of these three decisions is independent, there are a

total of eight different combinations. These different combinatorial

possibilities result in eight disjoint sets. These sets are shown in

Table 4 and the intersections are also shown in Figure 4.

The zeros or ones in the cells of the table indicate whether the

sentences are assigned to the positive (“1”) or negative (’0’) class by

the respective classifier (column). By analyzing the characteristics

of these eight different sets, we can recognize patterns and gain

information on why the classifier makes certain decisions. The

largest set is that of non-coded sentences that are not assigned to the

positive class by either the word-checking classifier or theML-based

classifier (row one in Table 4). These sentences are examples in

which the classifier has classified correctly. The keywords extracted

with TF-IDF values are shown in the Figure 5 (Energy) and Figure 6

(Force). Figure 5 shows these sentences that are correctly assigned

to NOT contain the energy approach, for example, words that

describe the looping or words that describe the force approach.

Figure 6 shows that sentences that are correctly not assigned to the

force approach contain words that can be assigned to the energy

approach: “energy,” “kinetic,” “law of conservation of energy.” We

can therefore interpret that the classifier assigns the sentences of

the positive class of the force approach to the negative class of the

energy approach and vice versa.

For both approaches, there are no cases where the ML-based

classifier assigns the sentence to the positive class, while the

sentence is negatively coded and does not contain the terms

“energy” or “power” (see the second row in Table 4). The third row

in Table 4 is an interesting case, as these sentences are examples

where the ML-based classifier performs better compared to the

word-checking classifier. The following examples are included in

the set for the energy classifier:

Then I use the law of conservation of energy, neglecting

the friction of the mass.

The mass must have enough energy at the highest point of

the loop so that the centrifugal force keeps it on track.

For the Force-Classifier there are the following examples:

There is a centrifugal force, the mass should have a

constantly increasing speed that increases during the loop or

afterwards but is smallest at the highest point of the loop.

The centrifugal force can be calculated using the speed

which results from the kinetic energy equation.

These sentences are all examples in which it is not clear that

the learners are applying the conservation of energy concept and

the force concept to the context of the task, but the string “energy”

or “force” still appears in the sentence. The classifier has learnt

to assign these sentences. However, there are instances where

the ML-based classifier does not outperform the word-checking

classifier. In row four of Table 4, sentences are displayed that are

not encoded as positive, yet both the word-checking classifier and
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FIGURE 3

Overlapping classifications of the ChatGPT-based classifier, the baseline word-checking classifier and the encoded sentences.

the ML-based classifier predict the sentence as positive. For the

ML-based classifier (energy) there are the following examples:

At first one should know that the law of conservation of

energy plays an important role here, then one plugs the energy

into a formula and gets an equation.

The kinetic energy is proportional to the mass and the

square of the velocity, the rotational energy is proportional to

the mass, the square of the radius (moment of inertia) as well as

the square of the angular velocity.

The answers mention words such as conservation of energy, but

do not apply them to the context of the task. In the second example,

physics formulae are described in words, but this does not describe

a physics approach applied to the context of this task. The fifth row

in Table 4 shows sentences that are difficult to identify because they

are positively encoded, but the word-checking classifier assigns the

sentences to the negative class. Examples are:

However, it should be noted that the mass is slowed down

by gravity on the way up.

The height depends on the weight of the mass and the

radius of the loop, because if one is changed, the speed and the

distance change, thus the centrifugal force resulting from the

starting height must be adjusted.

These types of sentences are difficult for the classifier to assign

correctly, as they are very specific but still elaborate on conservation

of energy. For each classifier, there exists a particular sentence in

the data set where both ML-based classifiers predict a true positive
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FIGURE 4

Overlapping classifications by the ML-based classifier, the word-checking classifier and the encoded sentences.

outcome, while the word-checking classifier predicts a negative

outcome (see sixth row of Table 4). These sentences are:

The following holds: E(kin) + E(pot).

and

Equilibrium of forces at the highest point of the loop,

velocity via energy approach.

The first example captures (parts of) the conservation of energy

expressed in a mathematical formula. At this point it should be

noted that, based on this example, it is quite difficult to conclude

that the ML-based classifier has now “learned” this mathematical

expression. It could just as well be that other formulae are also

positively classified, although they represent completely different

physics content. The second example was not recognized by the

word-checking force classifier because the character string “kraft”

(force) does not appear in the sentence. Nevertheless, vocabulary

similar to force was used and the ML-based classifier predicts

positive. We also have sentences in the data set where theML-based

model performs worse than the baseline classifier (see sixth row of

Table 4).

This in turn means that at least this amount of energy must

be available at the beginning.

Otherwise the mass does not have enough energy to pass

through it.

For the ML-based classifier (energy) this can be traced back

to errors in the sentence split. For the ML-based classifier (force),

these are rather colloquial answers that do not use physics-specific

vocabulary and are probably therefore difficult for the ML-based

classifier to recognize.
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TABLE 4 Number of sentences in intersections between baseline word-checking and ML-based classifiers for force and energy.

Row no. Encoded
sentences

Word-checking
classifier

ML-based
classifier

# sentences
(energy)

# sentences
(force)

1 0 0 0 201 223

2 0 0 1 0 0

3 0 1 0 16 18

4 0 1 1 18 3

5 1 0 0 9 7

6 1 0 1 1 1

7 1 1 0 2 3

8 1 1 1 41 29

To prevent the mass from falling out of the loop, the force

directed upwards at its highest point must be at least as great as

the force directed downwards.

The mass starts as high as twice the height of the loop

to exploit the centrifugal force and be pressed with enough

momentum against the track of the loop.

The last group is the group in which word-checking and ML-

based classifiers classify correctly positive. From this data set of

responses, we extract the keywords again using TF-IDF values.

The results are shown in Figure 7 (Energy) and Figure 8 (Force).

Figure 7 shows that for sentences that are correctly assigned to

the energy approach, an important word is, in fact, “energy.”

Just like the adjectives potential or kinetic. For sentences that

are correctly assigned to the force approach, the most important

keyword (besides the German articles “die” and “der”) is “weight

force” (see Figure 8).

5 Discussion

In this study we sought to evaluate and compare the

performance of conventional ML algorithms and an LLM-based

approach to solve a well-defined binary classification problem in

the domain of physics education. We found that for this specific

classification task, the conventional ML algorithms outperformed

the LLM classifier based on GPT 3.5 (turbo), even when

simple prompt engineering techniques are employed to potentially

improve GPT’s performance.

This findings was somewhat unexpected. After all, LLMs were

shown to perform well on a broad range of benchmark problems,

and prompt engineering and prompt chaining was shown to

enhance output correctness of LLMs (Chen et al., 2023; White

et al., 2023). Because we do not consider our problem to be

too difficult, and human interrater agreement was satisfactory,

conventional ML algorithms excelled at this classification problem.

It has to be said, though, that we only tried a simple prompt

engineering approach, and it is quite likely that more sophisticated

prompt engineering techniques would improve the classification

performance in our context. Some authors suggest that when

a LLM fails to perform a task, it does not necessarily indicate

that the LLM is incapable of solving the task. Instead, it may

simply mean that the appropriate prompt has not yet been found

(Polverini and Gregorcic, 2024; Bowman, 2023). Be that as it may,

this was not the main point of this study, and designing prompts

might take considerable time which then would suggest the use

of the conventional ML algorithms eventually. We also recognize

the fundamental challenges (hallucination, explainability, resource

expenditure) of LLMs and sought to estimate to what extent and

under which circumstances conventional ML algorithms that are

optimized in standard ways could reach similar performance. In

fact, they outperform ChatGPT noticeably in our context–even

the Baseline classifier. This indicates that in fact conventional

ML algorithms should also be considered if researchers want to

tackle specific research problems with well-specified tasks and

reliably coded data. However, conventional ML algorithms are

more difficult to adopt to novel contexts and LLMs such as GPT

can be considered versatile tools that, beyond assessment as in our

context, have a broader scope of applicability (Wan and Chen,

2024). This does also not mean that LLMs cannot be used in

classification contexts. Rather, researchers would typically train

foundation models in a fine-tuning paradigm to utilize LLMs for

classification problems (Devlin et al., 2018).

The ecological footprint of LLMs remains an issue, where

conventional ML algorithms as of now are much more resource

friendly. Moreover, LLMs tend to perform better in English

(Etxaniz et al., 2023). Since not all researchers might have the

capacities to train LLMs for specific languages from scratch,

conventional ML algorithms might present a valuable option to

achieve good performance in non-English tasks.

5.1 Limitations

Even though conventional ML algorithms are more resource

friendly this does not necessarily mean that they are more useful.

One rarely needs to only assess students’ concept use in one

specific problem-solving task. This also relates to a limitation of our

study. We only investigated students’ responses to one particular

physics problem. While concept use of energy and force is useful

throughout physics, however, we cannot rule out that our classifier

only performs well for this specific task. Yet, the programming
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FIGURE 5

Category-specific keywords in true negative classified sentences (energy classifier).

FIGURE 6

Category-specific keywords in true negative classified sentences (force classifier).

code could be re-used for training a similar classifier for another

problem, if a coding manual and coded data is available. This limits

the scalability of the conventional ML approach.

Another limitation relates to the generalizability of our findings

to other student populations. The investigated student population

is not representative of a broad student population. Almost all

Physics Olympiad participants and all non-participants attended

academic track (Gymnasium) and were from higher grade levels.

It remains unclear how the investigated models would have

performed on responses of less performant students as their
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FIGURE 7

Category-specific keywords in true positive classified sentences (energy classifier).

FIGURE 8

Category-specific keywords in true positive classified sentences (force classifier).

responses might have involved for example more colloquial

wordings, student preconceptions, and spelling mistakes. All these

aspects might have an influence on the performance of LLM and

ML algorithms.

Other limitations relate to our data pre-processing and

application of the algorithms. We only trained and validated the

conventional ML algorithms at sentence level to form a well-

posed classification problem. However, student answers should
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be considered holistically, because the meaning can only be

understood across several sentences. Moreover, we cannot rule out

that other conventional ML algorithms might have exhibited better

performance or that further modifications of the prompts to the

LLM would enhance classification performance (Wan and Chen,

2024). Future research should apply prompting strategies that have

been found to be performant for such contexts. Yet, these strategies

also require substantive domain knowledge, and hence they are no

silver bullet that automatically solve classification problems.

Finally, there are many different strategies to also inspect

decisions of LLMs (Zhao et al., 2023). For example, in the fine-

tuning paradigm attributions for the input features could be

calculated that then indicate how much a certain input feature

contributed to an output. However, these approaches require a

large amount of technical sophistication and are much better

worked out for LLMs in the fine-tuning paradigm as compared

to generative LLMs with prompting. Here, prompting would

also require substantive domain knowledge to investigate and

understand model outputs.

6 Conclusions and implications

LLMs are sometimes referred to as zero-shot reasoners (Kojima

et al., 2022) and can perform a variety of tasks. They have the ability

to generalize, meaning that they can solve tasks that they have not

seen before in the training data (Wei et al., 2023). However, our

study shows that GPT-3.5 was unable to correctly identify the use of

physics concepts in students’ responses to physics problem-solving

tasks without extensive prompt engineering. The used conventional

MLmodel and the baseline classifier performed significantly better.

Given our context, our results suggest that conventionalMLmodels

can be better adapted to a gold standard especially when expert-

coded data is available. Of course, these models are then only

suitable for a narrow range of applications and cannot handle the

breadth of tasks that LLMs do. However, these smaller models offer

further advantages in terms of transparency, processing speed, and

energy consumption. Therefore, specialized ML models could be a

more efficient and precise alternative in certain contexts. Especially

in contexts in which there are not many different tasks to manage.

It is important to remember that bigger is not necessarily better and

it depends on research context whether conventional ML or LLMs

are the optimal solution.

Related to designing teaching and learning environments for

physics problem solving, our findings suggest that conventionalML

models can be a valuable resource for automated classification. This

is an important prerequisite for feedback systems that potentially

enhance students’ physics problem-solving abilities. Especially

constructed response item formats such as the one evaluated in this

study are an important means to enable students’ to outline their

cognitive processes related to physics problem solving. Automated

analysis of these responses could enable online tutoring systems to

report back the extent to which students’ correctly represented a

physics problem. In physics, robust application of physics concepts

for solving problems is crucial for expertise development (Polverini

and Gregorcic, 2024). Identifying concept use with ML and LLMs

as presented in this study might pave the path toward developing

tutoring systems that enable students to build this expertise.
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