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The article addresses the accelerating human–machine interaction using the 
large language model (LLM). It goes beyond the traditional logical paradigms 
of explainable artificial intelligence (XAI) by considering poor-formalizable 
cognitive semantical interpretations of LLM. XAI is immersed in a hybrid space, 
where humans and machines have crucial distinctions during the digitisation 
of the interaction process. The author’s convergent methodology ensures 
the conditions for making XAI purposeful and sustainable. This methodology 
is based on the inverse problem-solving method, cognitive modeling, genetic 
algorithm, neural network, causal loop dynamics, and eigenform realization. 
It has been shown that decision-makers need to create unique structural 
conditions for information processes, using LLM to accelerate the convergence 
of collective problem solving. The implementations have been carried out during 
the collective strategic planning in situational centers. The study is helpful for 
the advancement of explainable LLM in many branches of economy, science 
and technology.
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1 Introduction

The complexity of artificial intelligence (AI) systems has witnessed a significant surge. The 
latest advances in AI bring it closer to natural intelligence every day. However, AI issues 
continue to pose challenges, even for recent large language models (LLM) like GPT-4. For 
instance, the systematicity property of an AI allows to combine known concepts in 
unprecedented ways according to systematic rules, leading to an exponential growth in the 
number of concepts learned (Russin et al., 2020). With the introduction of meta-learning 
(learning to learn) for the compositionality approach, Lake and Baroni (2023) demonstrated 
how an AI can mimic or surpass common human responses involving algebraic and systematic 
generalization. This finding underscores the practical implications of the research, showing 
that meta-learning, a relevant human cognition model, is within the grasp of well-designed AI.

Meta-learning is a framework that allows AI to be explained with both Bayesian models 
and meta-models in connection to the rational goal-seeking analysis of cognition. Instead 
of designing learning algorithms by hand, a system is trained to achieve its goals by 
repeatedly making it interact with an environment. In addition, meta-learning can be used 
to create models that draw causal inferences from observational data, select informative 
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interventions, and make counterfactual predictions (Binz et  al., 
2023). These new frameworks of training based on few-shot learners 
coupled with reinforcement learning (RL) demonstrated an agent 
capable of rapid situated adaptation across a vast open-ended task 
space, with a timescale of few seconds like for human players (Team 
et al., 2023).

The fast progress of AI is conveying and reinforcing the speculative 
idea, which is not new, that the digital world and its intelligent artifacts 
can become an explanation and a perfect model of the complexity of 
nature and humans. This vision is known as digital physics, with 
annexed doomsday predictions for humankind. This view can 
be defeated by clear-cut arguments such as those produced by Edward 
Lee (2020), where it is argued that the digital and natural realms are 
more likely to progress in parallel, even though they are deeply 
intertwined in a symbiosis that is not new to human history.

In this paper, the phenomenon of symbiosis between humans 
(natural intelligence in general) and machines, called hybrid (human–
machines) reality, will be used as the ground for a methodology that 
aims to explore and control it to make it viable and sustainable for 
humankind and nature. This methodology is based on pragmatic 
constructivism and will be used to create a scientific and falsifiable 
approach for creating XAI systems. In the context of XAI, the views 
about semantics are changing the models of AI systems; its 
development today goes to a cognitive level that cannot be formalized, 
considering quantum and optical effects (Raikov, 2021a).

These trends have accentuated the need for AI systems to provide 
valid explanations for their conclusions. Leading companies 
worldwide are increasing their investment in creating XAI. The most 
critical research ideas conducted to date include layer-by-layer analysis 
of the work of AI systems, opening like a nesting doll, logical inference 
schemes, and building on knowledge graphs. Knowledge graphs have 
recently been increasingly used as a possible means of generating 
explanations. The branching connections in knowledge graphs help 
explain the inferences of AI systems. For example, this is done by 
counting the distances between the target user profile and the element 
in the knowledge graph on which the development of the situation 
depends. One of the ways is to generate explanations by graphs (Liu 
et al., 2019), accompanying the process with reinforcement learning. 
The authors (Madry et al., 2017) try to force the neural network to 
explain by identifying the reasons for the user’s interaction with 
the system.

The answer to each new question on creating an XAI, which 
should turn a ‘black box’ into a ‘white box,’ reveals many more ‘black 
boxes’ inside. An infinite regression process occurs in some cases that 
is difficult to handle with a closed-form solution. The recursiveness of 
the contexts of cognition must be approached in a highly flexible and 
open but structurally determined manner (Bonci et al., 2018; Raikov 
A. and Pirani, 2022; Raikov A. N. and Pirani, 2022). The contradiction 
of the semantics of reality occurs if we try to use one unified language 
for cognition. The solution proposed to this contradiction is switching 
nimbly across one and another representation language with the same 
flexibility as humans seemingly do. The agility that allows traversing 
multiple semiotic systems must reside in the mystery of general AI 
and maybe with some seeds of consciousness (Raikov A. N. and 
Pirani, 2022). In any case, the complexity and number of computations 
required to obtain automated explanations grow exponentially, which 
often forces us to abandon the search for and inclusion of explanation 
components in an AI system.

Large language model based on the generative pre-trained 
transformer (GPT) paradigm can create high-quality and helpful 
explanations by effectively emulating the explaining agents and 
their generative processes. Self-explanation is a form of 
communication and reasoning. It requires a good theory of mind 
for both the explainer and the listener (Bubeck et al., 2023). The 
GPT paradigm cannot consider poor-formalizable cognitive 
semantics of AI models. It has limitations due to the autoregression 
and the classical causality character in its inference processes 
(Raikov, 2021a).

In the paradigm of XAI creation, this paper proposes an emphasis 
on the subjective and cognitive aspects of AI systems that are 
computationally irreducible. Socio-economic and hybrid (human–
machines) reality can be referred to as the outer side of an XAI system. 
In contrast, human consciousness’s fluctuating, quantum and 
relativistic nature can be  called the inside (Faggin, 2021). The 
separation between these parts (outer and inner) in an organized and 
viable agency system is relationally and computationally irreducible 
in its very nature.

In section 2, a review of XAI creates the ground for discussions in 
subsequent sections. In section 3, new aspects that involve causality in 
explanations of hybrid reality are introduced. In section 4, a theoretical 
experiment shows the limits and the challenges that AI and current 
LLM encounter in explanations achieved by systems dynamics 
approaches that exploit eigenbehaviours for non-formalizable objects 
of reality. In section 5, the context of the explanation is widened to 
consider problems in the socio-economic context. This leads to 
possible non-causal explanations, as contemplated in section 6. 
Section 7 deepens a research plan proposal and its foreseen 
consequences. Section 8 is used for the conclusions.

2 XAI, a review

There is no generally accepted definition of the XAI, and there 
cannot be. At the same time, the need for XAI is growing, which 
requires the development of methodological and technical support. 
There are many proposals from scientists and engineers accompanying 
its development, for example, the explanatory possibility of AI to:

 • Improve the quality of the AI system’s simulation, the degree of 
arbitrariness and an inherent explainability of the task that 
influences output-consistency and process-consistency, i.e., 
consistency between the explanation and other model predictions 
(Bubeck et al., 2023);

 • Ensure the creation of AI models that can explain their findings 
while maintaining the desired accuracy of forecasting, providing 
users with understanding, trust and control (Chen et al., 2020);

 • Ensure that decisions and any data supporting them can 
be explained by a layperson (Wang et al., 2020);

 • Aim to open the “black box” layer by layer to create models and 
methods that are both accurate and provide a satisfactory 
explanation (Veličković et al., 2019) and others.

The following main technical aspects of XAI can be identified:

 • Ensures the creation of XAI systems with the desired accuracy 
of forecasting;
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 • Considers the external environment and characteristics of the 
subject’s in need;

 • Guarantees verifiability of the explanation on other examples 
and models;

 • Assures the dependence of the explanation on the explanatory AI 
model, for example, aimed at visualization, and graphics.

The construction of explanations can be  both formalized and 
non-formalized. The former can be represented by logic. When the 
explanation itself can be verified, for example, by analyzing the process 
of creating logical cause-and-effect chains for obtaining the inference, 
logic can be in place. In this case, the explanatory system is known to 
be influenced by the data used to train and adapt the AI system (Leavy 
et al., 2020, 2021; Lin et al., 2021). The latter non-formalizable case can 
only be evaluated through the user’s semantic interpretation of the 
explanation received from the AI system.

The problem of XAI is not only the logical and technological 
provision of satisfactory explanations. It is closely related to the 
non-formalizable aspects of the phenomenon of consciousness, 
subjective reality, and ethical choices (Kaul, 2022). Therefore, its 
resolution must consider how people reach political, economic, and 
socio-technical agreements and agree to be  guided by them 
subsequently. The work of Rauber et  al. (2019) refers to the 
requirement for transparency in logical decision-making. In general, 
the need to understand what an explanation is must be emphasized. 
Any explanation must be  clarified as it varies by situation and 
discipline. A relatively comprehensive review of explanations (Mueller 
et al., 2019) required a comprehensive coverage of references to XAI 
work in various fields. The study analyses the fundamental concepts 
of XAI and different kinds of AI systems (expert systems, case-based 
reasoning systems, machine learning systems, Bayesian classifiers, 
statistical models, and decision trees). A variety of applications are 
considered—classification of gestures, images, text, debugging 
programs, musical recommendations, financial accounting, strategy 
games, team building, robots, non-playable characters agents, disease 
diagnosis, various hypotheses regarding the relationship of 
explanation to fundamental cognitive processes, links with learning, 
users, explanations, and limitations. Mueller et al.’s (2021) review of 
the principles of explanation and human–machine systems in AI 
emphasizes the need to create an explanation system that focuses on 
a person with expectations from the explanation. Finally, psychological 
work on cognition and bias uses human data to argue for their 
contributions to interpretable models of complex AI systems 
(Byrne, 2019).

The work of Adadi and Berrada (2018) provides an overview of 
the XAI topic, identifying commercial, ethical, and regulatory reasons 
for which explanations are needed. Various purposes of explanation 
are considered, such as justifying, controlling, improving, and 
discovering. Explainability methods are also discussed from the points 
of view of local and global, internal and a posteriori, model-specific, 
and model-independent.

The work of Arrieta et  al. (2020) provides overviews of XAI 
concepts, taxonomies, opportunities, and challenges, such as the 
classification of Machine Learning (ML) models depending on their 
level of explainability, the taxonomy of literature and trends in the field 
of explainability for machine learning models. The authors note that 
the interpretability of the black box of ML is essential to ensure 
impartiality in decision-making and resistance to malicious 

perturbations and is a guarantee that only significant variables 
determine the result.

Questions are raised related to the definition of the role of 
explanation in assessing liability in legislation and judicial practice. 
The need to achieve a compromise between the usefulness and cost of 
explanations, complexity and computing resources is noted. After all, 
any clarifying information in the form of a potential explanation can 
be presented as a set of abstract reasons or justifications for a particular 
result and not a description of the decision-making process (Doshi-
Velez et al., 2017). They propose considering explanation systems 
separately from AI systems to create opportunities for industries 
specializing in explanation systems in human-interpretable terms 
without compromising the accuracy of the original predictor.

In some artificial designs, the non-explainability is a feature. The 
artifact creators themselves sometimes desire the unexpected 
behaviors of an artifact. One thinks of the formula one engineer who 
designs aerodynamic solutions. They certainly hope that the car’s final 
behavior will exceed their expectations. This might happen, creating 
the magic that makes specific car models unrepeatable, heroic, or 
mythical. An artifact’s “unexpected” behavior is mainly due to the 
complexity generated by the limited rationality that designs it. The 
creator cannot foresee any complex interaction with the environment 
of an artifact. The limits in the accuracy of the human beliefs model 
while designing are partially transmitted into the artifact. Nonetheless, 
due to unexpected interactions with the environment and unforeseen 
dynamical evolutions, the artifacts seem “alive” and have their kind of 
“soul” to an observer. This is also known as the Eliza effect (Shah et al., 
2016). This effect continues to mislead the widespread perception of 
AI technologies from scientists and ordinary citizens. At the same 
time, there are acknowledged risks associated with failing to recognize 
putative consciousness in AI systems that might have it and risks with 
ascribing consciousness to systems that are not conscious (Butlin 
et al., 2023).

Therefore, some recent initiatives have started to explore the 
contact between natural and artificial artifacts and computers. A 
notable one is the definition and study of Symbiotic Autonomous 
Systems (Kaynak et al., 2021; Saracco et al., 2021; Wang et al., 2021; 
Raikov A. and Pirani, 2022; Raikov A. N. and Pirani, 2022). Efimov 
et al. (2023) noted many unexplained aspects in processing human 
speech and thinking: AI cannot understand language in the human 
sort of sense. They suggested considering four possible kinds of 
environments (and called them techno-umwelts) for a machine: verbal 
virtual, non-verbal virtual, verbal physical, and non-verbal physical. 
General or comprehensive AI may only be likely by freely operating 
in all these techno-umwelts.

The views of explainability are sometimes accompanied by 
skepticism about their usefulness. For example, questions are raised 
about whether high transparency in how an AI system works can lead 
to information overload, whether visualization can lead to over-
confidence or misreading, whether machine learning systems provide 
natural language rationales, and whether different people need 
different explanations (Heaven, 2020).

As a result of this review, the main aspects which characterize XAI 
are mainly the following:

 • Collective intelligence, accelerating human–machine interaction 
and understanding,

 • Poor-formalizable cognitive semantics of AI models,
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 • Graph of knowledge building, consciousness and subjective 
reality, cognitive and ethical choice.

However, there is a generally positive attitude toward the further 
development of XAI and the topic is constantly diversifying into many 
related areas, including the development of GPT/LLM. At the same 
time, the nature of knowledge depends on who its consumer is, in 
what environment it is formed, and how it is conducted. Thus, the 
nature and structure of the explanations are constructed not so much 
by considering the probability of the AI system making a choice, but 
rather the external socio-economic reasons for its generation, as well 
as the expectations and experiences of the user of the AI system.

Finally, a remark about AI being conflated with digital technology 
today has to be made. The use of digital technology is only one of the 
possible realizations of AI machines, which in the future may sport 
different analog (continuous) counterparts based on new models of 
computation that allow computing on different physical supports such 
as quantum, bio-based, neuromorphic, nano-mechanical, and 
even photonic.

3 Causality as a basis of explanation

A special place in constructing the components of the explanation 
is occupied by causality, the causal relationship of events. Causality is 
a fundamental phenomenon that reflects the universal connection and 
unity in the Universe. It connects thoughts with actions, actions with 
consequences, the movement of planets with the atoms that form 
them, the success of treating people from the technique used, etc. To 
the frequent question “Why?” cause-effect relationships of events help 
to find an answer (Pearl and Mackenzie, 2018). Without causality, for 
example, there would be no system of law because the offender alone 
is at fault.

Nonetheless, even when a system of laws of physical, normative, 
or abstract nature characterizes a subject under observation and 
control, these laws might depend on the observer. This observation 
calls for a pragmatic constructivist approach that includes requisite 
holism (Mulej, 2007) as a foundational principle for the hybrid reality 
(Perko, 2021), in contrast to the usual pursuit of the physical reality 
alone. Adopting pure holism as a principle means that a subject must 
consider all reality features simultaneously. However, this is not viable 
or realistic for either humans or machines when they are confronted 
with a kind of complex reality. More pragmatically, the law of requisite 
holism focuses on various viewpoints. Requisite holism means 
thinking as the whole but within a dialectical system that considers all 
crucial views and considers the observer’s boundaries and biases 
immersed in a changing and reflexive environment (Mulej et al., 2021).

When causality is used as the basis for explanations, we must 
consider the variety of causal systems and their explanations in the 
context of dialectic systems and their associated semiotic field 
(Nescolarde-Selva and Usó-Doménech, 2014). When systemic and 
cybernetic causal interpretations of agency meet constructivism, the 
world or reality is not a fact but the outcome of relationships between 
subject and object, observer and observed (Raikov A. and Pirani, 
2022). Even though holism is considered a fundamental framework 
in the construction of reality, humans and machines are subjected to 
bounded rationality, as Simon (1996) stated, as a foundational feature 
for artificial and natural intelligence. This constraint entails the 

necessary reintroduction of pragmatic reductionism (Simon, 1991) 
that considers the agency’s limits and knowledge in approaching the 
wholeness of constructivism. Causal explanations must overcome the 
difficulty of this conciliation between reduction and holism to capture 
the necessary features of the objectivity of intelligent beings striving 
in their world and with constructive relationships with other entities.

3.1 Causality in explanations

On the one hand, causality is characterized by frequent joint 
events. On the other hand, by using only the frequency of the joint 
occurrence of events, it is seldom possible to unequivocally judge the 
presence of a causal relationship between them. Causality needs 
interaction and theories of counterfactuals that can be achieved by 
combining logically sound theories and empirical experimentation 
(Pearl, 2017). For example, traditional AI cannot accurately translate 
the correlation of events into such a relationship and cannot provide 
a high level of transparency or trust in the output of an AI system 
(Pearl, 2018). However, the correlation and frequency of events 
occurring in large amounts of data remain the basis for constructing 
explicit and revealing implicit causal relationships of events by 
modern AI (Schölkopf et al., 2021).

The most common opinion is that the basis of the causal 
relationship is regularity: one event (thing) is constantly connected 
with another. The classic and most common point of view comes from 
David Hume. He believed that if events A and B appear together, and 
A occurs before B, then it is still insufficient to conclude that A is the 
cause of B. Instead, the reason seems that A and B must be adjacent to 
each other, that is, to have a spatial relationship. However, the 
adjacency requirement can now be questioned. For example, the effect 
of quantum entanglement is known from fundamental physics. It can 
be considered proven that two particles located at different ends of the 
Universe can be connected in such a way that a change in the quantum 
state of one of them leads to an instantaneous and distance-
independent change in the state of the other (Einstein et al., 1935; The 
BIG Bell Test Collaboration, 2018). This, however, violates the laws of 
the theory of relativity — the causal relationship moves faster than the 
speed of light. The question remains whether the change of the state 
of one of the particles is a case of actual causality because the nature 
of the phenomenon and the reason for the fluctuation of a particle that 
has changed its state to the first, second, or joint remains unclear. A 
scientific paradox has appeared, and consequently, Hume’s temporal 
priority and contiguity requirements can be challenged.

In analytical philosophy, when considering the views of Locke, 
something must be taken as a basis. However, any part of the analytical 
approach can be questioned. Nothing would be essential if there were 
infinite complexity in the world, for example, the structuring of 
photons, neutrinos, and quarks. This has yet to be discovered. Instead, 
there may be a basic element of nature, so simple or small, that we may 
not know but may know in the future. The essential element may 
resemble quantum superstrings, from which some scientists build the 
most elementary particles. This view may lend itself to the primitivism 
approach. Some primitives are likely correct, so there is nothing wrong 
with taking a primitivistic approach.

Nonetheless, the topic of explainability of AI is more 
comprehensive and goes even beyond the scope of causality; it covers 
subjective reality in self-developing interdisciplinary poly-subjective 
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(reflexively active) environments. In Lepskiy (2018), a system of 
ontologies was developed and tested, which includes ontologies of life 
support, overcoming breakpoints, strategic goal setting, development 
of strategies and projects, implementation and innovative support of 
strategies and projects. It is shown that the set of tasks for AI should 
be carried out through a system of ontologies of being of subjects, as 
well as in the context of supporting the reflexive activity of subjects.

Causality is what holds objects together through atomic and 
molecular bonds. It produces a change in one thing with the help of 
another. It gives meaning to any action. Some authors, like Albantakis 
and Tononi (2021), go so far as to posit the causal characteristics of 
specific physical structures as a necessary basis for possible 
consciousness in animals and machines. This also means that most 
modern computational technologies, mainly digital computing and 
neural networks, are destined to show no possibility of consciousness, 
whatever complexity is achieved and programs they run. Other 
authors place the importance of causality and causal explanation at a 
different systemic level to arrive at an opposite conclusion, suggesting 
that present-day machines develop some form of consciousness. 
According to Butlin et al. (2023), it is necessary and sufficient for a 
system to be conscious that it has a certain functional organization 
that it can enter a certain range of states, which stand in certain causal 
relations to each other and the environment; whether a system is 
conscious or not depends on features that are more abstract than the 
lowest-level details of the causality at the physical level.

Nonetheless, the authors are prone to think that the AI and 
natural essence will always retain an essential distinction that should 
be handled with the systemic concept and construction of hybrid 
reality. Natural entities (human, animal, or other living forms) are 
prone to express peculiar features that remain distinguishable from 
artificial ones. The artificial is a particular production of information 
processing driven by consciousness (Faggin, 2021). An artifact can 
usually be  distinguished rather clearly from natural productions. 
Things that belong to nature mostly show a fractal pattern while 
artifacts usually express, through matter, the regular forms that reflect 
the ideal shape of abstract systems—in particular, the ones that 
mathematics and geometry can support: a model is transformed into 
new non-natural reality with an act of art and creation (Lee, 2017).

The relationship between the natural and the artificial is complex 
and sometimes conflictual. This has been maintained and studied at 
different levels of discussion and for other purposes by valuable 
technology scholars. A long-lasting lesson from Wiener (1966) 
indicates that we have to “Render unto man the things which are man’s 
and unto the computer the things which are the computer’s.” Federico 
Faggin, the father of modern microprocessors and among the pioneers 
in the inquiry into neuromorphic cognitive computing technology, 
recently came up with “I have experienced my own nature both as a 
“particle” and as a “wave,” and “Meaning and matter must be like the 
two faces of the same coin” (Faggin, 2021). Faggin (2021) tries to 
express the irreducible but, at the same time, well-divided existence of 
the natural and the artificial with physics concepts, posing 
consciousness as a prior and peculiar feature of the natural entities: 
“The comprehension brought by consciousness is not accessible to a 
computer”. With another argument, Lee (2020) uses some insights on 
the Shannon theorem on information communication to maintain 
that the essence of the natural world cannot be digitalized and that AI 
will remain just a symbiotic counterpart to humans. However, they 
have to remain entangled and thrive in mutual existence. The author 

here proposes to grasp and try to control this form of irreducible 
duality between humans and machines by adopting the hybrid reality 
position and concept.

3.2 Structures of explanation

Using causality, in general, solves only some problems in 
explanations. An explanation should give an observer entity a better 
understanding of the explanandum phenomenon (what is to 
be explained). The explanans are assumptions that are in a dependent 
relation to the explanandum. Determining the dependence relation 
constructs the explanation (Bangu, 2017). The most natural example 
of such dependence is the logico-mathematical entailment, but it is 
not unique. For instance, even probabilistic forms of causality can 
provide explanations in scientific realms (Pearl, 2009, 2018) under 
well-controlled methodologies like the do-calculus, beyond logic 
representations or closed-form mathematical expressions (Raikov 
A. N. and Pirani, 2022).

As discussed by Pokropski (2021), all-natural phenomena have 
natural inner causes, but it does not follow that all explanations have 
to be causal or causal-mechanical. Some scientific explanations are not 
causal. For example, this is manifest in the case of dynamically 
constrained and situated systems, in which behavior is caused by their 
environment constraints or situation rather than by inner causal 
chaining of structural functions. Causal modeling is unfeasible in 
some reductionistic sense. It recalls the famous image of the behavior 
of the ant walking on the sand. Simon (1996) explains the irreducibility 
of the undoubtedly causal underlying mechanism. It is now possible 
to express a generalized view of causality that lets an agent, be  it 
natural or artificial, express causality in the hybrid reality that 
concerns the new ways of interactions between artificial and natural 
intelligence actors (Pirani et al., 2022; Raikov A. and Pirani, 2022; 
Raikov A. N. and Pirani, 2022).

In the case of an open system, as an AI can be modeled, a frontier 
exists where information is processed in input and actions are outputs. 
In this vision, the vast difference between information and knowledge 
and energy when the explanation is materialized into a physical act or 
entity remains fundamental for such a system model. While 
information processing, in principle, can occur without energy 
consumption (Chiucchiú et al., 2019), under very new findings, like 
D’Ariano and Faggin (2022), it seems that information can be  a 
generator of energy and any other physicalities. Instead, knowledge is 
based on storing information that maintains its organization and 
meanings through a physical medium (a hard disk, a photograph, or 
a neural configuration of the brain). Thus, it derives that knowledge is 
linked to energy. The transfer and use of knowledge across a system 
for its organization involves an energy balance computation to some 
extent (Ulyanov and Raikov, 1998).

A huge and very productive framework that relates energy 
balances with the inner mechanisms of systems of artificial intelligence 
has been brought about by Friston et  al. (2024) in recent years. 
According to Friston et al. (2024), the zenith of the AI age may end up 
being a distributed network of intelligent systems, in which network 
nodes may then be human users as well as human-designed artifacts 
that embody or implement forms of intelligence. This framework also 
has something interesting to spell in the XAI context. In Albarracin 
et al. (2023), XAI is considered for systems based on Friston’s active 
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inference and the free energy principle. Active inference modeling 
work indicates that decision-making, perception, and action consist 
of optimizing a model that represents the system’s causal structure 
generating outcomes of observations, which can be  any artificial 
intelligence system. According to Albarracin et  al. (2023), active 
inference can be  leveraged to design XAI systems through an 
architecture that foregrounds the role of an explicit hierarchical 
generative model, the operation of which enables the AI system to 
track and explain the factors that contribute to its own decisions, and 
whose structure is designed to be  interpretable and auditable by 
human users.

However, as we will see in the following section, the heart of the 
matter may not lie in the type of model and thus in a specific kind of 
structure, but rather in the process established between the intelligent 
structure, human or artificial, and its environment. A constructivist 
view is proposed here to express a possible more straightforward (and 
more scalable) solution to the problem of XAI in realities where 
humans and machines interact inextricably.

3.3 Eigen-behavior in reality grounding

Any explanation usually seeks a natural ground on which the 
mechanisms that justify the phenomena experienced and the behavior 
exhibited by an entity are revealed. In this context, the physical world, 
life forms, thoughts, social groups, and organizations are prone to 
be  treated as systems when some understanding, regulation and 
control are desired.

In recent years, new apparent realities have grown up. First, with 
the rise of virtual reality technologies, and subsequently with the 
augmented and mixed reality that has blurred the separation between 
physical and digital worlds more than ever. Lately, the advancements 
in AI technology (noteworthy, like the GPT/LLM) and methods have 
brought about entirely new realities and related frameworks. In this 
situation, it is increasingly apparent how the causal relationships that 
influence the developments and the future of systems are the outcome 
of a dynamic and active construction process rather than a guess or 
prediction based on statistical observations. It is evident now how AI 
and its recent uses have the power to influence the course of the 
realities humans were accustomed to think of as a product of their free 
will. This phenomenon has been investigated, and the whole picture 
is growing.

For example, the work of Esposito (2017, 2022a,b) gives a 
perspective that impinges on some evident constructivism about 
reality in its hybrid form. Esposito (2022a,b) treated how, in dealing 
with the necessarily (in practice) opaque AI, the goal of explanation 
becomes a communication to and from the machines. Machines must 
produce explanations that make sense without covering all the 
overwhelming details. This is desirable, particularly in legal decisions 
where there is a trade-off between overly precise constraints and 
freedom of interpretation, avoiding purely mechanical judgment. 
Esposito (2017) focuses on artificial communication, which is the only 
real and relevant aspect of current AI. It was predicted that algorithms 
are more efficient when they abandon the goal of understanding and 
try to reproduce humans’ ability to communicate instead. In Esposito 
(2022b), the argument arrives to express that algorithms “manufacture” 
with their operations the future they anticipate and predict the future 
shaped by their prediction. A simple example of this effect is shopping 

advertisements based on the user’s profile. The GPT/LLM system 
produces second-order blindness as AI systems see the reality that 
results from their intervention and do not learn from what they 
cannot see because the consequences of their work have canceled it 
(Esposito, 2022b).

In this context, it is natural to start considering algorithmic 
constructivism as a stance that should be  used pragmatically to 
provide new rigorous definitions of reality from the perspective of the 
human and the AI system simultaneously. This necessitates the 
introduction of circularity as a foundation. Circularity is at the basis 
of the concept of eigenform. The eigenform is a stable object of reality 
created by a continuous active action from an autonomous agent (AI 
system) that inquires about an environment or situation in which it is 
immersed. The nature of the inquiring action can be  framed and 
defined in different frameworks that range from simple interaction up 
to the more complex concept of enaction — see, for example, Varela 
et al. (2017) and Newen et al. (2018). The differences between the 
kinds of action go beyond the scope and focus of this work, in which 
action is used as an umbrella term for all the contexts simultaneously.

In the case of enaction of a bacteria, for example, its organization 
seems to require just a regulation of information retrieved by chemical 
(minor mechanical) interaction with its environment to survive and 
strive consistently. On the contrary, a human needs many more levels 
of enaction, ranging from the same as the bacteria to cognition, 
consciousness or unconsciousness, and social perspectives, requiring 
several levels of relationships and related abstractions simultaneously. 
The whole of these levels compose a character and a personality of an 
individual, group, or society. In addition, depending on the variety of 
the environment, natural or AI systems can survive only if their 
variety is adequate.

In the classical cybernetics approach, searching for such an 
equilibrium at the many levels of human life can be modeled as an 
eigen-behavior (Raikov A. and Pirani, 2022). This means that 
inquiring about some reality provides feedback that circularly 
reinforces the inquiry into a temporarily stable state of “being.” The 
active exploration, seen as a cognitive act of “knowing,” can 
be modeled mathematically as a transformation of some aspect of the 
environment into the “being” and checked against correspondence. 
This can be expressed for linear spaces, like Kb = λb, where b is a 
mathematical representation of a point in the state space of the 
“being,” and K is the act of knowing, touching, perceiving, and acting 
that continuously disturbs and stimulates the being. When the 
eigenvalue λ exists, it means that the system is stable, and we can map 
λ to the existence of an eigenform and so of reality. It has to 
be  remarked that with this formulation, the dissociation between 
“doing” and “being” can be  overcome, in particular for artificial 
entities. The eigenform approach constitutes a unifying model in 
which functional equivalence can imply phenomenal equivalence, 
which is a matter of deep inquiry otherwise (Albantakis and Tononi, 
2021; Butlin et al., 2023). However, the extent to which eigenform 
modeling can remedy this situation is a subject for further research 
beyond the scope and reach of this paper.

Circularity is essential in the definition of eigenbehavior and 
eigenvalue. No element comes before the other, but simultaneously, 
like in the image of the ouroboros. It is remarkable how, with the 
eigenform definition of reality, no formal or symbolic representation 
is needed unless the environment of the “being” is a symbolic 
abstraction in which a theorem deduction (the eigenform) can 
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survive. The definition of reality through eigenforms ranges from the 
physical to the conceptual (or metaphysical), from the conscious to 
the unconscious, from the formalizable to the non- and poor-
formalizable one (Raikov, 2021a).

4 Structures of human-AI reality

4.1 Purposeful loops in natural and artificial 
realities

It is possible to model a purposeful loop that crosses the natural 
and the artificial realities in both directions (Pirani et al., 2022; Raikov 
A. N. and Pirani, 2022). In such a case, the loop is an object of hybrid 
reality in which semantics can be expressed as an eigen-behavior in its 
simplest version (Kauffman, 2017). To clarify and materialize the 
discussion with an example, systems dynamics (SD) and modeling 
tools like CLD (causal loop diagram) are briefly recalled and 
used hereafter.

Forrester (1971) developed the SD framework in the late 1950s 
(Reynolds and Holwell, 2020). CLDs are a helpful tool and framework 
as they can provide easily understandable and concise explanations of 
eigenbehaviour mechanisms (Pirani et al., 2022). Moreover, CLDs are 
models that enable the design of control systems by facilitating the 
causal modeling expression, typically using differential equations of 
the explained phenomena.

By means of a CLD, the meaning of eigenforms can be captured 
easily if the causal relationships between eigenforms and other objects 
of reality are established. When an eigenform is used as an 
explanandum, it allows the expression of even possibly 
non-formalizable tokens of reality as explanans. The full definition 
(symbol grounding) in terms of the representation of the semantics of 
the eigenforms’ semantics can be deferred until strictly necessary. 
Even without an explicit definition of the explanans, the control of the 
phenomenon in which the eigenform acts and thrives can still 
be made using causal modeling. Evident and detectable chains of 
cause and effect between the eigenforms involved and differential 
equation systems can be  associated with the CLD, which usually 
admits this kind of formalization rather straightforwardly (Lin et al., 
2020). Using eigenforms in the causal modeling of a phenomenon 
achieves a systematic materialization of cause and effects even when a 
symbolic representation of the causes is not readily achievable. In 
general, a representation of the eigenform in nomological or 
ontological terms could also be missing forever; still, the underlying 
mechanism of the focused phenomenon can be prone to some control. 
CLDs are the first representational step toward a more profound 
scientific inspection and analysis of the nature and meaning of 
eigenforms. A meaning is immediately available as the eigenform 
manifests itself by acting causally among and with the other entities 
that constitute objects of reality. Nonetheless, it is worth remembering 
that meaning can also be considered beyond causality. According to 
von Uexküll (1982), causal relationships (in a restricted acceptance) 
deal only with antecedents and consequences, thereby completely 
concealing from the observer the broad interrelationships and 
interactions that make up the meaning of an object of reality that acts 
purposefully within the whole system.

Causal loop diagrams are not the only way to express such 
“inexpressible” meanings, other equivalent representational models 

can be  found. However, CLDs have the nice feature of being 
immediately understandable by humans and computable by machines. 
While machines do not need graphical rendering but a topological list 
of edges and nodes, humans can take advantage of the graphic 
expressions of CLDs. Therefore, any technology that can provide API 
(application program interface) to CLD enable an access to it both by 
machines and humans. For example, a CLD can be accessed by other 
programs as a Web application or extended Reality applications for 
humans, and can be accessed by an AI program as well. This feature 
represent a crucial element for XAI. When such a technology is used, 
an agent (natural or artificial) can access an embodied and situated 
object of reality that runs and thrives to self-organize in the targeted 
reality (digital or physical). In a CLD, symbols and loops are typically 
named and grounded. Such a model provides a prompt image of the 
state of organization and stability for a system. Positive feedbacks, the 
reinforcing loops (R), tend to produce instability if they are not 
balanced from a corresponding number of B (balancing loops, with 
negative feedback). This constitutes a means or indicator for detecting 
(or even measuring) disorganization. A disorganized system is 
doomed to collapse in the medium or long term. When this is the case, 
obtaining a CLD permits an observer to construct a control of the 
represented system by adding suitable negative feedback Balancing 
loops (B) that act as organizing forces.

Figure 1 shows an example of CLD output. It expresses the effects 
created by the installation and usage of an AI application by a set of 
human users. In the example, the societal effects are detectable when 
an advanced AI application, based on GPT over LLM, can be expressed 
with the CLD. We will call this hypothetical application AIxyzChat. 
The black elements in the picture are easily definable cause-effect 
dynamics according to common-sense knowledge (possibly from 
human experts).

By contrast, the red graphical elements in Figure 1 result from an 
emergent behavior of the eigenforms that act in their environment 
(digital or physical). They represent the non-representable in some 
sense. The application will handle these tokens of reality as EIG#1 and 
EIG#2, indicating the first and the second eigenform’s observable 
effects, respectively. With EIG#1 in Figure 1, humans can capture the 
effects of some not easily definable entity whose actions increase the 
level of social responsibility with the use of the AI application and, at 
the same time, for an unknown mechanism, produces an increase of 
predictable and potential risks for society. These simultaneous effects 
are wholly contradictory and paradoxical, taken as a whole. Therefore, 
the representations of the meaning and definition of EIG#1 are 
challenging to a human observer and can hardly be accepted as a 
viable reality beyond any evidence. Even if this entity is not easily 
definable with a consistent (without paradoxes) symbolic description, 
its effects are “real.” They can be quantified by further refining the 
model, measuring it, and deepening it scientifically.

Another case is the EIG#2  in Figure  1, which embodies and 
manifests a not well-identifiable effect that negatively affects the users’ 
acceptance of an AI application after it has undergone an upgrade 
process, pushed by the vendor as a technology advancement and 
improvement, for the benefit of users. With the AI application vendor 
as a possible observer of this pattern, this EIG#2 effect is not expected, 
and not easily causally explainable unless further insightful analysis is 
performed. However, the vendor must control the dynamics of EIG#2 
on the system promptly before they negatively affect the whole 
business. With this example, it can be assessed how the eigenform 
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concept can effectively model non-formalizable but detectable entities, 
at least in some parts of explaining a phenomenon in which AI 
is involved.

A second similar but dual example can be made when it is the AI’s 
turn to produce a CLD for its reasoning or problem-solving search in 
a complex environment. The capability of AI to construct causal 
models of observed or learned reality is still a big challenge. Recent 
studies indicate that a capability could be at reach soon in this sense 
(Lake and Baroni, 2023). An AI capable of systematic generalization 
is needed. This capability goes currently far beyond current LLM 
mechanisms. However, if it will be the case, a CLD can be used as a 
model of reality defined in a dual cognitive space as in the former 
example. In this case, the modeling of the complexity of reality is in 
charge of the AI. Still, it should remain explainable to humans (or 
other AIs) as they want access to the mechanism of the model-based 
inferences performed. This is discussed further with the next example.

Suppose that the very same AIxyzChat tool is prompted with a 
problem. The problem is still the regulation of some complex 
dynamics happening in the physical world. The CLD of this dynamic 
problem is shown in Figure 2. The goal for AIxyzChat is to maintain 
high satisfaction of buyers and subscribers of itself. AIxyzChat has to 
model what happens around buyers’ behaviors and control the system 
to reach that goal.

In Figure 2, red elements concern the non-formalizable part of the 
CLD. The blue elements concern the actuations that the machine 
exerts on the system. This requires the AIxyzChat to have its 
perception and actuator means (like a body). In general, perceptions 

and actuations can be gained in many ways with transductors and 
sensors like in robotics. For this example, sensors are Web/Internet 
searches and suitable linked-data sources; actuators are generative 
productions of Web/Internet information and data. The environment 
is the society of humans and their behavior.

In this case, the CLD is produced by the AI as an epistemic 
structure scaffolding that aims to provide the regulation effects for 
some equilibrium goal (the satisfaction of buyers in this example). The 
black elements in Figure 2 are typically achievable using the means of 
knowledge representation and reasoning frameworks that use 
knowledge graphs and ontologies coupled with causal and Bayesian 
analysis tools. LLM of the new generation can still be challenged by 
such a task if not provided with causal inference means. Again, in 
Figure 2, the red elements will identify eigen-behaviors that the AI 
cannot classify, in spite of whatever is the width and depth of its 
current knowledge base and belief state. Nonetheless, these eigen-
behaviors are fundamental to the modeling and regulation needed for 
this problem and cannot be avoided. In particular, EIG#1 happens to 
model some non-formalizable effect on the production process of new 
features for AIxyzChat, eventually hindering consumers’ satisfaction. 
This eigenbehaviour has to be studied and modeled deeper, whether 
possible or useful. However, knowing its operational “meaning” and 
quantifying it suffices to achieve awareness of this effect and 
compensate for it somehow. The other eigenbehaviour, EIG#2, is 
caused by an augmented feature request by AI users, which negatively 
affects both users’ satisfaction and production effectiveness in some 
unknown way.

FIGURE 1

Causal loop diagram produced by humans in modeling the complex dynamics generated by AI. Red elements concern the non-formalizable part of 
the CLD.
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Note that in this example of Figure 2, the blue elements denote the 
actions (actuations) currently possible for AIxyzChat to control the 
whole system. In particular, this AI can deliberate to self-improve to 
satisfy new requests for features by producing new software for itself 
(self-rewriting) and, at the same time, by acting on the channels that 
can provide pervasive advertisement of the new features to potential 
or current users. By measuring and solving the equations of the 
dynamics underlying the CLD (many software tools already do this), 
the AI can find convenient actions to reach the goal and, at the same 
time, publish this solution (providing access to it with an interface) to 
explain what is happening under the hood.

The models achieved and shown in the former examples helped 
identify the non-formalizable entities that act in reality. They are created, 
respectively, by humans and machines and become the scaffolding for 
explaining the causal relations that occur in the reality observed from the 
two dual perspectives. These models represent a means of contact and a 
formalizable exchange between humans and artificial beings. We also 
note that the eigenform concept that models objects of non-formalizable 
reality constitutes the door through which the artificial realm and the 
natural get into reflexive contact even if their structure is unknown, but 
their meaning is apparent: the AI uses eigenforms to model and then 
tests and realizes causal effects on physical reality; humans can do the 
dual same with creating models of these entities in a suitable virtual 
reality. Thus, the eigenform becomes the fundamental element of the 
hybrid reality, breaking the diaphragm between the natural and the 
artificial with a model and realizing their interactions. They are gray 
boxes as the eigenform constitutive property indirectly gives them 
structural and systematic behavior such as stability and autopoiesis. 

Moreover, the eigenform concept and definition create the possibility for 
a bi-simulation between the realm of the natural and the artificial, even 
in a non-formalizable context. Bi-simulation is a well-formalized concept 
in systems analysis and automata theory. Its rigorous definition goes 
beyond this paper’s scope, but interested readers can find a gentle 
introduction in Lee (2020), Chap. 12. For our aims, bi-simulation means 
the capability of the two realities to exhaustively simulate the phenomena 
happening in their counterpart. Unfortunately, CLDs are just a first 
approximation and too poor model to develop an effective and possibly 
automated control of the system’s dynamics beyond causal relations.

To develop a more effective simulation model, augmenting the 
causal diagram and making the essential dynamics of a system 
observable is helpful. While causal loop diagrams are very effective for 
causal thinking, they are not especially good as the basis for a full-
blown model and simulator that computes dynamics and performance 
through time. For an actionable and working model, there is more to 
causality and dynamics than words and arrows alone (Reynolds and 
Holwell, 2020). Possibly, the aim is to obtain a “flight simulator” to test 
the model’s validity and predictions. A complementary way and tool 
to CLD is the introduction of stocks and flows (Sterman, 2001).

Stock and flow addition brings feedback loops to life by specifying 
the processes of reality likely to lie behind causal links as the basis for 
an algebraic model and simulator. The construction of such a model 
starts a testing process where the model is continuously refined in a 
way in which the fundamentally subjective and social nature of model 
evaluation must be considered within the simulation process (Sterman, 
2000). In addition, stock and flow are a valuable and powerful 
intermediate structure between abstraction and the realization of 

FIGURE 2

Causal loop diagram produced by machines (AI) in modeling complex dynamics generated by human behavior.
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control. At the time of this writing and to the authors’ knowledge, AI’s 
state of the art does not provide full automation of this kind of 
modeling and related control systems. Some proposals of technological 
approaches, in this sense, make use of the coupling of category theory 
and general systems theory as means for a well-controllable and 
systematic entanglement between physics and computational worlds, 
in particular as a transformation between the categories of computer 
science and the categories of control and systems engineering, making 
possible functional mappings between different categories of computer 
science implementations and categories of control based on dynamical 
systems (Pirani et al., 2021; Raikov A. and Pirani, 2022).

Here, we limit ourselves to an example and thought experiment 
in which the same AI that developed the diagram of Figure 2 takes 
further steps toward an even more challenging stock and flow 
representation of reality. In the following graph of Figure  3, the 
AIxyzChat application tried to develop stock and flows of the 
phenomenon to be controlled, proceeding from the CLD of Figure 2. 
It requires a systematic and algebraic capability for AI that seems 
almost within reach due to current developments (Russin et al., 2020; 
Lake and Baroni, 2023). While CLDs are more prone to Bayesian-like 
causal analysis, stock and flows introduce the opportunity to add 
dynamics through differential equations and integrations, potentially 
retaining all the causal modeling capabilities of the CLDs. In this way, 
the AI will be able to capture and simultaneously explain to a human 
what she knows about reality and what she does to attempt to control 
it. In addition, with stock and flow, the AI has a model that can be used 

to test and predict what values to reach for the actionable variables to 
produce the desired effects in the controlled reality.

In this example, the AI has achieved the means to model and 
control the quantifiable effects that affect the users’ satisfaction 
concerning the production of new software features. She also identifies 
at least two actions that can be effective in controlling the model to 
improve the number of adopters and buyers of herself. These parts are 
colored blue in Figure  3. In particular, AI can modulate its 
participation in the production of new software features and, at the 
same time, push the publishing of the advertisements of the new 
features on social networks or the Web (in an autonomous way).

In Appendix A, additional and detailed information on the model 
is provided, and the solution found bi the AI through simulations can 
be observed. Appendix Table A.2 contains the list of the reinforcing and 
balancing loops of Figure 3. The list of variables traversed for each loop 
is provided, as they are not easy to follow in most cases (for a human in 
particular), but easily automated. In Appendix Table A.1, the equations 
that underlie the model are exposed. The AI would (hypothetically) 
identify them through some causal analysis of data, for example, 
Structural Causal Modeling (Pearl, 2018) or physics-informed machine 
learning (Karniadakis et al., 2021; Masi and Einav, 2024). In graphs 
A.1–A.4 in Appendix, the output of the stocks and flows are shown for 
a hypothetical period of 100 days, in which the AI tests the effects of her 
possible contribution through the model. In particular, as the capability 
to actively participate in producing some new features is maximum, the 
number of buyers (Buyers in Appendix Figure A.1) increases over time 

FIGURE 3

Stock and flow diagram that can constitute explicit dynamics and simulator for the AI starting from the CLD of Figure 2. The red elements concern the 
non-formalizable part of the system, while the blue elements concern the actuations that the AI can enact on the system.
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as desired. Nevertheless, the dynamics of the model are pretty complex 
to control, and the timing of the required actions is to be well-calibrated 
to be effective. Some of the dynamics are undefinable though present 
and measurable through their effects. These are the ones involving 
EIG#1 and EIG#2, which can be put under some control, as discussed 
further in the following section.

4.2 Explanations in hybrid reality

These examples show the dual XAI problem for the new hybrid 
reality. It depends on the perspective in which the reality is observed. 
Whether the observer is a human being or a machine changes the 
implementation of the explanation but not its causal structure. As 
we  have seen, eigenbehaviours can play a significant role in this 
process. They can be  dually created by humans and machines 
simultaneously, intervening in dual epistemologies in the same hybrid 
reality. The hybrid reality becomes the contact point and the 
entanglement of these dual aspects.

In the model of Figure 3, the eigenforms constitute, in one case, a 
flow (EIG#1) and, in the other, a stock (EIG#2). They can be seen as 
non-formalizable subsystems, the structure of which is known as 
being a stable eigenform but nothing more. Their existence will then 
communicate and, in some way, measure the incapability of achieving 
a ready formalizable representation and explanation of some of the 
active entities in the play. With a due inspection of the example of 
Figure 3 and related graphs A.1–A.4 in Appendix, it is possible to 
figure out how the AI should “reason” to find a solution to a systemic 
problem. Even with the effects of EIG#1 and EIG#2 in the model, it is 
possible to estimate that the number of buyers will unlikely increase 
if no corrective action is taken. The model is used then to predict and 
verify the hypothesis that AI actions (publishing ads and participating 
in production) have a good effect. The effect is visible in 
Appendix Figure A.1 in the Buyers and New Buyer graphs. The first 
curve corresponds to no intervention of the AI, while the second is a 
partial intervention, and the third is a complete intervention. The 
GPT/LLM intervention has then a possibility to improve the situation 
but only after having obtained a suitable causal model.

Identifying the non-formalizable eigenforms should be used to 
request help from the modeler’s dual counterpart to refine the model 
(Raikov A. and Pirani, 2022). On one side, as in the example of 
Figure 1, the human will ask AI (seen as a tool) to help define the inner 
functioning details of the eigenforms to establish their semantics and 
control. On the other side, in Figures 2, 3, the eigenforms signal the 
human that the AI needs more interpretation and knowledge to classify 
them: the human and their knowledge, reasoning, and consciousness 
will be the “tool” in this case. They will then be in a reflexive symbiosis 
to gain control of the complexities of the hybrid reality that the humans 
and the machines construct together with their interactions.

5 Context of explanation and 
implementation

5.1 Socio-economic context

Socio-economic features of explanation can be represented by a 
unique view of economic theories on the phenomenon of explanation 

(Kaul, 2022). Economists sometimes take the explanations provided 
by economic theories and models for granted because they constitute 
the theory itself. However, to most people who come across the 
explanations offered by these theories, the very idea of an explanation 
may seem illogical. After all, economists build models explicitly aimed 
at an abstract explanation of the economic situation, so empirical data 
cannot always refute them. At the same time, the explanatory priority 
of building economic models is not conducive to obtaining 
quantitative characteristics of the dynamics and forecasts of the 
development of the situation, which is more important in economics. 
The use of causal loop diagrams and systems thinking, as shown in 
section 4, is primarily used in economic problems and sectors where 
the need for harnessing complexity and providing qualitative and 
approximately quantitative models for decision-making is of utmost 
importance (Forrester, 1971).

In this work, many views of economists on obtaining answers to 
questions about the phenomenon of explanation are noted: 
reconciliation of the opposing sides about the role of value or 
normative differences, recognition of the need for teleology in 
explanation with the inability of empiricism to determine human 
goals; difference and development of the nature of teleological and 
causal explanations in specific areas of the economy; using the rational 
choice model; explaining developments in various sub-sectors of the 
economy; consideration of deductive, inductive and abductive 
reasoning in neoclassical economics, etc.

Increasingly, some works try to explain economic phenomena 
using tools that seem very far from economics, for example, using the 
methods of quantum physics (Raikov, 2021a; Orrell and Houshmand, 
2022). However, the question of the adequacy of applying physics 
methods to economic systems is subject to further reflection. 
Therefore, economics has a very peculiar stance and cannot be said to 
be  a satisfactory approach to explaining its regular practice of 
constructing an economic theory to provide credibility for examining 
the economic situation. The subject features of the explanation 
problem invariably appear in everyday and business environments.

5.2 Results of XAI implementation

Currently, the suggested approach is implemented in fragments 
while building strategic models of regional socio-economic 
development. With this review and discussion, we  can recall the 
experiences and the empirical tests of what should constitute the 
XAI body.

Experiments in strategic planning include automatic big data 
analysis, deep learning, market forecast prediction, goal setting, 
cognitive modeling, experts’ collective discussion, GPT/LLM 
inference, and strategic plan creation. In our experience, a cognitive 
model may consist of 12–20 factors, some of which are connected. The 
direct and inverse tasks are solved in this model under experts’ 
control. The process and result of cognitive modeling are transparent. 
They can be used to synthesize an explanation of the deep neural 
networks’ inference of prediction in a logic chain. For example, in the 
paper (Chernov et al., 2023), strategic planning uses hierarchy analysis 
and cognitive (scenario) modeling methods. Scenario modeling, 
evaluation, and selection of priority scenarios for the region’s 
socioeconomic development are represented. Deep learning and big 
data analysis help verify and automatically create scenario models. The 
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proposed methodology has significant approbation in many branches 
of the regional economy and business implementations, for example, 
such as follows:

 • Megapolis tourism development strategic planning with quick 
collective cognitive modeling and big data analysis support 
(Raikov, 2020),

 • The automatic synthesis of a cognitive model based on big data 
analysis for revealing economic sectors’ needs in digital 
technologies (Raikov et al., 2022),

 • Manufacturer’s strategic risk temperature assessment with 
convergent approach, cognitive modeling and blockchain 
technology (Raikov, 2019).

One more example is the paper of Raikov (2023) that suggests 
structuring information generated during the strategic meeting to 
create a strategy for youth policy development for one of the country’s 
regions by applying the inverse problem-solving method to the fuzzy 
cognitive modeling. It helps to transform the divergent strategic 
discussion into a convergent one and make a strategic meeting 
sustainable and purposeful. The big data analysis ensured to justify 
and create automatically fuzzy cognitive models. A high level of 
accuracy was shown when verifying cognitive models—however, the 
accuracy of creating a cognitive model needed to be higher.

Synthesis of new photonic materials is the main challenge in 
creating photonic AI systems (Raikov, 2023, 2024). The convergent 
approach and using LLM/GPT have helped to find comparatively new 
ways to create such materials based on protein nanostructures. These 
materials could act as holographic diffractive optical elements to 
selectively change angles or wavelengths of light. The protein-based 
components could be designed to optimize the performance of angle-
multiplexed holographic systems, such as improving the coupling 
efficiency or reducing optical losses. Currently, the research is ongoing.

6 Convergent methodology for 
interdisciplinary XAI research

6.1 XAI as an interdisciplinary project

Methods and technologies from such disciplines have to be used 
as follows: cognitive psychology, socio-economics, technical 
cybernetics and corporate management, mathematics (topology 
theory, statistics, probability theory, logic, set theory), physics (optics, 
quantum and wave theories, thermodynamics, mechanics), system 
dynamics, artificial intelligence (cognitive modeling, deep learning, 
genetic algorithms), game theory, and generative eigenforms.

The author’s convergent methodology, based on the inverse 
problem-solving method in topological space and cognitive modeling 
in the context of XAI, can be improved by considering the eigen-
behavior reality grounding approach. In particular, the eigenforms 
approach introduces a viable set of tools for the improvement of the 
contact layer between XAI and humans in the convergent decision-
making process that was already obtained experimentally by Raikov 
and Panfilov (2013) and Raikov (2021b) and references therein. The 
contact layer coincides with the definition of hybrid reality, which has 
become the actual playground of XAI in its modern GPT/
LLM conception.

Convergent methodology can ensure more effective AI-based 
individual or collective decision-making processes. At the same time, 
it necessitates creating XAI to achieve more transparency, and the 
convergent methodology lets the XAI be more purposeful and stable. 
The processes in which XAI is involved are usually characterized by 
inaccurate goals, which cannot be extrapolated from experience and 
knowledge. This convergent approach requires handling the following 
components (Raikov, 2021b):

 • The space of formalized knowledge in the form of digital big data 
(Hausdorff separable space).

 • The space of LLM’s non-formalizable cognitive semantics in the 
form of its users’ emotions, and thoughts.

 • A finite set of imprecise goals and subgoals, represented as a 
weighted hierarchical tree (Hausdorff separable space).

 • The space of resources to achieve the goals is an infinite set of 
knowledge (big data, trained neural networks) about the 
resources, which should be represented by a finite number of 
subsets (Compact space).

 • The ontological LLM operator creates knowledge with cognitive 
and denotative semantics that transform one state of the 
resources and goals into another (Closed graph).

Cognitive models are graphs of interrelated factors (concepts) 
enriched with cognitive semantics. They are constructed by 
automating the mapping between the cognitive model’s factors and 
their connections to relevant big data. This automatic approach helps 
verify and synthesise cognitive models (Raikov, 2023). The convergent 
approach with the automatic synthesis of cognitive models helps 
decompose the space of XAI data components and decisions to ensure 
the accelerated synthesis of adequate explanations of XAI inferences 
and outcomes.

Cognitive modeling helps to create some logical chains of 
explanation in the space of relevant big data and trained neural 
networks, whose priorities, taking into account the concrete profile of 
the user, can be realized by a genetic algorithm (Raikov and Panfilov, 
2013). The cognitive modeling approach involves experts and their 
domain knowledge in the neural network training process. Experts’ 
use of domain knowledge resembles researchers’ training processes, 
taking into account their mimic diagnostic models or focusing on the 
features they pay attention to. Almost all types of domain knowledge 
are proven effective in boosting diagnostic performance. Figure 3 
shows the automatic synthesis of relevant cognitive models for 
creating an explanation using AI potentially based on improved 
LLM technology.

Unfortunately, automatically creating cognitive models shows low 
accuracy (33%) (Raikov et al., 2022). One of the reasons for such a low 
accuracy is the restricted size of datasets for training the neural 
network (see Figure 4), which continues to be an issue in obtaining 
satisfactory deep learning models.

The GPT/LLM can crucially raise this accuracy. This accuracy 
value can be significantly increased, as shown by our studies of the 
possibilities of LLM as a computational experiment tool. To do this, 
questions related to the feasibility of the photonic AI concept 
described in Raikov and Guo (2023) and Raikov (2024) were asked in 
various versions of the LLM. The experiment performed showed the 
possibility of obtaining answers to questions in the field of synthesis 
of rather complex photonic materials.
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6.2 Comparison with existing XAI

Modern XAI systems based on LLM approaches, as well known, 
have restrictions, such as follows:

 • AI models’ semantics do not take into account the poor-
formalizable behavior of neurons on an atomic level,

 • Energy consumption and performance limitations of the digital 
approach to process continuous (analog) signal,

 • Long-term memory—context is limited (currently ≈ 10,000 
tokens, several 100 billion neural network parameters, etc.).

This is only due to immersing the XAI system in a hybrid space, 
where humans and machines have crucial distinctions during the 
interaction—these restrictions are significantly lifted. The suggested 
in this paper convergent methodology, including causal loop dynamics 
and eigenform realization, ensures the conditions for making the LLM 
inference process more purposeful and sustainable.

In the future, the transition to all-analog optical (photonic) data 
processing will remove the limitations created by the need to sample 
the signal for processing in a digital computer, which is accompanied 
by high energy costs and time (Raikov, 2024).

7 Discussion and plan for the future

7.1 Discussion

Generally, the main challenges of raising the explanation quality 
will be, in our opinion, the computational irreducibility and 
impossibility of creating cognitive semantics of LLM, which do not 
consider non-logical effects (Raikov, 2021a). Taking into account the 
behavior of the atomic level of the body’s and brain’s matter during the 
processes of human thinking requires considering their characteristics 

for raising the quality of XAI as follows: one neuron includes about 
1015 atoms, neurons’ random fluctuations, 1050 connections between 
bodies and brain’s atoms, entanglement connections between the 
bodies and brain’s atoms and atoms of the universe.

It may be partially realized by mapping logical or neurological 
LLM models on images stored in holographic memory (Han et al., 
2023; Raikov and Guo, 2023; Raikov, 2024). In this case, the mapping 
process may be  accompanied by natural quantum effects: 
decoherence, quantum correlation (entanglement), a change in the 
state of quantum particles, wave function collapse, quantum 
non-locality, etc. Considering optical and quantum effects forces us 
to think about the behavior of words and other symbols in thinking 
and communication processes as quantum particles in the form of, 
for example, particles and waves or particles accompanying “shadow” 
particles. This allows us to raise the issue of compensating the 
computational irreducibility by substances of cognitive semantics. 
Optical and quantum interpretations of LLM models teach us that 
these discoveries cannot be made in a solitary and individual way: 
XAI has to become such a collective and resonant (or entangled) 
human mind, close to infinity, and only then will XAI “understand” 
any situation and give the relevant explanation. Experts with domain 
knowledge do not know everything. Still, their capabilities can 
be improved by relying on a cascade of other LLM systems, which can 
also be  more capable of understanding perfectly how LLM itself 
reasons and produces results.

7.2 Plan for future

The research plan might be  outlandish, but not without 
requirements for the above discussion because many issues and 
phenomena in life and science cannot be explained using traditional 
AI. The idea of improving the XAI explanation is based, in essence, on 
the local causality hypothesis proposed by David Hume. However, as 

FIGURE 4

Explanation created by cognitive modeling.
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shown in this article, the reason may lie beyond the limits of the 
foreseeable reality. Even GPT/LLM methods, ML, and cognitive 
modeling approaches, with their reliance on big data, are limited by 
using the local semantics and the retrospective field of information, 
digital representation of data, and so on.

Future research on creating XAI may involve considering LLM 
models’ poor-formalizable cognitive semantics. The critical step in 
advancing XAI in the future may be to consider the processing of 
analog signals without transforming them into digital form by creating 
the all-analog photonic AI (Raikov, 2024).

This draft of the plan requires interdisciplinary and international 
discussion and research. Unique convergent technology can make this 
research purposeful and stable. One variant of such convergent 
technology can be seen in Raikov (2021b).

8 Conclusion

The explanation function of GPT/LLM systems and AI as a whole 
is becoming increasingly crucial in further developing and applying 
such systems because of the need to increase confidence in the 
recommendations they generate.

In addition to the technological challenges, immersing the GPT/
LLM system in a hybrid (human–machine) reality is decisive in 
improving its explainable efficiency. However, classical computer 
tools, such as digital linguistics, logic, autoregression, and even 
neuro-net tools, cannot embrace this reality. Reality requires 
considering non-formalizable aspects of human feeling and thinking, 
which digital computers cannot interpret.

It is natural to start considering algorithmic constructivism to 
provide new definitions of reality from the perspective of the human 
and the AI system simultaneously. Before providing these definitions, 
it is necessary to place circularity at the basis of the concept of 
eigenform. The eigenform is a stable object of reality created by 
continuous action from an AI system. It corresponds to a cognition 
action that requires observing in its broadest sense.

It is expected that some of the processed signals’ digital forms will 
need to be replaced by transforming them into analog (continuous) 
forms without discrete sampling. Photonic AI can bring us closer to 
covering the real effects of human feelings and thinking.

The growth of confidence in the inferences of XAI systems is 
undoubtedly facilitated by the direct inclusion of people in the process 
of obtaining the result. This involves achieving a continuum in hybrid 
reality at the interface between artificial and natural reality. For such 
inclusion, unique convergent technology and constructing ontologies 
must create conditions for making XAI, including GPT/LLM systems, 
more purposeful.

This article suggests convergent methodology, including all-analog 
photonic way, that address existing challenges and their anticipated 

impact on the field of XAI. In this context, elaborating on the future 
research directions by outlining the challenges would offer valuable 
guidance for advancing the domain of XAI.
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