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Introduction: This study introduces the Supervised Magnitude-Altitude Scoring

(SMAS) methodology, a novel machine learning-based approach for analyzing

gene expression data from non-human primates (NHPs) infected with Ebola

virus (EBOV). By focusing on host-pathogen interactions, this research aims to

enhance the understanding and identification of critical biomarkers for Ebola

infection.

Methods: We utilized a comprehensive dataset of NanoString gene expression

profiles from Ebola-infected NHPs. The SMAS system combines gene selection

based on both statistical significance and expression changes. Employing

linear classifiers such as logistic regression, the method facilitates precise

di�erentiation between RT-qPCR positive and negative NHP samples.

Results: The application of SMAS led to the identification of IFI6 and IFI27

as key biomarkers, which demonstrated perfect predictive performance with

100% accuracy and optimal Area Under the Curve (AUC) metrics in classifying

various stages of Ebola infection. Additionally, genes including MX1, OAS1, and

ISG15were significantly upregulated, underscoring their vital roles in the immune

response to EBOV.

Discussion: Gene Ontology (GO) analysis further elucidated the involvement

of these genes in critical biological processes and immune response pathways,

reinforcing their significance in Ebola pathogenesis. Our findings highlight the

e�cacy of the SMASmethodology in revealing complex genetic interactions and

response mechanisms, which are essential for advancing the development of

diagnostic tools and therapeutic strategies.

Conclusion: This study provides valuable insights into EBOV pathogenesis,

demonstrating the potential of SMAS to enhance the precision of diagnostics

and interventions for Ebola and other viral infections.

KEYWORDS

Ebola virus infection, gene expression profiling, biomarker discovery, machine learning

in virology, transcriptomic analysis

1 Introduction

Ebola virus disease (EVD) is a severe and often fatal illness affecting humans and

nonhuman primates (NHPs), with certain outbreaks, such as the 2013–2016 West Africa

outbreak, resulting in high mortality rates (Speranza et al., 2018; Centers for Disease

Control Prevention, 2014). The scarcity of human clinical samples for research purposes

has led to the reliance on NHP models, particularly cynomolgus and rhesus macaques, for
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studying EVD pathogenesis and testing potential treatments and

vaccines. These models typically involve exposing animals to the

Ebola virus (EBOV) through various methods, which produce

symptoms and mortality patterns similar to those observed

in humans, though differences in infection doses and disease

progression are noted (Speranza et al., 2018).

Furthering our understanding of the immune response to

EVD, particularly through transcriptomic analyses, has been a

significant outcome of studies using these NHP models (Caballero

et al., 2016; Versteeg et al., 2017). In this context, Speranza et al.

(2018) made a notable contribution by focusing on enhancing the

accuracy of NHPmodels to more closely reflect human EVD. Their

study involved the exposure of 12 cynomolgus macaques to the

EBOV/Makona strain via intranasal routes, using a target dose

of 100 plaque-forming units (PFU). The administration method

varied, utilizing either a pipette or a mucosal atomization device.

This led to a diverse onset of symptoms and disease progression

among the animals, resulting in the identification of four distinct

response groups with an overall fatality rate of 83% (Speranza et al.,

2018).

The animals were categorized into these groups based on the

timing and nature of symptom appearance, onset of viremia, and

time to death. Group 1, following a typical EVD course, showed

quantifiable viremia from day 6 and had an average time to death

of 10.47 days. Group 2, with a delayed onset, had detectable viremia

between days 10 to 12 and an average time to death of 13.31

days. Group 3 experienced a late onset of disease, with detectable

viremia emerging after day 20 and an average time to death of

21.42 days. Contrasting these, Group 4 did not develop detectable

viremia during the experiment and survived until the 41-day study

endpoint (Speranza et al., 2018) (see Figure 1).

In preparation for their experiment, Speranza et al. (2018)

conducted pre-exposure evaluations on blood chemistry,

hematology, and soluble proteins, but these did not reveal

any significant physiological differences among the groups, as

confirmed by principal components analysis. Employing RNA

sequencing and NanoString, which focuses on 769 NHP transcripts

for transcriptomic analysis, they provided an overview of the host

response to EBOV exposure. Their findings revealed a uniform

and predictable response to lethal EVD, irrespective of the time

to onset. Remarkably, they also discovered that the expression of

specific genes could predict the development of disease before the

appearance of clinical signs such as fever (Speranza et al., 2018).

Despite the significant findings of Speranza et al. (2018), certain

aspects of EVD pathogenesis in NHPs remain underexplored,

particularly in the context of genetic markers and their predictive

power. While their study laid a solid foundation for understanding

the disease’s progression through transcriptomic analysis, it opened

the door for more targeted research in identifying specific genetic

indicators of EVD. This gap in knowledge presents an opportunity

for employing advanced analytical techniques, such as machine

learning, to delve deeper into the genetic landscape of EVD. Our

study, therefore, focuses on expanding upon these initial findings,

aiming to uncover finer genetic details that could be critical in

diagnosing and treating EVD more effectively. By leveraging the

rich dataset provided by Speranza et al. (2018), we introduce a

cutting-edge approach that promises to bring new insights into

the complex interaction between the EBOV and its host at a

molecular level.

Our research introduces a novel machine learningmethodology

aimed at prioritizing genes that are significantly associated

with EVD, as determined by the Benjamin-Hochberg procedure

(Benjamini and Hochberg, 1995). This innovative approach allows

us to not only identify gene fingerprints uniquely related to

EVD but also to differentiate between EVD-positive and EVD-

negative NHPs using a single gene at a time in a supervised

manner. This dual focus on gene prioritization and individual

gene-based differentiation represents a significant advancement in

the field, offering a more nuanced understanding of the genetic

underpinnings of EVD. Our methodology’s precision in identifying

and analyzing individual genes holds the potential to greatly

enhance the specificity of EVD diagnostics and contribute to

the development of targeted therapeutic strategies. Through this

work, we aim to demonstrate the power of machine learning

in uncovering new insights from existing genomic data, thereby

opening new avenues for research in the field of infectious diseases.

2 Materials and methods

2.1 Data

This study utilizes a dataset of NanoString gene expression

profiles fromNHPs infected with the EBOV, as detailed in Speranza

et al. (2018). The NanoString platform used recognizes 769 specific

NHP transcripts, advantageous for its rapid processing capability

and lower RNA quality requirements compared to RNA-seq,

while retaining efficacy for EBOV research. Normalization of the

NanoString data was conducted in line with standard procedures,

where background adjustments were made based on negative

controls, and lane variations were accounted for using internal

positive controls (Speranza et al., 2018). The most stable reference

genes for normalization were identified using the NormFinder

R package (Andersen et al., 2004), ensuring precise calibration

for RNA input variations. Further methodological specifics are

available in the referenced work by Speranza et al. (2018), which

should be consulted for an in-depth understanding of the protocols

and procedures applied.

2.2 Supervised Magnitude-Altitude
Scoring: a machine learning approach for
gene expression profiling

This section describes the Supervised Magnitude-Altitude

Scoring (SMAS) method, specifically tailored to distinguish RT-

qPCR positive and negative NHP samples in EBOV research. SMAS

comprises a structured three-stage process:

1. In the initial stage of gene selection, our methodology

rigorously identifies genes that demonstrate statistical

significance between RT-qPCR positive and negative groups.

To address the challenges of multiple hypothesis testing

inherent in gene expression studies, we strictly apply the

Benjamini-Hochberg (BH) correction (Benjamini and

Hochberg, 1995). This correction is essential for controlling

the false discovery rate, a critical factor in genomic data

analysis where numerous tests are conducted simultaneously.

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2024.1405332
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezapour et al. 10.3389/frai.2024.1405332

FIGURE 1

The tables exhibit the timeline of responses for di�erent nonhuman primates (NHPs) to EBOV exposure, arranged in rows, over a sequence of days

post-exposure, which are organized in columns. Green cells indicate time points where reverse transcription quantitative polymerase chain reaction

(RT-qPCR) did not detect any viral RNA (labeled as “n.d.,” not detectable), suggesting a negative result. Yellow cells denote instances where RT-qPCR

detected viral RNA, but the quantity was below the quantification threshold. Orange and purple cells highlight RT-qPCR-positive results, with purple

specifically denoting a high viral load, as the Genome Equivalent (GE) is >9, termed as “strong positive.” The box marked with an “X” indicates that

although the RT-qPCR results are positive, the corresponding NanoString information is unavailable.

We employ two-sample independent t-tests (Kim, 2015)

with the BH correction, ensuring that identified genes are

significantly different beyond random chance occurrences.

Moreover, our criteria for selecting genes include a log fold

change (logFC) >1. This means we only consider genes that

not only pass the BH significance threshold but also exhibit

substantial expression differences.

2. In the second stage of our analysis, the Magnitude-Altitude

Score (MAS) is calculated for each gene selected in the initial

stage. The Magnitude-Altitude Scoring (MAS) formula is:

MASl = | (log2FCl)|
M|(log10(p

BH
l ))|A,

for l= 1, 2,. . . , s, where s is the number of rejected

null hypotheses by BH adjusted method (pBH
l

< α, where

α = 0.05). The hyperparameters M and A are used to

achieve a balance between the adjusted p-value and the log

fold change, facilitating a comprehensive analysis of gene

expression changes. In traditional gene ranking methods

employed by differential expression analysis tools like EdgeR

(Robinson et al., 2010) [or DESeq2 (Love et al., 2014)],

the focus is predominantly on p-values for ranking genes.

This approach is exemplified in EdgeR’s typical workflow,

where genes are ranked using the “topTags” function. This

function sorts genes primarily based on their p-values, which

are calculated to determine the statistical significance of

differential expression between conditions. While this method

effectively identifies statistically significant genes, it may not

always highlight genes with the most biologically significant

changes in expression. In contrast, our MAS system, with

both M and A set to 1, goes beyond traditional p-value

ranking. By incorporating the log fold change (logFC) into

the ranking process alongside the adjusted p-values from

the Benjamini-Hochberg correction, MAS makes it possible

that the genes selected for further analysis show not only

statistical significance but also potential biologically relevant

expression changes. This balanced approach of considering

both statistical and biological significance allows for a more

comprehensive understanding of gene expression changes in

the context of EBOV infection.

Genes are ranked according to their MAS, and the top-d

genes are earmarked for predictive modeling. The number d

of genes selected is capped at one-tenth of the total number

of samples, in line with a widely accepted machine learning

guideline that suggests having at least 10 samples for each

variable. This guideline helps prevent overfitting and possibly

increases the robustness of the model (Hastie et al., 2009). By

adhering to this principle, our approach effectively balances

the inclusion of a sufficient number of genes to capture the

EBOV infection’s complexity while maintaining robustness.
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3. In the final stage of our methodology, the SMAS approach

demonstrates its efficacy through the implementation of

linear classifiers for EVD status prediction. The top-d genes,

meticulously identified through MAS, serve as predictors in

linear classifiers, specifically employing logistic regression or

support vector classifiers with a linear kernel (James et al.,

2013). This choice of linear classifiers is strategically made

considering the often-limited sample size encountered in

multi-omic datasets. In such scenarios, more complex models

are prone to overfitting, potentially skewing predictions

(Hastie et al., 2009). By opting for linear classifiers, we

effectively mitigate this overfitting risk, striking a balance

between model simplicity and the ability to accurately predict

EVD status in unseen NHP samples.

To assess the robustness of our predictive model, we

implement K-fold stratified cross-validation (Kuhn and

Johnson, 2013). This validation technique is critical in our

study as it ensures a balanced representation of both positive

and negative samples in the training and testing datasets. Such

a balanced approach is pivotal in enhancing the reliability

and generalizability of our model. By incorporating a cross-

validation strategy, we are not only able to gauge the model’s

performance on unseen data but also affirm its stability and

predictive power across different subsets of the data.

Integrating the top-d genes from the SMAS method into

linear classifiers showcases the utility of our approach in practical

applications. By selecting genes that are both statistically significant

and biologically relevant and deploying them in a well-validated

predictive model, the SMAS method presents a potent tool in the

field of infectious disease research, particularly for EVD analysis.

This stage, therefore, underscores the effectiveness of the SMAS

method in translating complex genomic data into actionable

insights, paving the way for advancements in diagnostic and

therapeutic strategies.

Through the SMAS method’s comprehensive stages, we chose

to set both M and A to 1 in the MAS formula, as opposed to

the traditional ranking method where M = 0 and A = 1,

which reduces the analysis to the adjusted p-values from the

Benjamini-Hochberg correction. This decision was based on the

following rationale:

1. Enhanced discrimination between groups: The MAS scoring

with M = A = 1 takes into account both the

statistical significance and the magnitude of change in gene

expression. This dual consideration allows for a more nuanced

differentiation between the RT-qPCR positive and negative

groups. In contrast, the traditional ranking method primarily

focuses on statistical significance, potentially overlooking

genes with substantial biological changes.

2. Biological relevance of log fold change (logFC): By setting

a threshold for logFC (e.g., logFC > 1), we increase the

possibility that genes with biologically significant expression

changes are considered. This threshold is crucial as it

highlights genes that are not just statistically significant but

also have substantial changes in expression levels, which is

more likely to be biologically relevant in the context of EBOV

response in NHPs.

3. Improved predictive performance in supervised learning: In

supervised machine learning, the balance between statistical

significance and expression magnitude is vital for model

accuracy. The MAS scoring with M = A = 1, combined

with the logFC threshold, tends to select genes that provide a

clearer separation between positive and negative samples. This

improved separation enhances the predictive performance

of the model, particularly when using linear classifiers

like logistic regression or support vector classifiers with a

linear kernel.

In summary, adopting MAS scoring not only aligns with the

principles of robust machine learning but also ensures that the

genes selected for the predictive model are the most informative

for distinguishing EVD status in NHP samples.

2.3 Di�erential expression analysis and
classification using Supervised
Magnitude-Altitude Scoring

In our exploration of the EBOV’s interactions with its

host, we have developed a methodical approach to analyze the

dynamics of viral infection. This approach is segmented into two

primary objectives:

• Objective 1: a comprehensive differential expression

analysis and

• Objective 2: the development of a bi-class classificationmodel.

Figure 2 illustrates our structured approach to studying EBOV-

host interactions, breaking down into two primary objectives. The

first main objective consists of four subobjectives, each dedicated

to a detailed differential expression analysis. In these subobjectives,

we focus on genes that are significant according to the Benjamini-

Hochberg method, exhibit a log fold change (logFC) >1, and

are further prioritized using MAS method to delineate the gene

expression changes at different stages of EBOV infection in NHPs.

The collective findings from these subobjectives aim to provide

a comprehensive understanding of the host’s genetic response.

The second main objective leverages the key genes identified in

Objective 1 to develop a bi-class classification model, utilizing these

genes as predictors to classify NHP samples as either positive or

negative for EBOV infection.

2.3.1 Objective 1. Comprehensive di�erential
expression analysis using MAS scoring

Objective 1 systematically dissects the impact of the EBOV on

gene expression in NHPs, utilizing the MAS system. This objective

is divided into four key sub-objectives, each targeting a specific

aspect of the host-pathogen interaction, thus providing a multi-

layered understanding of the EBOV’s genetic impact. Objective

1.1 focuses on extreme cases of infection, comparing the most

intense positive and negative responses. This specific analysis is

critical for identifying genetic markers that undergo significant

alterations in severe infection scenarios, revealing key genes that are

most responsive or vulnerable during heightened viral replication.
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FIGURE 2

This figure encapsulates the structured approach of Objective 1, which is divided into four subobjectives, each conducting di�erential expression

analyses on NHP samples at various stages of EBOV infection. Genes are selected based on Benjamini-Hochberg significance with logFC > 1 and

prioritized using the MAS method. The naming convention “NHPm-n” refers to NanoString data related to nonhuman primate number “m” on day “n”

post-infection, as indicated in Figure 1. The integrated results of these analyses are then applied in Objective 2 to build a bi-class classification model

for predicting EBOV infection status. In Objective 1.4, since NanoString data for NHP8-12 was not available, but NHP8-10 data was available with

three RT-qPCR replicates that were positive, we used NHP8-10 as the positive sample.
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Objective 1.2 then shifts focus to the early stages of infection,

examining gene expression dynamics from initial exposure to the

peak of viral response in Group 1. This objective is instrumental in

understanding the progression of early-response genes, providing

crucial insights for early detection and intervention.

Objectives 1.3 and 1.4 further expand the analysis, each

adding a vital layer of understanding. Objective 1.3 explores

gene expression in typical and delayed response scenarios,

highlighting the genetic basis for variability in host response

timing. This objective is particularly important for understanding

genes involved in delayed viral response or clearance, offering

valuable information on how different hosts react to the virus over

time. Finally, Objective 1.4 provides a broad overview, comparing

all negative and positive infection statuses. This comprehensive

comparison captures the overall genetic signature of EBOV

infection, identifying consistent genetic markers across various

infection stages. Together, these objectives offer a multi-layered

and detailed understanding of the host’s genetic response to the

EBOV, ensuring a thorough exploration of pathogenesis and host

response at the genetic level. This structured approach is crucial for

revealing the complex genetic landscape shaped by EBOV infection,

contributing significantly to developing more precise diagnostic

tools and therapeutic strategies.

2.3.1.1 Objective 1.1. Strong negative vs. strong positive

analysis (NDL-0-strong)

This objective engages in a detailed analysis to explore the

multifaceted impact of the EBOV on gene expression in NHPs,

employing the MAS system. The focus is to dissect the genetic

response in NHPs across varying degrees of EBOV infection

intensity, thereby illuminating the broad spectrum of host-

pathogen interactions.

Within this comprehensive framework, a specialized subset of

analysis, termed as “Strong Negative vs. Strong Positive Analysis

(NDL-0-strong),” is conducted. This segment specifically aims to

distinguish the gene expression contrasts between themost extreme

cases of EBOV infection. By comparing the gene expression

profiles of strong positive RT-qPCR samples (indicated by a high

Genome Equivalent, GE >9, and marked as purple in Figure 1)

against those of strong negative samples (from day 0), this analysis

provides a deep dive into the genetic shifts occurring under intense

viral influence.

The procedure involves carefully selecting samples from

Groups 1, 2, and 3 (see Figure 1) that exhibit strong positive RT-

qPCR results. These samples are then methodically contrasted with

the baseline samples taken on day 0, focusing particularly on NHPs

that later exhibit strong positive outcomes. This approach allows for

a targeted analysis of significant gene expression changes associated

with high GE values. For clarity and ease of reference, the set of all

genes selected using theMAS scoring with a log fold change (logFC)

>1 in this phase is collectively referred to as “NDL-0-strong.”

The rationale behind this intense focus lies in the value of

contrasting extreme cases: strong positive (high GE) vs. strong

negative (day 0) samples. Such an approach is instrumental in

unearthing insights into the genetic markers most drastically

altered in the wake of severe EBOV infection. This comparison

not only aids in understanding the genetic extremes induced

by the virus but also plays a crucial role in highlighting

the key genes that are most responsive or vulnerable during

heightened viral replication phases. Through this nuanced analysis,

the study endeavors to unravel the complex genetic landscape

shaped by EVD, thereby contributing significantly to the broader

understanding of the virus’s genetic impact on its hosts (see

Figure 2).

2.3.1.2 Objective 1.2. Di�erential expression in group 1

(N-0-6 and N-3-6)

Objective 1.2 delves into the specific gene expression dynamics

of Group 1 (see Figure 1), which is characterized by a typical EBOV

infection progression. This analysis focuses on understanding the

transition from the initial exposure to the peak viral response,

primarily observed on day 6 post-exposure.

The method involves applying the MAS within Group 1 to

distinguish significant gene expression changes between day 6

(when RT-qPCR is positive) and days 0 and 3 (when RT-qPCR

is negative). The genes with a log fold change (logFC) >1, when

comparing day 6 against day 0, are categorized as “N-0-6,” while

those compared against day 3 are labeled “N-3-6” (see Figure 2).

This approach is critical for identifying genes that respond early

or undergo significant alterations during the acute phase of the

infection. By examining these key time points, we can pinpoint

the genetic markers that are pivotal in the initial stages of viral

replication and host response.

2.3.1.3 Objective 1.3. Analysis within normal and delayed

groups (ND-0-10 and ND-3-10)

Objective 1.3 aims to unravel the gene expression patterns in

scenarios of typical and delayed EBOV response (Groups 1 and 2

in Figure 1), particularly noticeable by day 10 post-infection. This

objective targets an understanding of the genetic underpinnings

that might influence the timing of viral detection and clearance.

The procedure employs MAS scoring to analyze gene

expression in normal and delayed response groups with positive

RT-qPCR results on day 10. The set of all genes selected with a log

fold change >1 when comparing day 10 against day 0 is referred

to as “ND-0-10,” and the gene set from the comparison of day 10

against day 3 is termed “ND-3-10” (see Figure 2).

This analysis is vital in exploring genes that could be

responsible for a delayed response to the EBOV, thereby providing

insights into the genetic basis for variability in host response timing.

It helps to understand how different gene expression patterns

contribute to the delayed manifestation of the virus.

2.3.1.4 Objective 1.4. Comparison of all negative vs. all

positive samples (All-N-P)

Objective 1.4 encompasses a broader perspective, aiming

to distinguish the overarching gene expression signatures that

separate overall negative from positive EBOV infection statuses.

This comprehensive comparison seeks to capture the complete

genetic landscape associated with EBOV presence or absence.

Using MAS scoring, this analysis compares the collective

gene expression of all negative samples (indicated as green in

Figure 1) against all positive samples (denoted as orange and

purple). This broad comparison is instrumental in identifying

markers consistently expressed across various stages of infection,

categorized collectively as “All-N-P.”
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The rationale behind this objective is to provide a holistic view

of the gene expression changes associated with EBOV infection. It

is designed to capture the overall genetic signature indicative of

infection, thereby differentiating between infected and uninfected

states in a comprehensive manner (see Figure 2).

Objectives 1.1 to 1.4 provide a layered and detailed

understanding of the host’s genetic response to the EBOV.

These objectives collectively aim to identify gene fingerprints

that can effectively differentiate between NHPs testing positive

and those testing negative for RT-qPCR across varying infection

scenarios and response patterns. This structured approach ensures

a multifaceted analysis, contributing significantly to the broader

understanding of EBOV pathogenesis and host response at the

genetic level.

2.3.2 Objective 2. Application of MAS insights for
EBOV classification

The primary goal of our paper is to identify gene signatures

associated with EBOV infection by employing differential

expression analysis through the MAS method. This unsupervised

machine learning approach, which forms the crux of Objective 1,

operates without traditional training methods and is instrumental

in uncovering significant gene expressions linked to the

EBOV. Objective 2 builds on this foundation, extending our

analysis from gene identification to practical application in

EBOV research. This objective bifurcates into two distinct yet

interconnected components.

In Objective 2.1, our focus shifts to utilizing linear classifiers

to demonstrate the efficacy of genes selected through the MAS

method. Here, we illustrate how these MAS-selected genes can

effectively differentiate between RT-qPCR negative and positive

samples of EBOV in nonhuman primates. This stage is pivotal in

showcasing how the insights gained from unsupervised machine

learning can be transitioned into practical, diagnostic applications.

In Objective 2.2, we demonstrate the MAS method’s capacity

for generalization by selecting a gene from one independent

dataset and then applying it for supervised classification on a

different dataset. This approach not only tests the selected gene’s

predictive power but also showcases the adaptability and robustness

of the MAS method across diverse contexts. By employing the

MAS-identified gene in a separate dataset to accurately classify

EBOV infection status, we provide compelling evidence of the

MAS’s generalizability. The ability of the MAS method to extend

its application from gene selection in one scenario to effective

prediction in another exemplifies its utility and versatility in

infectious disease research, especially in studies of complex viral

infections like Ebola.

2.3.2.1 Objective 2.1. Classification using top selected

MAS genes

Objective 2.1 capitalizes on the insights gained from the

differential expression analysis in Objective 1 to develop a binary

classification model. This model distinguishes between positive

and negative EBOV infection statuses in NHPs based on their

gene expression profiles. Utilizing logistic regression, the model

integrates the most significant genes identified across all sub-

objectives of Objective 1 as predictive variables. To validate

and ensure the reliability of this model, we employ a k-fold

stratified cross-validation approach, which rigorously assesses its

performance and generalizability.

The core rationale of Objective 2.1 is to transform the complex

gene expression data into a practical diagnostic tool. Leveraging

the key genes identified through the MAS method, the model

aims to provide a robust and precise means of classifying EBOV

infection status. This application of genomic insights into a

functional diagnostic model not only underscores the utility of our

analytical approach but also has the potential to inform targeted

therapeutic interventions.

A significant aspect of Objective 2.1, as illustrated in Figure 2,

involves addressing the challenge of imbalanced datasets, a

common issue in biomedical research. For instance, in the All-

N-P group analysis, we encounter an imbalance with 12 positive

samples and 31 negative samples. To tackle this, we implement a

random sampling strategy: selecting 12 negative samples to pair

with the 12 positive samples, thereby creating a balanced dataset of

24 samples. This process is repeated 100 times, each with a different

subset of negative samples, ensuring a comprehensive evaluation.

The performance of the model across these iterations is assessed

through metrics such as the average Area Under the Curve (AUC),

accuracy, precision, recall, and F1-score. This approach not only

enhances the model’s robustness but also provides a more accurate

reflection of its predictive capability.

In summary, Objective 2.1, in conjunction with Objective 1,

forms a holistic analysis of the EBOV’s genetic interactions with its

host. While Objective 1 establishes the foundation by pinpointing

critical genes and their expression patterns in response to EBOV

infection, Objective 2.1 translates these findings into a pragmatic

classification tool. This synergistic blend of in-depth genomic

analysis and practical application is pivotal in advancing the field

of infectious disease research, particularly in the context of EBOV

diagnostics and therapy.

2.3.2.2 Objective 2.2. Implementing MAS on an

independent set for subsequent supervised classification

Initially, MAS is applied to a balanced dataset, characterized by

strong positive contrasts against strong negatives, acting as a basis

for gene selection. The top MAS-selected gene, named GMAS, is

then identified. GMAS is subsequently used as the sole predictor in a

linear classifier to differentiate RT-qPCR positive and negative NHP

samples in a separate dataset, which remains unexposed during the

MAS top gene selection process.

As shown in Figure 2, the necessity for strategic MAS

application arises from the limited sample size. MAS is employed

on the ND-0-strong subset to isolate the most significant gene

(top-MAS selected gene) for further examination. This identified

gene, GMAS, becomes central to subsequent classification tasks

across different sample sets. These tasks are thoroughly validated

through balanced stratified cross-validation techniques as shown in

Figure 2.

In essence, Objective 2 is where the theoretical and analytical

advancements of our study converge into practical applications.

It showcases the transition from identifying gene signatures

associated with EBOV infection using an unsupervised

machine learning approach, to applying these insights in a

supervised setting, thus advancing the field of infectious disease
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research and offering new avenues for EBOV diagnostics and

treatment strategies.

2.4 Comprehensive Gene Ontology
analysis of identified Benjamini-Hochberg
significant genes through SMAS

Following the identification of genes with statistical significance

using the Supervised Magnitude-Altitude Scoring (SMAS) method

and subsequent adjustments via the Benjamini-Hochberg

correction, we undertook a comprehensive Gene Ontology (GO)

analysis. This analysis played a crucial role in categorizing the

identified genes into groups associated with biological processes

(BPs), cellular components (CCs), and molecular functions (MFs).

For this detailed classification, we utilized the clusterProfiler (Wu

et al., 2021) and org.Hs.eg.db (Carlson et al., 2019) packages within

R, enabling efficient mapping of our significant genes to specific

GO terms.

This GO analysis was instrumental in illuminating the

functional characteristics of these genes within the cellular context,

particularly in their response to Ebola virus exposure in nonhuman

primates. Bymapping the significant genes to specific GO terms, we

could highlight the functional disruptions and activations within

the host cells. This approach helped identify critical biological

processes, cellular components, and molecular functions that are

likely impacted by the Ebola virus, providing insights into the

pathogen-host interactions at a molecular level.

3 Results

In this section, we present the results of the methodology

outlined in Section 2.

3.1 Di�erential expression analysis and
classification using Supervised
Magnitude-Altitude Scoring

3.1.1 Objective 1. Comprehensive di�erential
expression analysis using MAS scoring

For objectives with at least 10 NHPs, we conducted supervised

analysis to predict whether an NHP is RT-qPCR positive

or negative.

3.1.1.1 Objective 1.1. Strong negative vs. strong positive

analysis (NDL-0-strong)

Figure 3 displays the results of analysis for Objective 1.1, where

we compare the NHPs with strong positive RT-qPCR results against

their status on day 0, when RT-qPCR results were strongly negative.

Figure 3A depicts the volcano plot and highlights the top MAS-

selected genes with a log fold change (logFC) >1. Figure 3B

presents a three-dimensional visualization of all strongly positive

and negative NHPs, utilizing only the top three selectedMAS genes:

IFI27, IFI6, and HP. Given that we have more than 10 NHPs for

this objective, we implemented the Supervised Magnitude-Altitude

Scoring (SMAS) approach (Objective 2) using logistic regression.

This was carried out with a five-fold stratified cross-validation,

specifically focusing on the top selected gene, IFI27. The Receiver

Operating Characteristic (ROC) curves for each of the five folds,

along with their mean, are depicted in Figure 3C. This figure also

includes the AUC and accuracy metrics for each fold, providing a

comprehensive evaluation of the model’s predictive performance.

It is important to note that we opted for a single gene and a

linear model to ensure the model’s strong generalizability, as the

MAS-selected gene IFI27 is exceptionally suitable for this purpose.

3.1.1.2 Objective 1.2. Di�erential expression in group 1

(N-0-6 and N-3-6)

Figure 4 illustrates the results of Objective 1.2. Figures 4A, B

display the volcano plots and Benjamini-Hochberg (BH) significant

genes when comparing NHPs from day 6 to day 0 and day 3,

respectively. IFI27, IL6, and THBD are the only BH-significant

genes with a log fold change (logFC)>1 when comparing NHPs on

day 6 vs. day 0. However, when comparing day 6 to day 3, only IFI27

remains significant. Notably, for the purpose of distinguishing

NHPs on day 3 from day 0, we also performed MAS for Day 3

vs. Day 0, but no gene emerged as BH significant (see Figure 4C).

Nevertheless, when relaxing the Benjamini-Hochberg criteria and

considering only raw p-values, FLT1 emerged as the top significant

gene with a logFC >1 based on MAS (see Figure 4D). Figure 4E

illustrates the expression of IFI27 (selected from Objectives 1.1 and

1.2) and IFI6 (selected from Objective 1.1), along with FLT1, which

distinguishes NHPs on day 0 from day 3. Since we have a total of

9 NHPs across all three post-infection days, we did not perform a

supervised learning analysis.

3.1.1.3 Objective 1.3. Analysis within normal and delayed

groups (ND-0-10 and ND-3-10)

Figure 5 presents the results corresponding to Objective 1.3.

Figure 5A displays a Venn diagram that illustrates the BH

significant genes with a logFC >1 when comparing NHPs on

day 10 vs. day 0 and day 10 vs. day 3, highlighting both unique

and common genes prioritized by MAS. ISG15, IFI6, and IFI44

emerge as the top three selected genes significantly expressed in

both comparisons. Notably, the absence of unique significant genes

in the day 10 vs. day 3 comparison suggests an early expression

of these genes. Figures 5B, C depict the unique and common BH

significant genes across Objectives 1.1, 1.2, and 1.3. From Figure 5B,

the presence of IFI27 as the sole BH significant gene with a logFC

>1 in the ND-0-10, N-0-6, and NDL-0-strong comparisons is

noteworthy. Figure 5C indicates that IFI6, HP, and IFI27 are the top

three BH-significant genes with a logFC >1, common among ND-

0-10, ND-3-10, and NDL-0-strong. Utilizing IFI6, IFI27, or ISG15

(only one gene) as the sole predictor in SMAS, Figure 5D displays

the ROC AUC for classifying NHPs with negative RT-qPCR on day

0 vs. positive ones on day 10. Figure 5E shows a similar analysis for

classifying samples as positive on day 10 and negative on day 3.

3.1.1.4 Objective 1.4. Comparison of all negative vs. all

positive samples (All-N-P)

Figure 6 presents the results related to objective 1.4. Figure 6A

displays a volcano plot that emphasizes the BH significant genes

with a log fold change (logFC)>1, ranked byMAS, as we contrasted
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FIGURE 3

Analysis and visualization of gene expression and predictive modeling in Objective 1.1. (A) Features a volcano plot that contrasts gene expressions of

NHPs with strong positive RT-qPCR results against their status on day 0, when RT-qPCR results were strongly negative, highlighting top

MAS-selected genes with a logFC >1. In figure (B), a three-dimensional visualization is provided, showing all strongly positive and negative NHPs

using the top three selected MAS genes: IFI27, IFI6, and HP. Furthermore, figure (C) showcases the Receiver Operating Characteristic (ROC) curves

for each of the five folds of the five-fold stratified cross-validation, along with their mean, using logistic regression on the top selected gene, IFI27.

This panel also includes AUC and accuracy metrics for each fold, o�ering a detailed assessment of the predictive model’s performance. The focus on

a single gene and linear model emphasizes the model’s robust generalizability, demonstrating the e�ectiveness of IFI27 as a predictive marker.
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FIGURE 4

Comprehensive overview of gene expression analyses in Objective 1.2. (A) Displays a volcano plot comparing gene expressions of NHPs on day 6 vs.

day 0, highlighting significant changes. (B) Shows a similar plot for day 6 vs. day 3, pinpointing early infection response genes. (C) Illustrates the lack

of BH significant genes when comparing day 3 to day 0. (D) Reveals FLT1 as a top significant gene with relaxed BH criteria. Finally, (E) compares the

expression patterns of IFI27 (from Objectives 1.1 and 1.2), IFI6 (from Objective 1.1), and FLT1, emphasizing their roles across di�erent infection stages.

all positive NHPs against all negative NHPs for the RT-qPCR test.

Figure 6B illustrates the ROC AUC for five-fold stratified cross-

validation using only the top gene, OAS1, as the predictor for the

Simplified MAS (SMAS). Figure 6C depicts the visualization of all

samples using the first three principal components (PC1, PC2, and

PC3) as axes. Meanwhile, Figure 6D shows the 3D visualization of

all samples using the top three MAS-selected genes.

3.1.2 Objective 2. Application of MAS insights for
EBOV classification
3.1.2.1 Objective 2.1. Classification using top selected

MAS genes

Figure 7 demonstrates the results related to Objective 2.

Since it was challenging to display all common and unique

selected MAS genes for All-N-P, NDL-0-strong, ND-0-10, and
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FIGURE 5

(Continued)

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2024.1405332
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezapour et al. 10.3389/frai.2024.1405332

FIGURE 5

Gene expression analysis and classification in Objective 1.3. (A) Venn Diagram of BH Significant Genes—this diagram compares NHPs on day 10 vs.

days 0 and 3, showcasing BH significant genes with logFC >1. It highlights the top genes (ISG15, IFI6, IFI44) expressed significantly in both contrasts

and the lack of unique significant genes for the day 10 vs. day 3 comparison. (B) Unique BH significant genes across objectives—this figure reveals

IFI27 as the only BH significant gene with logFC >1 when comparing ND-0-10, N-0-6, and NDL-0-strong, underscoring its unique presence across

di�erent comparisons. (C) Common BH significant genes across objectives—displaying IFI6, HP, and IFI27 as the top three BH significant genes with

logFC >1, this figure shows the commonality of these genes among ND-0-10, ND-3-10, and NDL-0-strong comparisons. (D) ROC AUC for

Classifying NHPs Using SMAS Predictors—this graph illustrates the ROC AUC for classifying NHPs as negative (RT-qPCR on day 0) or positive (day 10)

using IFI6, IFI27, or ISG15 (only one gene) as the sole predictor in SMAS. (E) ROC AUC for classifying NHPs using SMAS predictors—this graph

illustrates the ROC AUC for classifying NHPs as negative (RT-qPCR on day 0) or positive (day 10) using IFI6, IFI27, or ISG15 (only one gene) as the sole

predictor in SMAS.

ND-3-10, Figure 7A only shows the common and unique

genes for the first three groups. However, the top-3 genes

for common genes among all four groups (All-N-P, NDL-0-

strong, ND-0-10, and ND-3-10) are IFI6, IFI27, and MX1,

respectively. Figures 7B, C illustrate the expression of these

top three selected genes through a 3D visualization and heat

map clustering, respectively. Figure 7C reveals the hierarchical

clustering where the “Ward” method is employed (Ward,

1963). This agglomerative clustering approach starts with each

sample as a separate cluster and iteratively merges them into

larger ones. The Ward method aims to minimize the total

within-cluster variance, thereby tending to create more evenly

sized, spherical clusters. Using these three genes, the method

effectively separates the positive and negative groups from

each other.

When we repeat this process using the traditional gene ranking

commonly used (genes with logFC > 1 and then prioritizing

based on BH adjusted p-values, so that the gene with the minimum

BH adjusted p-value and logFC > 1 becomes the top gene in

the traditional method), it turns out that the top gene is FLT1.

Our aim is to pinpoint a gene capable of differentiating between

positive and negative RT-qPCR NHP samples. When focusing

on the extreme cases within NDL-0-strong, FLT1 emerges as

the top-ranked gene using the traditional ranking method, yet

it falls to rank 16 when assessed with the MAS score. While

FLT1 proves to be a reliable gene marker within the context of

extreme cases in NDL-0-strong, its effectiveness wanes in other

scenarios. Table 1, which demonstrates the performance of logistic

regression via four-fold cross-validation for All-N-P, indicates that

FLT1 is not the most suitable gene for differentiating between

negative and positive samples. Using IFI6 as the only predictor

and logistic regression as the modeling approach, coupled with

five-fold stratified cross-validation, we attained 100% accuracy

and an AUC of 100% for objectives 1.1, 1.3 and 1.4 using

balanced data.

3.1.2.2 Objective 2.2. Implementing MAS on an

independent set for subsequent supervised classification

To clearly illustrate the differences between traditional ranking

methods and the MAS approach, Figure 8 compares the top 20

genes selected by each method on ND-0-strong. Following the

strategy outlined in Section 2 under Objective 2.2, the gene

identified as IFI27 emerges as the top selection, GMAS, from

the MAS process. Utilizing IFI27 as the primary predictor in

logistic regression, we conducted four-fold cross validation with

all negative and positive samples, excluding those from ND-0-

strong, as shown in Figure 2 (Objective 2.2). This process was also

replicated using the traditional ranking method for comparison.

Table 2 presents the performance of the logistic regression model,

comparing the results obtained using the top-selected genes from

both MAS and the traditional method.

3.2 Comprehensive Gene Ontology
analysis of identified Benjamini-Hochberg
significant genes through SMAS

Figure 9 illustrates the five most significant GO terms identified

from the Gene Ontology analysis of upregulated genes through the

SMAS method, following the Benjamini-Hochberg correction for

multiple testing. Figure 10 presents the top 10 Gene Ontology (GO)

terms for six crucial genes identified in our study: IFI27, IFI6, MX1,

HP, OAS1, and ISG15. Each panel displays the GO terms ranked

by their significance, providing insights into the primary biological

functions influenced by each gene.

4 Discussion

In our study, the comprehensive differential expression analysis

usingMAS elucidated significant changes in gene expression due to
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FIGURE 6

Analysis and visualization of gene expression for objective 1.4. (A) Shows a volcano plot contrasting all positive vs. negative NHPs in RT-qPCR,

highlighting BH significant genes with logFC >1 using MAS ranking. (B) Illustrates the ROC AUC from a five-fold stratified cross-validation using the

top gene, OAS1, in the Simplified MAS (SMAS) approach. (C) Depicts the visualization of all samples using the first three principal components (PC1,

PC2, PC3). Finally, figure (D) presents a 3D visualization of all samples using the top three MAS-selected genes, o�ering insights into their spatial

distribution and expression patterns.

EBOV infection in nonhuman primates (NHPs). Below, we discuss

the results obtained in Section 3 for different objectives.

4.1 Objective 1. Comprehensive
di�erential expression analysis using MAS
scoring

4.1.1 Objective 1.1. Strong negative vs. strong
positive analysis (NDL-0-strong)

The “Strong Negative vs. Strong Positive Analysis (NDL-0-

strong)” within our study has proven to be a critical component

in discerning the genetic alterations associated with extreme cases

of EBOV infection. Utilizing the MAS method, we successfully

identified key genes, notably IFI27, IFI6, and HP, which displayed

significant expression level changes in strong positive cases as

opposed to strong negatives. This analysis, enriched by three-

dimensional visualization as illustrated in Figure 3B and enhanced

by logistic regression with five-fold stratified cross-validation (see

Figure 3C), underscores the strength of our approach.

The precision and effectiveness of our model are most notably

reflected in the ROC curves, which exhibit a remarkable 100%

AUC and accuracy metrics. This exceptional performance is largely

attributed to our focused reliance on a single, highly indicative gene,

IFI27. Such a focused approach not only addresses the complexity

of EBOV pathogenesis but also reveals a clear genetic signature.

This signature is of paramount importance, presenting itself as an

instrumental asset for the future development of diagnostic and

therapeutic strategies targeting EBOV infections. The attainment of

100% accuracy and AUC in our analysis highlights the potential of

our methodological approach in revolutionizing the understanding

and management of severe viral infections.

Supporting this selection of IFI27, several studies have provided

insights into its role in different viral infections. Huang et al. (2022)

highlighted IFI27 as a gene associated with the progression of HIV

infection, suggesting its potential as a target for immunotherapy.

Similarly, Shojaei et al. (2023) emphasized the expression of
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FIGURE 7

Gene expression analysis and predictive modeling in Objective 2. (A) The figure focuses on the selected MAS genes for All-N-P, NDL-0-strong,

ND-0-10, and ND-3-10. Due to the complexity of presenting all common and unique genes across these groups, this figure specifically illustrates

only those for the first three groups. However, it highlights IFI6, IFI27, and MX1 as the top three common genes shared among all four groups,

underscoring their significance across various analysis categories. (B) The figure presents a 3D visualization of gene expression, focusing on the top

three selected genes: IFI6, IFI27, and MX1. (C) The figure displays a heat map with hierarchical clustering of the top three selected genes: IFI6, IFI27,

MX1, and HP.
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TABLE 1 Comparative analysis of gene selection methods for RT-qPCR NHPs.

Ranking method Top-selected
gene

Average AUC Average
accuracy

Average
precision

Average
recall

Average
F1-score

MAS (ours) IFI6 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

Traditional [EdgeR

(Robinson et al., 2010) or

DESeq2 (Love et al.,

2014)]

FLT1 0.88± 0.07 0.82± 0.05 0.87± 0.06 0.80± 0.06 0.81± 0.06

The table highlights the efficacy of the MAS method in identifying IFI6 as a gene capable of perfectly distinguishing between all negative and positive samples, achieving 100% accuracy and

AUC. This contrasts with the traditional method, which does not yield such definitive separation. Notably, due to the imbalance in the All-N-P dataset, we randomly selected 12 negative samples

to form a balanced dataset comprising 24 samples (12 per class). Following this, we conducted four-fold stratified cross-validation, repeated 100 times, to calculate the average performance

metrics with their standard deviations (STD) for each method.

FIGURE 8

Comparative Analysis of Gene Selection between Traditional Ranking and MAS Methods for Objective 1.1. The figure displays the top 20 genes

selected by the traditional ranking method (left) and the MAS method (right) for objective 1.1. It highlights di�erences in gene prioritization between

the two methods, revealing potential insights into gene selection for distinguishing negative and positive samples in RT-qPCR NHPs.

IFI27 in the respiratory tract of COVID-19 patients, correlating

its increased expression with a high viral load. Their findings

also underscored the role of IFI27 as a marker of systemic host

response, demonstrating its high sensitivity and specificity in

predicting clinical outcomes. In the context of influenza, Tang

et al. (2017) identified IFI27 as a single-gene biomarker with

high predictive accuracy for distinguishing between influenza and

bacterial infections. Their work showed that IFI27 is upregulated by

TLR7 in plasmacytoid dendritic cells, more responsive to influenza

virus than bacteria, and confirmed its expression in influenza

patients through multiple patient cohorts.

Further corroborating the relevance of IFI27, Villamayor et al.

(2023) explored its role in regulating innate immune responses to

viral infections. Their study highlighted a novel function of IFI27 in

modulating responses triggered by cytoplasmic RNA recognition

and binding. The interaction of IFI27 with nucleic acids and the

PRR retinoic acid-inducible gene I (RIG-I) was a key discovery,

revealing its potential to impair RIG-I activation and thusmodulate

innate immune responses.

The convergence of findings from various studies establishes

IFI27 as a critical gene in the context of viral infections,

highlighting its significant role across different viral diseases.

These insights further validate the selection of IFI27 through

the MAS method, particularly within the NDL-0-strong objective

for EBOV infection in NHPs. The prominence of IFI27 in

this analysis underscores its importance in deciphering the

complex mechanisms of viral pathogenesis and the associated

immune responses. This validation by MAS in identifying IFI27

is significant, as it indicates the gene’s involvement in crucial

biological pathways during severe viral infections. By focusing
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TABLE 2 Performance comparison of logistic regression model using top genes selected by MAS and the traditional methods from ND-0-strong, applied

to remaining samples excluding ND-0-strong.

Ranking method Top-selected
gene

Average AUC Average
accuracy

Average
precision

Average
recall

Average
F1-score

MAS (ours) IFI27 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

Traditional [EdgeR

(Robinson et al., 2010) or

DESeq2 (Love et al.,

2014)]

FLT1 0.72± 0.27 0.69± 0.17 0.71± 0.22 0.72± 0.14 0.67± 0.18

FIGURE 9

This figure displays the five most significant GO terms associated with upregulated genes in nonhuman primates following exposure to the Ebola

virus, based on the negative logarithm of the q-values, as determined using the Supervised Magnitude-Altitude Scoring (SMAS) method and adjusted

by the Benjamini-Hochberg procedure. The titles within each subplot indicate the total number of significant GO terms found for the respective

gene, showcasing their broad impact on cellular processes.

on IFI27, our study not only identifies a key genetic marker

but also paves the way for a deeper understanding of the

interaction networks and pathways it influences or participates in.

This comprehensive approach enriches our grasp of the genetic

underpinnings at play in viral infections and could potentially

inform the development of targeted therapeutic interventions.

The pathway analysis of IFI27, therefore, offers a more nuanced

view of its role, extending beyond mere gene expression to its

functional implications in the context of viral infections and

immune system responses.

4.1.2 Objective 1.2. Di�erential expression in
group 1 (N-0-6 and N-3-6)

As the positive RT-qPCR tested NHPs on day 6 post-infection

are contrasted against the same NHPs on days 0 and 3 post-

infection, when they were negative for RT-qPCR in Group 1, IFI27

emerges as the top MAS-selected gene (see Figure 4). Although

we did not perform supervised prediction due to limited samples,

Figure 4E suggests that IFI27 perfectly separates the positive and

negative samples. Considering IFI27 as the top MAS-selected

gene for both Objectives 1.1 (extreme cases) and 1.2 (regular
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FIGURE 10

Distribution of Top 10 Significant GO Terms for IFI27, IFI6, MX1, and HP. Each panel represents one of the genes studied, illustrating the GO terms

with the highest statistical significance in their association with gene upregulation. The number indicated in each title reflects the total significant GO

terms identified for that gene, emphasizing the biological impact of each gene’s expression changes.

cases), it becomes evident that IFI27 is a signature marker for

Ebola infection.

The findings of our study, particularly the identification of

IFI27 as a key biomarker in the early stages of EBOV infection,

align closely with the insights from Normandin et al.’s (2023)

comprehensive analysis. Their work, which involved extensive

RNA sequencing across multiple tissues in rhesus monkeys infected

with EBOV (EBOV), revealed a significant correlation between the

expression of IFI27 and viral RNA load. This parallel discovery

in both studies underscores the crucial role of IFI27 in the host’s

immune response to EBOV infection. By demonstrating the early

detection capability of IFI27 as a biomarker in our study and

its correlation with viral load in various tissues in the study by

Normandin et al., a more nuanced understanding of the molecular

mechanisms of EVD pathogenesis emerges.

Blengio et al. (2023) conducted a study exploring the gene

expression profiles in response to Ebola vaccination, revealing

crucial insights into the immune response mechanisms. Among the

key findings, IFI27 stood out, being one of the early expressed genes

whose upregulation on day 1 post-vaccination correlated with the

magnitude of the antibody response observed both 21 days after the

MVA-BN-Filo and 364 days after the Ad26.ZEBOV vaccinations.

Kash et al. (2017) conducted an in-depth analysis of the

immune response in a patient with severe EVD, revealing critical

insights into the dynamics of host gene expression in relation to the

course and severity of the illness. Their study, conducted during

the unprecedented 2013–2015 Ebola outbreak in Guinea, Liberia,

and Sierra Leone, involved daily microarray analysis of peripheral

blood samples from a patient treated at the National Institutes

of Health Clinical Center. This comprehensive approach allowed

them to correlate gene expression changes with various clinical

parameters, including viral load, antibody responses, coagulopathy,

organ dysfunction, and eventual recovery.

A key finding from Kash et al.’s (2017) research was the

identification of IFI27 as a significantly expressed gene in response

to EBOV replication. Their analysis revealed that IFI27, along

with other type I interferon-stimulated genes (ISGs), showed

marked expression changes correlating with phases of the disease.
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Particularly on day 13 post-infection, IFI27, among other ISGs,

was found to be highly expressed, aligning with the peak antiviral

response in the patient. This aligns with our findings and those of

other studies like Normandin et al. (2023) and Blengio et al. (2023),

where IFI27 was identified as a critical biomarker in the context of

EBOV infection and response.

As discussed in Objective 1.1, IFI27’s role extends beyond

being a mere biomarker. The consistent upregulation of IFI27 in

Ebola-infected NHPs, as compared to their negative counterparts,

underlines its significance in the pathophysiology of the infection.

This pattern indicates a potential role of IFI27 in the host’s

response to the EBOV, possibly in the modulation of the immune

system or the activation of specific cellular pathways. Given the

crucial role of interferon-stimulated genes like IFI27 in the innate

immune response, its significant expression in Ebola-infected

NHPs could reflect an activation of defense mechanisms against

the virus. This aligns with findings in other viral infections, where

IFI27 is implicated in immune response modulation and viral

replication control.

Therefore, the prominence of IFI27 in Ebola infection, at

least in NHP models, highlights its potential as a therapeutic

target or a biomarker for early diagnosis and treatment strategies.

Understanding the exact mechanisms by which IFI27 influences

Ebola pathogenesis could pave the way for novel approaches to

manage and treat this severe viral infection. This study opens new

avenues for investigating IFI27’s role in EBOV infection and its

potential application in clinical settings.

4.1.3 Objective 1.3. Analysis within normal and
delayed groups (ND-0-10 and ND-3-10)

When we contrasted the RT-qPCR positive NHPs on day

10 against the same NHPs on days 0 and 3, when they were

still negative in the RT-qPCR test, interesting results emerged.

Figure 5A indicates that from day 0 to day 10, a total of 99 genes

are significantly upregulated (as indicated by Benjamini-Hochberg

significance) with a log fold change (logFC)>1. Furthermore, from

day 3 to day 10, only 37 of these genes remained significantly

upregulated. The difference in gene expression between day 3

and day 10 is particularly noteworthy. While the number of

significantly upregulated genes decreases to 37, these genes (e.g.,

ISG15, IFI6, IFI44L, HP, OAS1, IFI44, OASL, and IFI27) likely

play a crucial role in the response to the progressing infection.

The reduction in the number of upregulated genes could indicate

a more targeted or evolved response of the host’s immune system

as the infection progresses. Alternatively, it may reflect a shift

in the virus-host interaction dynamics over time. This pattern of

gene expression highlights the complex and evolving nature of

the host response to EBOV infection. Identifying these key genes

that remain upregulated over time could provide insights into

critical pathways and mechanisms that the virus exploits or the

host deploys in response to the infection. This understanding could

be invaluable for developing targeted therapies or diagnostics for

the EBOV.

Figure 5B demonstrates the common and uniqueMAS-selected

genes with logFC >1 among the negative RT-qPCR results on day

0 compared to the positive ones on day 10 and day 6 and the strong

positives on days 10 or 21. It turns out that the only Benjamini-

Hochberg (BH) significant gene with logFC >1, common among

all these three groups, is IFI27. When the N-0-6 group is replaced

with ND-3-10, there are 12 BH significant genes with logFC >1,

with IFI6, HP, IFI27, and MX1 as the top selected genes (see

Figure 5C). Using either IFI6, IFI27, or ISG15 as the single predictor

for logistic regression, we achieved 100% accuracy in separating the

positive NHPs on day 10 from their counterparts on days 0 or 3

(see Figures 5D, E). This analysis provides crucial insights into the

gene expression profiles in NHPs associated with EBOV infection.

IFI27’s consistent upregulation across different groups and time

points indicates its potential as a biomarker for Ebola infection.

Its presence in all examined groups underscores its importance in

early virus detection. The ability to differentiate between positive

and negative samples with 100% accuracy using IFI6, IFI27, or

ISG15 as predictors highlights the significant alteration of these

genes following infection and their potential as reliable indicators

of EBOV presence in NHPs.

Building on this, several studies have explored the roles of

related genes in viral infections. Sajid et al. (2021) focused on IFI6

in HBV, demonstrating its antiviral properties post-type I IFN-

alpha stimulation. Similarly, Qi et al. (2015) showed that IFI6

expression increases in DENV-infected cells, influencing apoptosis-

related processes. Liu et al. (2019) studied lncRNA-IFI6 in HCV

infection, uncovering its regulatory effects on the antiviral ISG IFI6.

Park et al. (2013) investigated IFI6’s genetic variations in chronic

liver disease patients with HBV.

Morales and Lenschow (2013) reviewed the current

understanding of ISG15, examining its role in mediating

protection against different viral infections and exploring the

mechanisms by which it exerts antiviral activity. Their work

highlights the importance of ISG15 in the immune system’s

response to viral threats, emphasizing its potential as a target

for therapeutic interventions in viral diseases. Jeon et al. (2010)

focused on the role of ISG15 in the immune response, particularly

its involvement in the conjugation process known as ISGylation.

Their findings indicate ISG15’s significant role in the innate

immune response. Perng and Lenschow (2018) focused their

review on the multifaceted role of ISG15, a ubiquitin-like protein,

in the host’s response to viral infection. They discussed how ISG15,

induced by type I interferons, not only directly inhibits viral

replication but also modulates various host responses, including

damage repair, immune response, and other signaling pathways.

Their review highlighted the diverse and pathogen-dependent

actions of ISG15, emphasizing its importance in antiviral defense.

Additionally, they explored how viruses evolve strategies to evade

ISG15’s actions. The review also integrated new findings on

individuals deficient in ISG15 and the identification of a cellular

receptor for ISG15, providing deeper insights into how ISG15

influences the host response to viral infections.

These studies collectively enhance our understanding of the

roles of genes like IFI6 and ISG15 in the body’s response to viral

infections, providing valuable context for our findings on EBOV.

The mechanisms elucidated in these studies, particularly relating to

IFI6’s antiviral properties and ISG15’s role in immune modulation

and viral replication inhibition, offer insights that may be relevant

in understanding the specific genetic responses we observed in

NHPs infected with Ebola.
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4.1.4 Objective 1.4. Comparison of all negative
vs. all positive samples (All-N-P)

When contrasting all RT-qPCR positive tested NHPs against all

negative ones, regardless of time, OAS1 emerged as the top MAS-

selected gene, perfectly separating negative from positive samples

with 100% accuracy (see Figure 6). The second and third top MAS-

selected genes are IFI6 and ISG15, consistent with our findings in

previous objectives.

Melchjorsen et al. (2009) investigated the expression patterns of

the 2
′

-5
′

oligoadenylate synthetase (OAS) family genes, particularly

Oligoadenylate synthetase 1 (OAS1) and OASL, during viral

infections such as with Sendai virus and Influenza A virus. Their

findings suggest that OASL behaves like an antiviral gene, providing

new insights into the roles of the OAS gene family members

in the immune response to viral infections. Fish and Boissinot

(2016) conducted a comprehensive study on OAS1, highlighting

its critical role as a first line of defense against various viral

pathogens, particularly in Old World monkeys. Their research

revealed that OAS1 is evolving under positive selection in these

species, with most of the positively selected sites located in the

RNA-binding domain (RBD), which is responsible for binding

viral dsRNA. This positive selection, especially concentrated in a

specific region of the RBD, suggests a sub-functionalization within

this domain, potentially enhancing OAS1’s ability to recognize

and bind diverse viral RNAs. Additionally, Fish and Boissinot

(2016) identified positively selected residues around the active site’s

entry, indicating an evolutionary adaptation to possibly evade viral

antagonism or to produce oligoadenylates of varying lengths. These

findings underscore the evolutionary pressures shaping OAS1 and

its importance in the innate immune response to viral infections.

Building upon these studies, OAS1’s pathway in viral infection

response can be delineated. OAS1 is activated upon recognizing

double-stranded RNA (dsRNA) from viruses, including Ebola,

leading to the synthesis of 2
′

-5
′

-linked oligoadenylates (2-5A). This

synthesis subsequently activates Ribonuclease L (RNase L), which

then cleaves both viral and host RNA, effectively inhibiting viral

replication. However, this activation by OAS1 is a double-edged

sword, as indicated by Carey et al.’s (2019) findings show that OAS1

activation can also lead to autoactivation by host RNAs, presenting

potential costs to the host. The evolutionary study by Fish and

Boissinot (2016) added another layer to this pathway by suggesting

that OAS1’s RNA-binding domain has evolved under positive

selection in some primate species, enhancing its ability to recognize

and bind diverse viral RNAs. This evolutionary adaptation may be

a response to the need for balancing effective viral defense with the

minimization of collateral damage to the host. In the context of

EBOV infection, this pathway underscores OAS1’s critical role in

the initial detection and response to the virus, marking it as a key

player in the host’s antiviral defense mechanism.

4.2 Objective 2. Application of MAS
insights for EBOV classification

4.2.1 Objective 2.1. Classification using top
selected MAS genes

Objective 2.1 of our study focused on identifying a definitive

gene marker for distinguishing between positive and negative

NHPs in the RT-qPCR test, irrespective of the severity or level

of Genome Equivalent. Our approach involved selecting the top

MAS-selected gene with a logFC >1, consistently identified across

objectives 1.1, 1.2, and 1.4. It turns out that IFI6, IFI27, and MX1

are the top common genes across all objectives (Figure 7A shows

the common genes across three groups). According to Figures 7B,

C, using any of these genes effectively separates the positive and

negative samples into distinct clusters.

To evaluate the effectiveness of the MAS ranking method,

we compared it with the traditional ranking method. We found

that the top MAS-selected gene, IFI6, successfully differentiated all

negative from positive samples with 100% average accuracy and

AUC. In contrast, the top gene selected by the traditional ranking

method, FLT1, achieved an average accuracy of 82% and an average

AUC of 0.88, as indicated in Table 1. Additionally, we compared

the MAS and traditional ranking mechanisms within the extreme

cases of Objective 1.1. As shown in Figure 8, the MAS approach

effectively accounts for both biological and statistical significance,

highlighting its superiority in identifying key genetic markers in

EBOV infection studies.

We have discussed the pathways of IFI6 and IFI27 in previous

objectives. Regarding MX1, Caballero et al. (2016) focused on

the host response to EBOV infection, revealing that MX1, along

with ISG15 and OAS1, is significantly upregulated in circulating

immune cells during infection. Their study found that these

genes, particularly MX1, are part of a strong innate immune

response triggered by active virus replication. This response,

which also includes other interferon-stimulated genes, contrasts

with in vitro evidence suggesting suppression of innate immune

signaling. The prominence of MX1 in the immune response to

the EBOV highlights its potential role in the pathogenesis of the

infection and underscores its significance as a key component of

the host’s defense mechanism against viral threats. Pillai et al.

(2016) highlighted the critical role of MX1 in the immune

response to viral infections (particularly to IAV) and underscored

the complex interplay between viral defense mechanisms and

subsequent bacterial complications. Fuchs et al. (2017) investigated

the role of MX1 proteins in bats, particularly in relation to

their innate immune defense against various viruses, including

Ebola. Bats, known reservoirs for zoonotic viruses such as Ebola,

typically do not exhibit clinical symptoms from these infections.

They focused on cloning MX1 cDNAs from three bat families

and analyzing their antiviral potential. They found that bat MX1

proteins are key factors in controlling viral replication, including

Ebola, in their bat hosts, and offer insights into the coevolution of

these proteins with bat-borne viruses.

4.2.2 Objective 2.2. Implementing MAS on an
independent set for subsequent
supervised classification

The results presented in Table 2 underscore the remarkable

efficiency of the MAS method in gene selection for predictive

modeling, especially when contrasted with traditional ranking

methods. The perfect scores across all metrics achieved by the

logistic regression model using the MAS-selected gene IFI27,

including Average AUC, Accuracy, Precision, Recall, and F1-

Score, firmly establish MAS as a highly effective approach
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in this context. These scores not only reflect the method’s

impeccable accuracy in classifying RT-qPCR positive and negative

samples but also its consistency, as indicated by the absence of

variability in the results. This level of performance highlights

the potential of MAS to reliably identify genes that are not

just statistically significant but also practically relevant for

diagnostic and therapeutic applications, particularly in the field of

EBOV research.

In stark contrast, the traditional ranking method, as evidenced

by its moderate scores using the gene FLT1, demonstrates a

less robust performance. While it maintains a certain level of

effectiveness, the considerable variability in its metrics suggests

lower reliability and precision. This comparison draws attention

to the limitations inherent in traditional methods, which

often prioritize statistical significance over practical utility. The

discrepancies in performance between the two methods may stem

from their differing focuses: MAS balances statistical and biological

significance, while traditional methods may disproportionately

emphasize statistical metrics, potentially overlooking genes with

substantial biological relevance.

A key finding from our analysis was the identification of

IFI27 as a prominent gene in both extreme and regular cases

of EBOV infection. IFI27 consistently emerged as the top MAS-

selected gene, establishing itself as a robust marker for the presence

of the virus. This was further corroborated by its exceptional

performance in logistic regression models, where it demonstrated

high accuracy in differentiating between positive and negative

samples. Moreover, our study revealed the significant role of genes

like IFI6, which, alongside IFI27, showed marked expression level

changes in response to the infection. These genes formed a distinct

pattern of expression, aligning with the progression and severity of

the infection in NHPs.

We also observed that other genes, such as MX1 and ISG15,

were significantly upregulated, suggesting their involvement in the

host’s immune response to the EBOV. The pattern of upregulation

in these genes provided insights into the complex interplay between

the host’s defense mechanisms and viral pathogenesis. In a broader

classification analysis, we found that genes like OAS1 also played

a significant role in our study. OAS1 was identified as a crucial

marker, effectively separating positive from negative EBOV samples

with high accuracy. This underscores its potential role in the

innate immune response and its importance as part of the genetic

signature of EBOV infection.

In summary, the application of SMAS has successfully

highlighted six key genes, IFI27, IFI6, MX1, HP, OAS1, and ISG15

as critically involved in the response to Ebola virus infection in

nonhuman primates (NHPs). Note that the integration of both

the magnitude of expression changes (logFC) and their statistical

significance (adjusted p-values) in the MAS formula is designed to

overcome some of the common pitfalls associated with traditional

gene expression analysis methods. While large fold changes in

gene expression are used as indicators of potential biological

importance, our methodology critically evaluates these changes

within the statistical framework provided by the Benjamini-

Hochberg correction. This dual consideration ensures that the

genes identified as significant are not only statistically robust

but also likely to be biologically meaningful in the context of

EBOV infection. Additionally, by incorporating a comprehensive

Gene Ontology (GO) analysis of the top-ranked genes, we aim to

validate their functional relevance and connectivity in biological

pathways directly related to viral pathogenesis. This GO analysis

helps elucidate the broader biological implications of these gene

expression changes, supporting their role in EBOV infection

beyond mere statistical artifacts.

The results of our GO term analysis, detailed in Figures 9,

10, not only corroborate the biological significance of these genes

but also illuminate their interconnected roles in viral pathogenesis

and host defense mechanisms. Below, we delve into the specifics

of the GO terms associated with each gene, elucidating how they

collectively contribute to a comprehensive understanding of their

function in the context of Ebola.

• IFI27 has been pinpointed as a central gene in the immune

response to viral infection, as evidenced by its involvement

in the “cytokine-mediated signaling pathway” (GO:0019221)

and “response to type I interferon” (GO:0034340). These

pathways are crucial for activating antiviral states in cells,

a key defense mechanism against Ebola virus proliferation.

The gene’s significant roles in “viral process” (GO:0016032)

and “viral genome replication” (GO:0019079) suggest a direct

interaction with viral components, influencing the lifecycle

of the Ebola virus within host cells. These interactions

underscore the potential of IFI27 to serve as a biomarker for

disease progression and severity.

• The involvement of IFI6 in “response to virus” (GO:0009615)

and “defense response to virus” (GO:0051607) highlights its

function in initiating and modulating antiviral responses. This

gene’s connection with the “regulation of apoptotic signaling

pathway” (GO:2001233) and “extrinsic apoptotic signaling

pathway” (GO:0097191) points to its role in controlling cell

death during infection, a critical factor in limiting Ebola

virus spread by preventing premature cell demise. IFI6’s

participation in these processes enhances the host’s ability

to maintain cellular integrity while fighting the infection,

illustrating its comprehensive role in viral defense.

• MX1 is robustly linked to several key antiviral processes,

including “defense response to virus” (GO:0051607)

and “negative regulation of viral genome replication”

(GO:0045071). By impacting the “viral life cycle”

(GO:0019058) and actively participating in “cytokine-

mediated signaling pathways” (GO:0019221), MX1 emerges

as a pivotal factor in the immune system’s strategy to combat

Ebola. These GO terms collectively underscore MX1’s role

in not only halting the progression of viral infection but

also in modulating the immune response to enhance efficacy

and specificity.

• HP’s association with “acute inflammatory response”

(GO:0002526) and “acute-phase response” (GO:0006953)

identifies it as a key player in the initial immune response to

Ebola virus infection. The gene’s involvement in “response

to oxidative stress” (GO:0006979) and “regulation of reactive

oxygen species metabolic process” (GO:2000377) further

suggests its role in managing cellular stress caused by viral

invasion. These activities are crucial in maintaining cellular
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homeostasis and enhancing the resilience of host cells against

the destructive nature of Ebola virus replication.

• OAS1 plays a significant role in the immune response to

viral infections, particularly evident from its involvement

in multiple GO terms related to immune processes. The

“cytokine-mediated signaling pathway” (GO:0019221) and the

“positive regulation of cytokine production” (GO:0001819)

highlight its crucial function in modulating cytokine

responses, which are essential for initiating and sustaining

effective antiviral responses against pathogens like the Ebola

virus. The gene’s participation in the “response to virus”

(GO:0009615) and “defense response to virus” (GO:0051607)

underscores its direct engagement in combating viral

infections. These pathways are pivotal in orchestrating a

coordinated immune response, enhancing the host’s ability to

suppress viral replication and spread. Furthermore, OAS1’s

role extends to the regulation of complex immune pathways,

as shown in the “regulation of response to biotic stimulus”

(GO:0002831) and involvement in tumor necrosis factor-

related activities such as “tumor necrosis factor production”

(GO:0032640) and its regulation (GO:0032680). These

interactions suggest that OAS1 not only responds to viral

infections but also influences broader immune regulatory

networks that control inflammation and cellular signaling

in response to pathogens. This comprehensive involvement

makes OAS1 a key player in the immune defense against

Ebola, contributing to both the immediate antiviral response

and the regulation of systemic immune reactions that are

critical during severe viral infections.

• ISG15 stands out for its extensive involvement in the immune

response, particularly through its association with the

“cytokine-mediated signaling pathway” (GO:0019221) and

“positive regulation of cytokine production” (GO:0001819).

These roles are integral to amplifying the immune system’s

response to viral invasion, facilitating rapid and effective

defense mechanisms. Additionally, ISG15’s involvement

in the “response to virus” (GO:0009615) and “defense

response to virus” (GO:0051607) highlights its direct

role in antiviral defense, particularly in mediating the

immune system’s reaction to viral pathogens. Moreover,

ISG15’s functions in “negative regulation of immune system

process” (GO:0002683) and its regulation of hemopoiesis

(GO:1903706) suggest a balancing role in immune

modulation, preventing overactivation that could lead to

pathology. This dual role in both promoting and regulating

immune responses ensures a measured and effective antiviral

response, which is crucial in the management of Ebola virus

infections. The involvement in “viral process” (GO:0016032)

and specifically in the “defense response to bacterium”

(GO:0042742) also indicates its broader antimicrobial roles,

which may be critical in scenarios where secondary bacterial

infections complicate viral disease courses.

Our findings highlight the power of the MAS method in

unraveling the complex genetic responses to EBOV infection.

By identifying key genes that are significantly altered during

infection, our study not only contributes to the understanding of

EBOV pathogenesis but also paves the way for developing targeted

diagnostic and therapeutic strategies. The distinct gene signatures

we identified could serve as crucial tools in managing and treating

EBOV infections, providing a foundation for future research in

this critical area of virology. The integration of these GO terms

provides a nuanced view of how each gene contributes to the

host’s defense against Ebola, reflecting the complex interplay of

immune response, viral adaptation, and host survival strategies. By

leveraging the SMAS methodology, our study not only identifies

genes with statistical significance but also elucidates their profound

biological relevance to Ebola virus infection, paving the way

for future research into targeted therapeutic interventions and

enhanced diagnostic techniques.

5 Conclusions

This study marks a pivotal advancement in the field of

virology, particularly in understanding and detecting Ebola virus

(EBOV) infection in nonhuman primates. By employing the novel

Supervised Magnitude-Altitude Scoring (SMAS) methodology,

tailored specifically for multi-omic data with limited samples, we

have successfully identified crucial biomarkers. This approach,

focusing on a balanced integration of statistical and biological

significance, allows for the effective use of NanoString gene

expression data, which, while not exhaustive like RNA-seq, is highly

targeted and informative for known genes of interest.

Notably, the SMAS methodology enhances traditional gene

expression analysis by incorporating both log fold change (logFC)

and adjusted p-values from the Benjamini-Hochberg correction

into the gene selection process. This dual consideration ensures

that selected genes are not only statistically significant but

also biologically relevant, making them particularly suitable for

predictive modeling in infectious disease research.

Key genes such as IFI6, IFI27, MX1, OAS1, and ISG15

were identified as significant, demonstrating exceptional predictive

performance with perfect AUCmetrics in classifying various stages

of EBOV infection. These genes play critical roles in the immune

response to EBOV, as confirmed by comprehensive Gene Ontology

(GO) analysis. The GO analysis highlighted their involvement in

vital biological processes and immune responses, such as cytokine-

mediated signaling and the regulation of antiviral mechanisms,

which are essential for combating EBOV proliferation.

The increased expression of these genes and their detailed

functional roles elucidated through GO terms provide profound

insights into the intricate dynamics of host defense mechanisms.

These findings not only underscore the biological importance of the

identified genes but also lay a robust groundwork for developing

refined diagnostic methods and therapeutic approaches against

EBOV infection.

In summary, the application of the SMAS methodology within

this study has not only showcased its capability to handle complex

genomic data efficiently but also its potential to significantly

contribute to virological diagnostics and therapeutic research.

By effectively identifying key biomarkers through a method that

accommodates the constraints of limited sample sizes typically

associated with multi-omic data, SMAS stands out as a highly

promising tool in the arsenal against viral infections such as

EBOV. This study paves the way for future research into targeted
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therapeutic interventions and enhanced diagnostic techniques,

which are crucial for managing and treating Ebola and potentially

other viral infections.

6 Study limitations and future work

Our findings, while robust in the context of Ebola virus

infection, provide foundational insights that necessitate cautious

interpretation, especially when considering their applicability to

human infections and other pathogens. This caution forms a

cornerstone of our ongoing and future research efforts. Key points

to consider include:

• Applicability to human infection: the results derived from

nonhuman primate models serve as preliminary insights

that need validation in human subjects. The transition from

nonhuman primate models to human studies is a critical

step that requires careful consideration and methodological

adjustments to ensure relevance and accuracy.

• Sample size and generalizability: the study’s current limitations

imposed by our small sample size affect the generalizability of

our findings. To address this, we plan to expand our sample

pool in future studies. Increasing the number and diversity of

samples will enhance the robustness and applicability of our

results, allowing for a more comprehensive evaluation of our

methodologies and findings.

• Long-term expression changes and functional analyses: our

focus thus far has been on short-term gene expression

changes. Recognizing the importance of understanding the

prolonged effects and functional roles of these genes, future

work will integrate long-term gene expression data and

functional assays.

• Expansion to other infectious diseases: to further validate and

possibly refine the specificity of our identified biomarkers, we

plan to extend our methodologies to include control studies

involving other infectious diseases. These comparative studies

will help determine if the biomarkers identified are specific

to Ebola virus infection or represent a generic response to

various pathogens.
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