Skip to main content

ORIGINAL RESEARCH article

Front. Artif. Intell.
Sec. Machine Learning and Artificial Intelligence
Volume 7 - 2024 | doi: 10.3389/frai.2024.1403187

Self-Trainable and Adaptive Sensor Intelligence for Selective Data Generation

Provisionally accepted

The final, formatted version of the article will be published soon.

    With the increasing integration of machine learning into IoT devices, managing energy consumption and data transmission has become a critical challenge. Many IoT applications depend on complex computations performed on server-side infrastructure, necessitating efficient methods to reduce unnecessary data transmission. One promising solution involves deploying compact machine learning models near sensors, enabling intelligent identification and transmission of only relevant data frames. However, existing near-sensor models lack adaptability, as they require extensive pre-training and are often rigidly configured prior to deployment. This paper proposes a novel framework that fuses online learning, active learning, and knowledge distillation to enable adaptive, resource-efficient near-sensor intelligence. Our approach allows near-sensor models to dynamically fine-tune their parameters post-deployment using online learning, eliminating the need for extensive pre-labeling and training. Through a sequential training and execution process, the framework achieves continuous adaptability without prior knowledge of the deployment environment. To enhance performance while preserving model efficiency, we integrate knowledge distillation, enabling the transfer of critical insights from a larger teacher model to a compact student model. Additionally, active learning reduces the required training data while maintaining competitive performance.We validated our framework on both benchmark data from the MS COCO dataset and in a simulated IoT environment. The results demonstrate significant improvements in energy efficiency and data transmission optimization, highlighting the practical applicability of our method in real-world IoT scenarios.

    Keywords: Active Learning, intelligent sensing, Internet of Things, Knowledge distillation, machine learning, Near-sensor computing

    Received: 19 Mar 2024; Accepted: 31 Dec 2024.

    Copyright: © 2024 Rezvani Dehaghani, Huang, Chen, Ni and Imani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Mohsen Imani, University of California, Irvine, Irvine, United States

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.