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Application of artificial
intelligence in mine ventilation: a
brief review

Mikhail Semin* and Denis Kormshchikov

Mining Institute of the Ural Branch of the Russian Academy of Sciences, Perm, Russia

In recent years, there has been a notable integration of artificial intelligence (AI)

technologies into mine ventilation systems. A mine ventilation network presents

a complex system with numerous interconnected processes, some of which

pose challenges for deterministic simulationmethods. The utilization ofmachine

learning techniques and evolutionary algorithms o�ers a promising avenue to

address these complexities, resulting in enhanced monitoring and control of air

parameter distribution within the ventilation network. These methods facilitate

the timely identification of resistance faults and enable prompt calculation

of ventilation parameters during emergency scenarios, such as underground

explosions and fires. Furthermore, evolutionary algorithms play a crucial role in

the advancement of methods for visual analysis of ventilation systems. However,

it is essential to acknowledge that the current utilization of AI technologies

in mine ventilation is limited and does not encompass the full spectrum of

challenging-to-formalize problems. Promising areas for AI application include

analyzing changes in air distribution caused by unaccounted thermal draft

and gas pressure, as well as developing novel approaches for calculating

shock losses. Moreover, the application of AI technologies in optimizing large-

scale mine ventilation networks remains an unresolved issue. Addressing these

challenges holds significant potential for enhancing safety and e�ciency in mine

ventilation systems.
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1 Introduction

The ventilation system is an important element for the trouble-free operation of a mine

and is often described as the respiratory system (Liu et al., 2022a) or the lifeblood of a mine

(McPherson, 2012). Its task is to continuously supply fresh air to all underground working

areas to dilute and remove various harmful impurities such as gas and dust, while also

providing comfortable microclimatic conditions determined by air velocity, temperature,

and relative humidity. The need to organize an effective ventilation system in mines is

reinforced by specific requirements in regulatory documents of many countries (Semin

et al., 2020).

The consumption of mineral resources is constantly growing, accompanied by a

continual increase in mining capacity. Mines are expanding and branching out, with

underground mining being carried out using increasingly high-performance equipment

(Jia et al., 2020). The amount of harmful emissions released during mining operations

is increasing, and the task of delivering the required amount of air to working areas is

becoming more challenging for mining enterprises (Shriwas and Pritchard, 2020).

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1402555
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1402555&domain=pdf&date_stamp=2024-05-02
mailto:mishkasemin@gmail.com
https://doi.org/10.3389/frai.2024.1402555
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1402555/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Semin and Kormshchikov 10.3389/frai.2024.1402555

Complex mine ventilation network analysis relies

heavily on analytical tools and software systems. Improving

ventilation necessitates numerical simulation to manage

airflows and pollutants (Yi et al., 2022). Yet, mine

ventilation networks are intricate, with numerous degrees

of freedom (Liu et al., 2022a). Constructing mathematical

models for such networks proves challenging due to

substantial input data errors from field measurements

and unpredictable aerodynamic factors. This compels

engineers and scientists to seek novel approaches to

ventilation issues.

Artificial intelligence (AI) has emerged as one such

approach, offering the capability to discern hidden patterns,

adapt to changing conditions, and provide forecasts amidst

uncertainty. Consequently, AI is increasingly applied to mine

ventilation tasks, as evidenced by our bibliometric analysis

of publications in the past decade (see Figure 1), based on

Scopus database.

Figure 1 illustrates that the proportion of publications

discussing the application of AI within the total articles on

mine ventilation has notably increased over the past four years,

surpassing 20% by the end of 2023. Deep learning emerged as

one of the frequently cited keywords in a cluster analysis of

bibliographic works on mine ventilation spanning the past decade,

as reported by Xue et al. (2024).

The utilization of AI in addressing mine ventilation challenges

was examined in a review article by Hati (2021). The authors

delineated various strategies for enhancing the energy efficiency of

mine ventilation systems, explored the selection of components,

and methods for intelligent prediction of airflow and contaminant

concentrations. While the review provided a brief overview of AI

technologies, including their general classification and advantages

and disadvantages, it lacked an analysis of specific mine ventilation

problems where AI has been effectively applied. Furthermore, there

was no classification of AI technologies based on different areas of

mine ventilation problems. We attribute this partly to the timing

of the review, which predates a significant portion of AI-focused

publications in mine ventilation, as indicated in Figure 1.

Another literature review by Shriwas and Pritchard (2020)

addressed an essential application of AI technologies in mine

ventilation monitoring and control. While the review did not

directly focus on AI, it explored the concept of the Industrial

Internet of Things (IIoT), emphasizing the need for long-term

storage and advanced analysis of monitoring data to detect hidden

trends and potential emergencies (Zhou et al., 2017).

Considering the aforementioned points and the rapid

increase in the number of articles on AI in mine ventilation,

an urgent task is to conduct a comprehensive literature review

of AI technologies concerning mine ventilation issues. This

review, while concise due to the current limited number of

publications on AI in mine ventilation, aims to delineate the

primary directions of AI implementation in mine ventilation and

identify promising areas for AI application.We have identified four

broad categories of mine ventilation problems that are currently

being addressed using AI technologies. Subsequently, we discuss

each application area sequentially, culminating in a comprehensive

discussion of published research on mine ventilation

utilizing AI.

2 Application areas of AI technologies

2.1 Mine ventilation monitoring systems

One of the main questions facing a mining engineer is how,

based on the readings of individual measurements of air flows and

air pressures in a real mine airway, to reconstruct a comprehensive

depiction of the air flow distribution in a mathematical model. If

the mine has a relatively small number of airways, then this can be

achieved by measuring the air flow (Q) and pressure drop (1P) in

almost every working, and subsequently calculating the resistance

of each airway using the Equation (1) (Liu et al., 2022a):

R =

H

Q2
(1)

However, for extensive ventilation networks with hundreds or

thousands of branches, obtaining a complete picture of air flow

distribution becomes challenging. This necessitates reconstructing

air flow distribution in mines based on data from a limited number

of manual or automatic measurements.

Liu et al. (2022b) studied optimal sensor placement for

monitoring air distribution in mines, suggesting that equipping

<30% of tunnels with air velocity sensors ensures accurate air flow

reconstruction if there are over 200 mine airways. Gao et al. (2018)

employed amodified genetic algorithm (GA) to solve the inverse air

distribution problem, determining mine airway resistance from air

flow and pressure measurements. Liu (2023) used a GA-optimized

neural network algorithm to assess mine ventilation system safety.

Cao et al. (2024) applied deep reinforcement learning (DRL)

to adjust mine airway resistances dynamically, showing smaller

errors compared to other algorithms. This was demonstrated in

a ventilation network with 153 branches. Ventilation resistance

coefficient inversion has been explored by other researchers without

AI (Li et al., 2019; Wu et al., 2024), but we omit these studies here.

Reconstructing air distribution in mines based on air velocity

measurements is part of an intelligent mine monitoring system,

considering mines within the IoT framework as cyber-physical

systems. Kychkin and Nikolaev (2020) outlined four subsystems:

physical objects, IoT network and computing infrastructure, digital

twin, and human-machine interface. Jo and Khan (2018) proposed

an IoT system for air quality monitoring, integrating pollutant

assessment and forecasting features using an ANNmodel. Liu et al.

(2020) integrated GIS and a transient ventilation network model to

support real-time decision-making, envisioning an intelligent mine

ventilation system.

Mining airway resistance is influenced by both well-formalized

geometric parameters of the airway (such as cross-sectional area

S, perimeter P, and length L) and poorly formalized parameters

(including lining type and related parameters). The latter factor

is typically implicitly considered in the air resistance coefficient α,

from which R is derived:

R =

αPL

S3
(2)

In some cases, instead of α, other similar coefficients are used

in the Equation (2) (McPherson, 2012; Amiri et al., 2020).
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FIGURE 1

Time dynamics of the number of publications on mine ventilation in the period from 2014 to 2023.

Determining α for mine airways with complex linings poses

challenges, prompting researchers to turn to AI solutions. Zhao

and Chen (2022) demonstrated SVM’s effectiveness in modeling

ventilation resistance coefficients based on mine airway geometry

and lining parameters. For more intricate linings, Song et al.

(2021) suggested using the PSO-SVM algorithm, known for its high

accuracy, as a methodological guide.

Mine airway resistances change over time due to various

factors (Skopintseva and Balovtsev, 2020). Such random changes

in resistance are called resistance faults (Wang et al., 2023).

These changes, whether short-term or gradual, can disrupt

air distribution, posing risks of impurity buildup. Locating

resistance faults is challenging and leads to active research in

AI-based solutions.

Liu et al. (2022a, 2023) proposed resistance fault diagnostic

models based on K-nearest neighbor (KNN), multilayer perceptron

(MLP), SVM, and decision tree (DT). The authors showed

high accuracy of these models in simulation and field studies.

Wang et al. (2022) introduced an multi-label k-nearest neighbor

(ML-KNN) model for rapid resistance failure identification in

extensive ventilation networks. Subsequent work by Wang et al.

(2023) presented a more sophisticated supervised learning model,

combining DT, MLP, and ranking SVM, showcasing improved

performance on complex networks. Zhao and Chen (2022)

developed a fault scope library incorporating air volume and

resistance relationships for diagnosing fault locations using SVM.

Cheng et al. (2014) and Cheng (2016) addressed a broader

issue concerning reliability allocation in mine ventilation system

design. The authors employed fuzzy mathematics and a Monte

Carlo simulation approach to develop a model for scientifically

allocating reliability practices.

2.2 Graphical analysis of ventilation
networks

With the expansion and branching of mine ventilation

networks, their graphical analysis also becomes more complex.

The Ventilation Network Feature Graph (also known as a Q-

H graph) offers a novel approach to directly and quantitatively

represent the condition of a ventilation system and serves as an

effective tool for studying complex ventilation networks (Xu and

Tien, 1993). However, constructing such a graph requires a non-

trivial analysis of the relationships between the elements of the

ventilation network. For this reason, Jia et al. (2020) utilized GA

to construct graphs that visually depict the main characteristics of

the ventilation network, including air flows and pressure losses.

Initially, the Q-H plotting method faced challenges. For

instance, when applied to a 3D ventilation network, the Q-H graph

image was unavoidably segmented into rectangular blocks during

the drawing process. However, Xie and Wang (2023) addressed

this issue by refining the independent path sorting algorithm. They

employed GA to expedite the creation of characteristic maps of

ventilation networks on the Q-H axes.

3D reconstruction of mine airways is another important
direction in the development of AI technologies in both mine
ventilation and geotechnology (Ren et al., 2019; Du et al., 2023).

Machine vision was utilized to process measurement data of the
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geometry of mine airways and mining equipment using various

sensors: visual, inertial, LiDAR, and their combinations (Artan

et al., 2011; Jiang et al., 2019; Zhai et al., 2020; Singh et al., 2023).

This information can be further used to estimate changes in mine

air resistance (Wong et al., 2011; Lavigne and Marshall, 2012;

Watson and Marshall, 2018; Fahle et al., 2023).

In general, literature contains many works on the graphical

methods for analyzing topologically complex mine ventilation

networks (Maleki et al., 2018; Wu et al., 2019; Liu et al., 2022b;

Bosikov et al., 2023), but we do not discuss these works here, since

they are not use AI technologies.

2.3 Dynamics of gases and emergency
ventilation

Mine ventilation, employing AI technologies, plays a crucial

role in predicting harmful impurity release and emergency

situations like fires. However, pinpointing emission locations and

quantities can be challenging due to geological, geographical, and

operational factors. Karacan and Goodman (2008) used principal

component analysis and ANN to predict methane emission rates

in longwall mines, aiding in selecting optimal degassing systems.

Mathatho et al. (2019) developed an ANN model predicting

methane concentration in coal mines based on microclimatic air

parameters. Lin et al. (2022) analyzed gas emission monitoring

data, predicting emissions in a dead-end face using SVM and GA

for parameter optimization.

To a lesser extent, the literature provides examples of the

implementation of AI to predict the generation and dynamics of

dust in undergroundmines. Dust from blasting operations in open-

pit mines has mainly been studied, wherein the dynamics of the

dust cloud depend on numerous weather and technical factors that

are challenging to formalize and accurately determine (Nagesha

et al., 2016; Bakhtavar et al., 2021; Hosseini and Pourmirzaee, 2024).

Comfort and safety in mines depend not only on gases and

dust but also on thermal factors (Cheng and Yang, 2012). Roy et al.

(2022) employed GA to correlate environmental parameters with

heat stress, albeit few studies focus on the thermal regime using AI.

AI models, such as the PSO-SVR proposed by Deng et al. (2018),

can predict coal spontaneous combustion temperatures based on

gas concentrations in working areas. Ihsan et al. (2024a) applied

a hybrid integrated numerical method and an ANFIS method to

predict the wet bulb globe temperature.

Hong et al. (2022) utilized a supercomputer to simulate 1000

instances of a 3D mine tunnel fire under varying ventilation,

thermal, and geometric conditions. They employed SVM, CART,

RF, and ANN to predict fire dynamics, successfully forecasting

backflow occurrence and smoke layer length. Basu et al. (2019)

introduced a novel fuzzy logic system for underground coal

mine fire hazard prediction, integrated into a wireless monitoring

setup. Input parameters included air temperatures and impurity

concentrations. Brodny et al. (2022) developed a similar system

based on fuzzy logic and ANFIS to forecast methane accumulation

hazards in a longwall.

Liu et al. (2021) adopted SVR to analyze shock wave

propagation from methane explosions in mine ventilation

networks. Their model, trained on numerically simulated airflow

parameters, enables rapid assessment of explosion consequences.

2.4 Mine ventilation control systems

The mine ventilation system must not only be safe but also

energy-efficient (de Vilhena Costa and Margarida da Silva, 2020;

Ihsan et al., 2024b). The issue of selecting the optimal energy

consumption parameters for the operation of main fans and

ventilation doors is difficult to formalize for modern ventilation

networks with a large number of air regulators. For such mines,

finding the optimum can be very challenging (Wallace et al., 2015;

Semin et al., 2020). To address this problem, Kashnikov and Levin

(2017) proposed an Artificial Neural Network (ANN) model to

enhance the performance of an algorithm for optimal ventilation

control in a potash mine. Kashnikov and Kruglov (2022) applied

fuzzy logic to determine fan influence zones under conditions of

their dynamic change.

Huang and Liu (2022) laid out a theoretical basis for the

intelligent design of mine ventilation. They demonstrated that an

intelligent mine ventilation system should utilize full real-time

monitoring data. Yang et al. (2023) introduced a method for remote

intelligent air control based on machine learning, comprising three

main components: fan frequency regulation, associated branch air

resistance regulation, and their comprehensive integration. The

authors employed five different models to predict the operating

parameters of ventilation equipment with a given air volume.

The results indicated that the Least Squares Support Vector

Machine (LS-SVM) provides themost accurate predictions of target

air parameters in the ventilation network, while maintaining a

relatively short calculation time. These results were demonstrated

on a laboratory bench of the mine consisting of 12 branches.

Cheng et al. (2010) utilized fuzzy logic to optimize and evaluate

the mine ventilation plan under conditions of a large number of

varying parameters.

Hati and Kumar (2023) proposed a new algorithm that

combines Adaptive Neural Fuzzy Interface System (ANFIS) and

Genetic Algorithms (GA) to predict energy consumption and

airflow in a mine ventilation system. This study compared the

performance of the proposed algorithmwith three other AImodels:

ANN, ANN-GA, and ANFIS.

Ihsan et al. (2024b) investigated AI-based Ventilation on

Demand, which addresses both safety and energy efficiency

concerns in mine ventilation. The authors suggested integrating

real-time sensors, data, and ANFIS. However, the effectiveness of

the system has only been assessed in laboratory experiments.

Wang et al. (2024) developed a non-linear optimization

mathematical model of a mine ventilation network that minimizes

total energy consumption for ventilation needs. They proposed a

modified Sooty Tern Optimization Algorithm (STOA), belonging

to the class of evolutionary algorithms, inspired by the behavior of

gray terns during their long migrations.

3 Discussion

It is known that deterministic methods are more effective

in the study of deterministic physical processes, while heuristic
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TABLE 1 Summary of AI technologies used in mine ventilation.

Application areas Specific problems Applied
models

References

Mine ventilation monitoring systems Solution of the inverse air distribution problem GA Gao et al., 2018; Liu et al., 2022b; Liu, 2023; Cao
et al., 2024

Modeling ventilation resistance coefficients SVM, PSO-SVM Song et al., 2021; Zhao and Chen, 2022;

Identification of resistance faults KNN, NL-KNN,
MLP, SVM, ranking
SVM, DT

Liu et al., 2022a, 2023; Wang et al., 2022, 2023;
Zhao and Chen, 2022

Reliability allocation Fuzzy logic,
Monte-Carlo

Cheng et al., 2014; Cheng, 2016

Graphical analysis of ventilation
networks

Construction of ventilation network feature
graph

GA Jia et al., 2020; Xie and Wang, 2023

3D visualization of mine airways ANN Ren et al., 2019; Chen et al., 2020

Dynamics of gases and emergency
ventilation

Methane emission in mine airways ANN, SVM-GA Mathatho et al., 2019; Lin et al., 2022

Calculation of heat stress GA Roy et al., 2022; Ihsan et al., 2024a

Coal spontaneous combustion temperatures PSO-SVR Deng et al., 2018

Fire dynamics in inclined airways SVM, CART, RF,
and ANN

Hong et al., 2022

Methane accumulation in a longwall fuzzy logic and
ANFIS

Basu et al., 2019; Brodny et al., 2022

Shock wave propagation from methane
explosions

SVR Liu et al., 2021

Mine ventilation control systems Remote intelligent air control ANN, LS-SVM Kashnikov and Levin, 2017; Yang et al., 2023

Minimizing energy consumption ANN, ANFIS,
ANFIS-GA, STOA

Hati and Kumar, 2023; Ihsan et al., 2024b; Wang
et al., 2024

and intelligent methods demonstrate their efficacy in tasks

where an explicit connection between the studied parameters

and phenomena is not readily apparent. It is in this context

that AI technologies are being integrated into mine ventilation

systems today. Physical processes within mine atmospheres are

well-understood by engineers and scientists and are typically

modeled using deterministic approaches, such as solving systems

of Kirchhoff equations to determine air distribution and solving

differential equations for convective-diffusion transfer of heat and

harmful impurities through mine workings (Olkhovsky et al.,

2024).

However, the mine ventilation network is a complex system

with numerous unpredictable and unaccounted factors. Analyzing

these factors within deterministic frameworks often proves

challenging or leads to failure, making heuristic approaches and

machine learning methods more suitable. A summary of the AI

technologies used today in mine ventilation is given in Table 1.

It is noteworthy that despite the achieved results, researchers

have primarily applied these methods to ventilation networks with

a relatively small number of branches (10–20). In rare cases, the

number of branches may reach 100–200, which still falls short

of fully meeting the needs of mine ventilation specialists. Many

mine ventilation networks consist of thousands of branches (Semin

and Levin, 2019). Hence, it is imperative to focus on studying the

effectiveness of AI technologies for analyzing ventilation networks

in large mines in the future.

Another interesting question is how many measuring stations

are needed to correctly assess air distribution in the entire mine

while accurately determining the location of resistance failures

in mine airways. The answer to this question depends on the

number of branches in the ventilation network and should also

consider the topology features such as through-flow and U-tube

ventilation layouts.

A change in the air resistance of mine airways is not the only

unaccounted factor that can lead to alterations in air distribution

within a mine ventilation network. Other possible reasons for

observed deviations inmeasured air velocities at measuring stations

could include thermal depression (Nikolaev and Klishin, 2021) and

gas depression (Zhou andWang, 2018). For example, unaccounted-

for heat and gas emissions from mining equipment, as well as gas

emissions from rock masses, can also significantly impact mine

air distribution.

Calculations of unsteady transport of harmful impurities

and propagation of shock waves on deterministic models of

ventilation networks are time-consuming due to the need for

greatly reduced cell sizes and time steps. Therefore, it is sometimes

appropriate to use heuristic approaches to solve deterministic

problems in order to conserve computing resources. The most

computationally expensive problems include calculating fires in

mining systems (Hong et al., 2022) and propagating shock waves

(Liu et al., 2021). Consequently, scientists are currently working

on developing faster methods for performing these calculations.

While the proposed models to date are still far from perfect

due to several unaccounted factors and errors, this approach

is likely to receive active development in the future. This is

because in emergency mine ventilation situations, the speed

of calculations is crucial for quickly finding effective solutions

(Onifade, 2021).

Another promising area for utilizing AI in mine ventilation

may be determining the shock losses of mine airways when

calculating air distribution. Semin and Levin (2023) highlighted

the importance of shock loss factors, especially in airways
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with large cross-sections. However, existing approaches to

calculating shock losses lack both sufficient accuracy and

versatility, particularly in their applicability to various types

of mine airway junctions. The use of surrogate modeling

could facilitate the selection of an approximating function for

shock loss factors based on mine airway parameters, potentially

providing accurate solutions across a wide range of mine

airway junctions.

4 Conclusion

We anticipate that the utilization of intelligent methods

for solving mine ventilation problems will increase in the

future. This trend will be propelled by advancements in

computing power and the emergence of new, more efficient

AI technologies. Recognizing the existing gaps, AI will

be progressively deployed across a broader spectrum of

mine ventilation challenges. Concurrently, deterministic

approaches will persist in analyzing mine ventilation systems,

fostering a growing integration with heuristic and machine

learning methodologies.
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