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Introduction: Regulatory agencies generate a vast amount of textual data in 
the review process. For example, drug labeling serves as a valuable resource 
for regulatory agencies, such as U.S. Food and Drug Administration (FDA) and 
Europe Medical Agency (EMA), to communicate drug safety and effectiveness 
information to healthcare professionals and patients. Drug labeling also serves 
as a resource for pharmacovigilance and drug safety research. Automated 
text classification would significantly improve the analysis of drug labeling 
documents and conserve reviewer resources.

Methods: We utilized artificial intelligence in this study to classify drug-induced 
liver injury (DILI)-related content from drug labeling documents based on FDA’s 
DILIrank dataset. We employed text mining and XGBoost models and utilized 
the Preferred Terms of Medical queries for adverse event standards to simplify 
the elimination of common words and phrases while retaining medical standard 
terms for FDA and EMA drug label datasets. Then, we constructed a document 
term matrix using weights computed by Term Frequency-Inverse Document 
Frequency (TF-IDF) for each included word/term/token.

Results: The automatic text classification model exhibited robust performance 
in predicting DILI, achieving cross-validation AUC scores exceeding 0.90 for 
both drug labels from FDA and EMA and literature abstracts from the Critical 
Assessment of Massive Data Analysis (CAMDA).

Discussion: Moreover, the text mining and XGBoost functions demonstrated in 
this study can be applied to other text processing and classification tasks.
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Introduction

Drug labeling documents are issued by regulatory agencies such as 
the United States Food and Drug Administration (FDA) and Europe 
Medical Agency (EMA) to communicate safety and efficacy information 
for approved drugs available to the public. Comprehensive information 
such as indications, contraindications, and warnings for adverse drug 
reactions (ADRs) is included in drug labeling as a reference for 
healthcare professionals and patients (Watson and Barash, 2009; 
McMahon and Preskorn, 2014). The FDA and EMA have approved 
over 130,000 labeling documents by 2022, creating a vast repository of 
regulatory text data for regulatory agency reviewers and scientific 
researchers (Hoffman et al., 2016; Fang et al., 2020; Wu et al., 2021).

Drug-induced liver injury (DILI) is a common adverse drug 
reaction documented in drug labeling and has been recognized for its 
significant role in drug failure and withdrawal. Chen et al. (2011, 2016) 
and Wu et al. (2022) used text data from FDA drug labeling to annotate 
DILI risk in humans for 1,036 drugs. They manually searched the data 
using a set of predefined keywords and followed with manual curation 
to generate their annotations. Although manual curation ensures the 
specificity and usefulness of the information, it requires significant 
time and effort, including reading, understanding, and classifying the 
information for each drug, and is subject to the individual judgment 
and expertise of the reviewer. Drug labeling documents are updated 
regularly based on new findings from pharmacovigilance studies and 
case reports in literature (Food and Drug Administration, 2015a,b). 
Given the large volume of labeling documents, it is highly challenging 
to routinely reassess and update safety information manually. An 
automated, simplified text classification approach for processing text 
data in labeling and other documents would streamline the process 
and conserve reviewer resources.

Text mining is a valuable approach for gathering ADR information 
in drug labeling for comparative analysis during drug evaluation or 
scientific research (Fang et al., 2020). To this end, the standard ADR 
terms from the Medical Dictionary for Regulatory Activities 
(MedDRA) and Systematized Nomenclature of Medicine (SNOMED) 
are commonly used to create a document-term matrix (DTM), which 
captures the frequency of terms in documents (Wu et  al., 2019; 
Demner-Fushman et al., 2021; Wu et al., 2022). The DTM can then 
be used as input for machine learning algorithms to classify drug 
labeling documents based on ADR risk and identify important 
features that contribute to the classification.

Tree ensemble models such as XGBoost (Extreme Gradient 
Boosting) (Chen and Guestrin, 2016), LightGBM (light gradient-
boosting machine) (Ke et  al., 2017) and CatBoost (Categorical 
Boosting) (Prokhorenkova et  al., 2018) are machine learning 
algorithms commonly used for classification and regression 
(Shwartz-Ziv and Armon, 2022). XGBoost is a decision tree-based 
method that utilizes the principle of ensemble learning to make 
predictions. This process combines decisions from multiple models to 

produce a final prediction, in which the results of one model serve as 
input for the next, allowing the new model to correct errors made by 
the previous ones. XGBoost is widely used in a broad range of fields 
given its advantages in flexibility and interpretability (Zhang et al., 
2018; Tahmassebi et  al., 2019; Li et  al., 2020; Pandi et  al., 2020; 
Chatterjee et al., 2021).

In this study, natural language processing was employed to 
create a DTM. The matrix was constructed using MedDRA or FDA 
Medical Query (FMQ) preferred terms (PTs) retrieved from the 
drug labeling documents and scientific abstracts. The XGBoost 
algorithm was then utilized to predict DILI from drug labeling 
documents and abstracts based on the DTM. The prediction model 
was evaluated through cross-validation, and the significance of 
standard terms was ranked and assessed for their relevance to 
DILI. The efficacy of this automatic text classification approach was 
verified through testing on FDA drug label data, EMA drug label 
data, and scientific literature data retrieved from the Critical 
Assessment of Massive Data Analysis (CAMDA). This approach 
was finally confirmed using a model generated by the FDA drug 
label dataset to predict DILI potential in the EMA drug 
label dataset.

Materials and methods

Datasets

The first dataset was generated from the FDA drug labeling 
documents of the DILI-rank dataset (Chen et al., 2016). The drug 
labeling documents were retrieved from the FDALabel database1 
(Fang et al., 2020) with chemical structures. The drug labels were 
annotated for their DILI potential manually (Chen et al., 2011). 
Text of “Warnings and Precautions” sections of drug labeling 
documents were extracted for this study. After removing those 
without labeling (e.g., withdrawn drugs) or chemical structures 
(e.g., biological products, mixtures), 678 unique prescription 
drugs approved by the FDA were identified. This data set 
contained 238 (35%) drug labeling documents that have DILI 
potential (defined as 1) and 440 (65%) that have no DILI potential 
(defined as 0). This dataset is hereafter referred to as the 
“FDA dataset.”

The second dataset was drug labeling documents of 277 unique 
prescription drugs from EMA that were retrieved from Electronic 
Medicines Compendium2 (Annex, 1999). The drug labels were 
annotated for their DILI potential manually as for FDA drug labels 
(Chen et al., 2011). Text of “Warnings and Precautions” sections of 
EMA drug labeling documents were extracted for this study. This data 
set contained 132 (48%) drug labeling documents that have DILI 
potential (defined as 1) and 145 (52%) that have no DILI potential 
(defined as 0). This dataset is hereafter referred to as the 
“EMA dataset.”

The third dataset was retrieved from the CAMDA. This data set 
was originally published for the “Literature AI for Drug Induced 

1 https://nctr-crs.fda.gov/fdalabel/ui/search

2 https://www.medicines.org.uk

Abbreviations: ACT, Anatomical Therapeutic Chemical Classification; KW, DILI 

keywords; PT, Preferred terms of MedDRA; DTM, document term matrixes; ACC, 

Accuracy; MCC, Matthews Correlation Coefficient; AUC, Area Under the Curve; 

XGBoost, Extreme Gradient Boosting; LightGBM, light gradient-boosting machine; 

CatBoost, Categorical Boosting; TF-IDF, Term Frequency-Inverse Document 

Frequency.

https://doi.org/10.3389/frai.2024.1401810
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://nctr-crs.fda.gov/fdalabel/ui/search
https://www.medicines.org.uk


Chen et al. 10.3389/frai.2024.1401810

Frontiers in Artificial Intelligence 03 frontiersin.org

Liver Injury” challenge in 2021.3 This data set contained 12,187 
abstracts of published papers from PubMed.4 Each of the abstracts 
were annotated for DILI association by the experts in the NIH 
LiverTox. This data set contained 5,161 (42%) abstracts that were 
associated with drugs with DILI potential (defined as 1) and 7,026 
(58%) abstracts that were associated with drugs without DILI 
potential (defined as 0). This dataset is hereafter referred to as the 
“CAMDA dataset.”

Software package used

Natural language processing used Text Explorer (TE) function, and 
model comparisons were conducted via predictive model screening 
platform in the JMP Pro Statistical Discovery software package (JMP 
Pro v17, https://www.jmp.com/) in this study. The XGBoost add-in tool 
can be  downloaded from https://community.jmp.com/t5/
JMP-Add-Ins/XGBoost-Add-In-for-JMP-Pro/ta-p/319383 and 
installed into the software.

Construction of document term matrix 
(DTM) by natural language processing

The FDA, EMA and CAMDA datasets were converted to a DTM 
using TE separately, the natural language processing function in the 
software the natural language processing here consisted of the curation 
of standardized terms, tokenization, and generation of a 
DTM. (Figure 1).

Curation of standardized terms

The medical-related terms were curated by the MedDRA or FMQ 
(Andrade et al., 2019; FDA, 2022) PT list. The terms and phrases in 
FDA, EMA or CAMDA that matched standardized terms were 
extracted from documents for further analysis. This is achieved by 
setting all the terms and phrases identified by TE as stop words first, 
and then adding back terms and phrases and stop word local exception 
that match MedDRA PT.

Tokenization

Some related terms were combined into a single term by 
tokenization. For example, allergic hepatitis, autoimmune hepatitis, 
chronic hepatitis, chronic hepatitis b, chronic hepatitis c, hepatitis b 
surface antigen, and hepatitis c were all recoded to hepatitis; acute 
hepatic failure was recoded to hepatic failure. Some terms were 
processed by stemming; for example, aminotransferases, 
transaminases, liver enzymes and liver function tests were recoded to 
aminotransferase, transaminase, liver enzyme and liver function test, 
respectively.

3 http://www.camda.info/

4 https://pubmed.ncbi.nlm.nih.gov/

Term frequency-inverse document 
frequency (TF-IDF)

The DTM was constructed using weights computed by Term 
Frequency-Inverse Document Frequency (TF-IDF) for each included 
word/term/token. Specifically, this weighted TF-IDF is calculated by 
the log value of the frequency of a standardized term vs. the total 
number of documents in the corpus. This algorithm reduced the 
weights of the highly frequent terms and added weight to less frequent 
terms in each document.

Classification modeling by XGBoost

XGBoost decision tree machine learning library uses DTM of 
standardized terms to predict DILI classification. The XGBoost 
modeling process with cross validation includes cross validation 
k-fold column creation, XGBoost model setup, and modeling 
optimization including adjusting iteration number and applying 
autotune with advanced options (Supplementary Figure S1).

XGBoost model setup

The model was set up using DILI indicator as the Y response, 
DTM as the X regressor and defining the number of cross-validation 
folds and number of folds within each column for validation. Here, 
we used minimal term frequency as 1 for FDA and EMA dataset and 
as 10 for CAMDA data for generating DTM showed in 
Supplementary Figure S1 to predict DILI indicator as Y responses and 
run 10 times of 5-fold validation.

XGBoost model optimization

The different iterations were performed according to the iteration 
history for the default condition. The optimization of the model can 
also be  achieved by using autotune with advanced options 
(Supplementary Figure S1).

Cross validation

To reduce the risk of overfitting, a cross validation approach was 
used to evaluate model performance. The data set was divided into 5 
roughly equal folds, and each level as a hold-out set. A group of 10 sets 
of 5 folds were prepared such that each fold was geometrically 
orthogonal to each fold in the other sets. The folds were stratified by 
the DILI indicator variable, which assures that approximately the same 
proportion of DILI occur in each subset.

Model autotune with advanced options

The XGBoost model has a set of built-in hyperparameters that 
come with default values and suggested ranges for autotune with basic 
and advanced options (Supplementary Figure S1). The value and 
range of the hyperparameters can be modified.
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Autotune offers a list of hyperparameters with default values and 
range, including max_depth for 3 (1–7), subsample for 1 (0.5–1), 
colsample by tree for 1 (0.5–1), min child weight for 1 (1–3), alpha for 
0 (0–0.5), lambda for 1 (0–2), learning rate for 0.1 (0.05–0.2), and 
iterations for 30 (20–50) with number of design points as 10 and 
number of inner folds as 2. The more advanced options are also 
available for change. Those hyperparameters can be  modified to 
control or prevent over-fitting and make models reasonably 
conservative, as overfitting is the most common issue in the machine 
learning analysis (Tahmassebi et al., 2019; Li et al., 2020; Pandi et al., 
2020; Chatterjee et al., 2021).

Statistical performance metrics

Six statistical metrics were used to assess XGBoost 
performance; these are Accuracy (ACC), area under the receiver 
operating characteristic curve (AUC), Matthews correlation 
coefficient (MCC), sensitivity, specificity and precision for training 
and validation sets for DILI indicator as binary Y response.

 ACC TP TN TP TN FP FN= +( ) + + +( )/

 
MCC

TP TN FP FN
TP FP TP FN TN FP TN FN

=
∗ − ∗( )

+( ) ∗ +( ) ∗ +( ) ∗ +( )

 Sensitivity TP TP FN= +( )/

 Specificity TN TN FP= +( )/

 Precision TP TP FP= +( )/

Here, TP = True Positives; FN = False Negatives; TN = True 
Negatives; FP = False Positives.

AUC is the area under the ROC (Receiver Operating 
Characteristic) curve. The ROC curve plots sensitivity (true positive 
rate) on the Y axis vs. specificity (true negative rate) on the X axis. 
Sensitivity shows how well the model detects positives, that is, the 
ratio of true positives to true positives plus false negatives. 
Specificity defines how well the model avoids false alarms, which is 
ratio of true negatives to true negatives plus false positives. The 
ROC curve is constructed by plotting sensitivity versus specificity 
over a range of cutoff values applied to predicted probabilities. AUC 
can be interpreted as a measure of sorting efficiency. An AUC of 1.0 
indicates perfect sorting and a value of 0.5 indicates no 
predictive performance.

Predicting new documents

The prediction formula of the selected model for existing 
documents can be  saved and applied to new documents to 
generate prediction probability for DILI potential associated with 
drugs. First, the document term frequency (DTF) for new 
documents can be created with the same text mining process as 
described above. Second, concatenate new documents with the 
DTF to the existing documents. Third, apply the saved prediction 
formula to the new documents. The prediction probability for 
DILI potential associated with the drug for each new document 
will be generated.

Comparing XGBoost with other predictive 
models

Predictive model screening was employed to compare multiple 
predictive models. The nested cross validation was used with k as 10 
and L as 5 to match the validation in XGBoost.

FIGURE 1

Overview of text document analysis procedure. Natural Language Processing (NPL) generates term frequency matrices that are used to predict DILI 
indicator with cross validation. Optimized XGBoost models produce statistical performance metrics, important terms to DILI, and confidences about 
prediction.
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Results

Data preprocessing

The text sections of “warning and precaution” in FDA drug 
labeling documents for 678 drugs were imported into the TE platform, 
yielding 14,600 terms and phrases out of 25,916 unique PTs in 
MedDRA 26.0, with the most frequent terms being common words 

such as ‘patients’, ‘may’, ‘treatment’ (Figure 2). These common words 
were not medically related and should be removed. Instead of utilizing 
the common language processing techniques such as tokenizing, 
phrasing, terming, and stemming or manually defining the terms and 
phrases, we took advantage of the known MedDRA standard terms to 
narrow to medically related terms in three steps (Figure 2). First, all 
the terms and phrases (14,600) were removed by adding them as stop 
words in Text Explorer. Second, terms and phrases were matched with 
MedDRA PTs by using the software’s Manage Phrase and Manage Stop 
Word functions, resulting in 1443 medical related terms and phrases 
of standard terms. Finally, each term and phrase were assigned values 
for each drug document, and a document term matrix weighted with 
TF-IDF was generated for the use in XGBoost modeling. The same 
process was applied to EMA and CAMDA datasets.

XGBoost modeling for DILI classification

The parameters for XGBoost modeling were optimized using 
cross-validation. We  explored the effects of term frequency and 
validation first for the FDA dataset. Using a term frequency of 1, 2 or 
30 for drug labeling data yielded no significantly different results. The 
10-fold validation resulted in a significantly higher AUC with a 
smaller variation compared to either 3 or 5 validation folds as 
measured by ANOVA (data not shown). Therefore, we used a term 
frequency of 1 (all the terms) for FDA and EMA datasets and a term 
frequency of 10 for CAMDA dataset to save the model calculation 
time. The 10-fold validation method for optimization conditions was 
run for all three datasets. The results include statistical performance 
metrics, a ranking of importance of terms, and a prediction formula 
for new data.

The XGBoost generates an iteration history that can assist 
researchers in choosing the proper number of iterations. For the FDA 
dataset shown in the plot and table in Figure 3, the default condition 
(Supplementary Figure S1C) with different iterations shows that 

FIGURE 2

Flowchart to generate a document term matrix from FDA drug label documents. The 678 drug labels have 14,600 terms initially, which are reduced to 
1,443 terms that match the MedDRA preferred terms. Word clouds are colored by DILI indicator: red for 1 and blue for 0. The EMA and CAMDA data 
used the same approach.

FIGURE 3

Using iteration history curves to optimize XGBoost performance for 
FDA drug label dataset. The best models lie in the dashed rectangular 
box of ranges of the validation curves for default parameters (solid 
blue) or autotune (solid brown). The dashed lines are for the 
corresponding training curves.
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validation curves (solid blue line) rapidly decline and then level off 
between 10 to 20 (Figure 3). Statistical metrics such as ACC, AUC and 
MCC for validation are very similar between 10 to 20 iterations with 
the peak statistical metrics at iteration 10. After 20 iterations, the 
validation curve started to rise, and the statistical metrics declined. 
When we  applied autotune with default options 
(Supplementary Figure S1D), the validation curve (solid yellow line) 
leveled off with a different slope. The autotune generates the optimized 
condition (Figure 3) with iteration at 35 and almost the same statistical 
metrics as the default peak condition at iteration 10. The EMA dataset 
had very similar iteration history curve with peak range in 10–20. The 
autotunes for FDA and EMA datasets have similar iterations at35 and 
36. The CAMDA dataset needed 300 iterations to reach the optimized 
condition with the default condition and 638 iterations for autotune 
(Supplementary Figure S2).

Model performance evaluation

The statistical metrics such as ACC, AUC, MCC and root mean 
square error (RMSE) are listed in the Table  1 for training and 
validation of three datasets. Three other core concepts that are often 
used to evaluate the accuracy of models include sensitivity, specificity, 
and precision from different angles, which are also listed in Table 1. 
The results in Table 1 were generated by 10 iterations for the FDA and 
EMA datasets and 300 iterations for CAMDA that are optimized 
default condition, plus the results were generated by autotune. The 
differences of the statistical metrics between defaults and autotunes 
for each dataset are ranged from 0 to 0.036, mostly less than 0.01. The 
differences of the three core concepts between defaults and autotunes 
for each dataset are ranged from 0.002 to 0.099, mostly less than 0.05.

Ranking of term importance

The relative importance of the standardized terms is ranked by 
three related measurements: splits, gain, and cover. Splits represents 

the number of times that variable is used to split a branch in a tree. 
Gain is the average improvement in objective function for splits 
involving that variable, and Cover is the amount of data covered by 
splits involving that variable. Here, the gain is used to rank the 
importance of the selected terms as shown in Table 2. The top five 
terms of MedDRA are liver damage related keywords classified in 
Chen et  al. (2016), including hepatotoxicity (#1), hepatitis (#2), 
hepatic failure (#3), liver injury (#4) and jaundice (#5). Another 
group are immune-related terms, such as toxic epidermal necrolysis 
(#7), thrombocytopenia (#8), and eosinophilia (#9). Blood urea (#6) 
and oliguria (#10) that could be related to kidney, are also in the 
top 10 list.

We also used FMQ to replace MedDRA as the standard 
terminology for the construction of the DTM and performed XGBoost 
with default condition at 10 iterations. FMQ was recently released by 
the FDA to standardize MedDRA PT groups according to medical 
concepts such as combining “initial insomnia,” “middle insomnia,” 
“early morning awakening,” to “insomnia” (FDA, 2022; FDA, 2023).
The FMQ focuses on safety signal detection in clinical trial datasets. 
The 10 most important FMQ terms are also listed in Table 2. The top 5 
terms were the DILI keywords with the same ranking as with 
MedDRA. The bone marrow depression (#6) and carcinoma (#9) are 
different from MedDRA.

The bar charts in Figure 4 showed the relationship between 
term count and term importance, as measured by gain. The value of 
gain is on the left Y axis and PT count and DILI keyword (KW) 
count are on the right Y axis. Only nine out of 58 KWs matched 
MedDRA PTs. The top plot was sorted by top 40 gain and bottom 
plot was sorted by top  40 PTs counts. The pink line is used to 
indicate top  20 terms. The top plot showed that first five plus 
cholestasis at top 19 are KWs. The bottom plot showed that the 
top 20 PT were not related to DILI. The top 10 PTs with count 
between 1,334 to 416 is 5 to 1.5 times greater than the term count 
of hepatitis (268). Hepatitis has the highest count in the KWs but is 
ranked #21 in all the terms. That means the importance of terms 
selected by the XGBoost modeling was not solely based on 
term count.

TABLE 1 Statistical metrics include ACC, AUC, MCC, RMSE, Precision, Sensitivity and Specificity for FDA, EMA and CAMDA datasets.

Dataset Parameters ACC AUC MCC RMSE Precision Sensitivity Specificity

FDA Drug 

Label

Training Default 0.913 0.977 0.812 0.256 0.979 0.769 0.991

Autotune 0.931 0.983 0.848 0.236 0.970 0.828 0.986

Validation Default 0.842 0.881 0.646 0.348 0.862 0.656 0.943

Autotune 0.839 0.886 0.639 0.344 0.856 0.651 0.941

EMA Drug 

Label

Training Default 0.971 0.996 0.942 0.177 0.971 0.955 0.986

Autotune 0.975 0.997 0.950 0.165 0.934 0.8560 0.945

Validation Default 0.903 0.958 0.807 0.280 0.985 0.962 0.986

Autotune 0.903 0.957 0.805 0.281 0.920 0.871 0.931

CAMDA 

Abstract

Training Default 0.883 0.946 0.762 0.298 0.931 0.780 0.958

Autotune 0.864 0.927 0.722 0.338 0.905 0.757 0.942

Validation Default 0.844 0.904 0.680 0.319 0.881 0.729 0.928

Autotune 0.837 0.897 0.666 0.344 0.871 0.722 0.921

The drug label data has default parameters with 10 iterations and autotuned parameters with 35 iterations. The CAMDA data has default parameters with 300 iterations at 300 and autotuned 
parameters with 638 iterations.
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Prediction of DILI for the EMA dataset

The prediction of the DILI indicator in the EMA dataset was based 
on the presence of terms and phrases that matched the MedDRA PT, 
where a term frequency of 1 was defined. XGBoost was used with the 

default conditions, varying the number of iterations, or using autotune 
(refer to Supplementary Table S1 for details). The validation curve for 
the iteration history of the EMA data resembled that of the FDA dataset, 
leveling off within the range of 10 to 20 iterations (data not shown). The 
statistical metrics for iterations 10, 15, and 20 were all within a negligible 
difference of 0.005, similar to those seen for the FDA dataset. Refer to 
Table  1 for a comprehensive overview of the statistical metrics 
specifically for the EMA data at iteration 10 under default conditions.

Prediction of DILI for the CAMDA dataset

The data set from CAMDA was processed to construct DTM and 
XGBoost modeling similar to that done for the previous drug label data.

The results from the CAMDA dataset showed a similar pattern to 
the drug label dataset (Supplementary Figure S2), with DILI relevant 
terms dominating the top 10 important terms selected by XGBoost 
gain rank. The processing of the CAMDA dataset took 16 h to 
complete and the cross-validation results are shown in Table 1. An 
ACC of 0.844 or 0.837, AUC of 0.904 or 0.897, and MCC of 0.680 or 
0.666 for default condition with iteration at 300 or autotune with 
iteration at 638. Additionally, immune-related terms such as rash, and 
rheumatoid arthritis, were also found among the top 10 important 
terms. These results indicate that the XGBoost modeling was 
successful in identifying relevant terms for DILI prediction using the 
CAMDA dataset as well.

Comparison of model predictions for the 
FDA and EMA datasets

Both the FDA dataset and EMA dataset serve as drug label 
datasets. Among the 1,443 terms and phrases from the FDA dataset 

TABLE 2 Summary and list of top 10 features by gain for FDA drug label 
data according to MedDRA 26 and FMQ 2.1.

Feature MedDRA26 
Gain Rank

FMQ 
2.1 

Gain 
Rank

Terms

Hepatotoxicity 1 1 DILI Keyword

Hepatitis 2 2 DILI Keyword

Hepatic failure 3 3 DILI Keyword

Liver injury 4 4 DILI Keyword

Jaundice 5 5 DILI Keyword

Blood urea 6

Renal 

Dysfunction

Bone marrow 

depression 6 Immune System

Toxic epidermal 

necrolysis 7 8 Immune System

Thrombocytopenia 8 Immune System

Carcinoma 9 Cancer

Eosinophilia 9 10 Immune System

Oliguria 10 7

Renal 

Dysfunction

The top five features are DILI keywords. Other five features are related to immune system or 
renal dysfunction.

FIGURE 4

Comparison of the selected preferred terms by term count and term importance, as measured by gain for FDA drug label dataset.
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and the 1,190 terms and phrases from the EMA dataset, there were 821 
common terms and phrases that matched MedDRA PTs. We employed 
the FDA dataset model condition, using XGBoost with default 
parameters and 10 iterations, along with these terms and phrases, to 
generate prediction probabilities for each document from both FDA 
and EMA datasets. The prediction probabilities were rounded up to 
either 1 or 0. We  evaluated their consistency by subtracting the 
rounded-up prediction probabilities from the DILI indicator, which 
has been defined by experts to assess the agreement between the model 
results and DILI indicators for each drug. A subtraction result with an 
absolute value of 0 indicates that both the model and indicator evaluate 
the drug’s DILI potential similarly. On the other hand, a subtraction 
result with an absolute value of 1 suggests a different classification 
between the model and indicator regarding the drug’s DILI potential. 
In the FDA dataset model, 16% or 45 out of 277 drugs were 
inconsistently classified (Figure 5, Left). Additionally, when comparing 
the model results for EMA dataset drugs with the EMA terms and 
phrases, using XGBoost default conditions and iterations, against the 
DILI indicators, we found that 10% or 27 out of 277 EMA drugs were 
inconsistently estimated (Figure 5, Middle). Lastly, there was a 12% 
inconsistency observed between the 1,190 EMA terms and phrases 
used to predict EMA data and the 821 common terms and phrases 
shared between the FDA and EMA datasets (Figure 5, Right).

Consistency between experts’ annotation 
and XGBoost classification

We compared consistency between expert opinion (DILI Indicator) 
and XGBoost model classification for FDA drug labeling using default 
condition with 10 iterations. The consistency evaluation method was 
described above. The 572 out of 678 or 84% FDA drugs label dataset were 
consistent between expert classification (DILI Indicator) and XGBoost 
model result (Figure 6A). To investigate further, we divided the model 
output probability into 10 ranges between 0 and 1. The lowest range, 0.00 
to 0.10 means XGBoost model classifies the possibility to be  DILI 
potential is very low. The highest range, 0.90 to 1.00, means XGBoost 

model classifies the possibility to be DILI potential is very high. Figure 6B 
indicates that for the probability ranges from 0.00 to 0.20 and from 0.70 
to 1.00, the consistency rates were above or close to 90%; for probability 
ranges from 0.30 to 0.60, the consistency rates were about 55%; and for 
probability ranges from 0.20 to 0.30 and from 0.60 to 0.70, the consistency 
rates were about 75%.

Comparison of XGBoost and other 
predictive models

We employed a predictive model screening platform to compare 
multiple predictive models. The nested cross validation was used with 
k as 10 and L as 5 to match the validation in XGBoost. The validated 
AUG results are shown in Table 3 The validated AUC for XGBoost, 
boosted tree, bootstrap, decision tree, neural boosted and support 
vector machines (SVMs) comparison are 0.881, 0.873, 0.872, 0.780, 
0.785 and 0.764, respectively.

Prediction errors analysis

Some drugs are found to have inconsistent DILI classifications 
between the model and expert reviewers. For example, Epirubicin was 
defined as DILI indicator of 1 by expert reviewers but predicted as 0 by 
the model with a high confidence (0.867). The text explorer using the 
selected KWs was run for this drug. Only two keywords, aspartate 
aminotransferase (AST) and hepatic impairment, showed up twice for 
Epirubicin in the word cloud (Supplementary Figure S3 left). Upon 
reviewing the sentences including those keywords 
(Supplementary Figure S3 right), it was found the sentences suggest 
precondition for hepatic impairment, not drug-induced results. 
Notably, human experts use the information from the multiple sections 
in drug label to determine DILI indicators, while our study only used 
the “warning and precaution” section in the drug label. This might 
be another reason for the inconsistencies between the model prediction 
and DILI indictors.

FIGURE 5

Comparison of consistency for XGBoost model results using default condition with 10 iteration and DILI indicator. The consistency between model 
prediction by EMA drug label or FDA drug label and DILI indicator and between EMA and FDA prediction.
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Discussion and conclusions

In this study, we  utilize artificial intelligence tools to classify 
whether contents from drug labeling documents and scientific 
abstracts are DILI related. We combined text mining and XGBoost 
models, taking advantage of standard PTs to simplify the elimination 
of the common/stop words. XGBoost models demonstrate excellent 
performance in classifying DILI, achieving AUC scores above 0.88 in 
cross-validation for both drug labels and the CAMDA datasets. Our 
results show that the DILI-related terms are the most critical 
contributors to DILI risk classification. Term frequency is not a 
significant factor, as feature importance did not correlate with term 
frequency. An important feature of the modeling workflow was to 
substitute PTs of MedDRA frequency to generate the DTM, suggesting 
that the results were not dependent on a specific set of standardized 
terms or corpus terms. Adding chemical descriptors as predictors did 
not significantly improve model performance (results not shown). 
Therefore, DILI-related standard terms appear to be the key factors for 
classifying whether the input text documents are relevant to DILI.

The top 5 important terms (MedDRA or FMQ) to contribute to 
XGBoost prediction are pre-selected keywords for manually 
annotating DILI by reviewers (Chen et al., 2011). Other top ranked 
terms, such as toxic epidermal necrolysis, thrombocytopenia, 
eosinophilia, depression are related to certain DILI mechanisms, as 
DILI can be linked to immune-mediated ADRs, such as drug reaction 

with eosinophilia and systemic symptoms, or cutaneous ADRs, 
including Stevens-Johnson syndrome and toxic epidermal necrolysis 
(Andrade et  al., 2019). This suggests that the automatic text 
classification model can capture the underlying mechanistic 
relationship between DILI and immune disorders/skin reactions. 
Furthermore, renal dysfunction is commonly associated with liver 
diseases, especially in case of direct involvement in multiorgan acute 
illness or secondary to advanced liver disease (Betrosian et al., 2007). 
The model identifies several terms related to renal damage, such as 
blood urea and oliguria, as having high importance in model 
prediction, providing valuable mechanistic information for 
further investigation.

In terms of the document-term matrix, the FDA dataset uses 
1,443 features and EMA used 1,190 features with a term frequency of 
1, while the CAMDA dataset uses 740 features with a term frequency 
of 10. For the drug label datasets, a term frequency of 1 is selected to 
ensure no terms are excluded that could contribute to the prediction. 
However, for the CAMDA dataset, a term frequency of 10 is selected 
to save processing time as the CAMDA dataset is much larger with 
about 18 times more sample data.

Since both FDA and EMA datasets have the optimized model with 
the default condition with 10 iterations, using terms and phrases from 
FDA dataset to estimate the DILI prediction probability for each drug 
in the EMA dataset has 6% more inconsistency of DILI indicator in 
comparison with using terms and phrases from EMA dataset, with 
84% consistency.

FIGURE 6

Comparison of consistency between experts’ opinions and XGBoost model classification for FDA drug labels using default condition with 10 iterations. 
The plot A showed that FDA drug labels has 84%(Y) consistency between XGBoost model results and experts ‘estimation. The plot B displays the 
percentage of consistency in different probability range by XGBoost model.

TABLE 3 Predictive model comparison for FDA drug label dataset.

XGBoost Boosted Tree Bootstrap Forest Decision Tree Neural 
Boosted

SVM

Validation AUC 0.881 0.873 0.872 0.780 0.785 0.764

The validated AUC for XGBoost and five predictive models, includes boosted tree, bootstrap, decision tree, neural boosted and support vector machines (SVMs), from the predictive model 
screening platform were compared.
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There are two types of classification errors in the model 
development: mistaking a drug that has DILI potential into non-DILI, 
and vice versa. From a clinical perspective, misclassifying a drug with 
DILI potential as non-DILI is a potentially more costly error as it 
could result in greater harm to patients. However, while misclassifying 
a non-DILI drug as having DILI potential group would likely cause 
less harm to patients, it would likely prove more costly for the 
pharmaceutical company. Like the concept of applicability domain 
(Tong et al., 2004), a Profit Matrix can be used to evaluate prediction 
performance by assuming different misclassification costs for DILI 
and non-DILI. The values in a Profit Matrix can be adjusted before or 
after a model is established to increase confidence in the classification 
in either direction, as shown in Supplementary Figure S4. When the 
probability threshold is changed from 0.5 to 0.75, the misclassification 
rate of DILI to non-DILI changes from 62 to 94, and the 
misclassification of non-DILI to DILI changes from 24 to 15which 
means more cases are classified to non-DILI cases. When the 
probability threshold is changed from 0.5 to 0.25, the misclassification 
rate of DILI to non-DILI cases decreases from 62 to 40, and the 
misclassification of non-DILI to DILI cases increases from 24 to 49, 
which means more cases are classified to DILI cases.

Comparing multiple predictive models showed that XGBoost had 
the best validated AUC, followed closely by boosted trees. XGBoost 
and boosted trees are powerful ensemble methods that combine 
multiple decision trees to create accurate predictive models. Bootstrap 
is a resampling technique used for model validation and uncertainty 
estimation. Decision trees are intuitive and interpretable but may 
suffer from overfitting. Neural networks offer the ability to model 
complex relationships but require large amounts of data and 
computational resources. SVMs provide robust classification but can 
be computationally expensive. The choice of predictive model depends 
on the specific problem, available data, interpretability requirements, 
and computational resources.

For drug labels we used a basic text mining bag-of-words approach. 
This method evaluates the content of the document and is blind to 
ordering, conditional statements, or sentiment. The language used for 
drug label warning and precautions is straightforward, making these 
documents ideal for this type of analysis. In contrast, publication 
abstracts are more complex and written by the authors with varying 
language skills and cultural backgrounds. Notably, our model is robust 
and demonstrates similar performance on both the CAMDA dataset 
and the drug labeling datasets. Other text mining methods that can 
handle more complicated grammar or negative sentences in natural 
language processing, such as the transformer neural networks of general 
domain BERT or specialized BERT (Shi et al., 2023; ValizadehAslani 
et al., 2023). The deep learning with Python codes such as BERT, require 
programming skills and a substantial amount of computing resources. 
The XGBoost can run much faster (a few minutes) using the document 
term matrix that were generated by Text Explorer in JMP Pro to predict 
DILI, while BERT needs much longer time (hours). While an optimal 
prediction strategy is likely to be an ensemble neural net and boosted 
trees (Shwartz-Ziv and Armon, 2022), we did not explore this in the 
present study. We  also acknowledge potential improvement in 
performance for drug labelling can be  obtained using transformer 
BERT-style language models we are pursuing this in additional research.

Here, we developed an automatic text classification of DILI using 
DTM and XGBoost, and it was successfully applied to analyze drug 
labels from FDA and EMA and literature abstracts from CAMDA. The 

XGBoost with text-based tabular features approach demonstrated here 
can be applied to other text processing and classification tasks and 
offers a non-code solution for scientists and researchers to access AI 
and ML technologies for natural language processing.
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