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Background: Hepatocellular carcinoma (HCC) is a common primary liver 
cancer that requires early diagnosis due to its poor prognosis. Recent advances 
in artificial intelligence (AI) have facilitated hepatocellular carcinoma detection 
using multiple AI models; however, their performance is still uncertain.

Aim: This meta-analysis aimed to compare the diagnostic performance of 
different AI models with that of clinicians in the detection of hepatocellular 
carcinoma.

Methods: We searched the PubMed, Scopus, Cochrane Library, and Web of 
Science databases for eligible studies. The R package was used to synthesize the 
results. The outcomes of various studies were aggregated using fixed-effect and 
random-effects models. Statistical heterogeneity was evaluated using I-squared 
(I2) and chi-square statistics.

Results: We included seven studies in our meta-analysis;. Both physicians 
and AI-based models scored an average sensitivity of 93%. Great variation in 
sensitivity, accuracy, and specificity was observed depending on the model and 
diagnostic technique used. The region-based convolutional neural network 
(RCNN) model showed high sensitivity (96%). Physicians had the highest 
specificity in diagnosing hepatocellular carcinoma(100%); furthermore, models-
based convolutional neural networks achieved high sensitivity. Models based 
on AI-assisted Contrast-enhanced ultrasound (CEUS) showed poor accuracy 
(69.9%) compared to physicians and other models. The leave-one-out sensitivity 
revealed high heterogeneity among studies, which represented true differences 
among the studies.

Conclusion: Models based on Faster R-CNN excel in image classification 
and data extraction, while both CNN-based models and models combining 
contrast-enhanced ultrasound (CEUS) with artificial intelligence (AI) had good 
sensitivity. Although AI models outperform physicians in diagnosing HCC, they 
should be utilized as supportive tools to help make more accurate and timely 
decisions.
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Introduction

Primary liver cancer is a challenging disease that was the second 
most common cause of cancer mortality globally in 2018, and it is the 
7th most common type of cancer (Bray et al., 2018). Between 2020 and 
2040, the number of new cases of liver cancer are predicted to increase 
by 55% per year (Rumgay et  al., 2022). Liver cancer cells are 
differentiated into primary and secondary liver cancers according to 
the origin of the cancer cells. In primary liver cancer, the cancer 
originates within the liver itself, while secondary liver cancer is a result 
of the metastasis of other organs.

Primary liver cancer types include hepatocellular carcinoma 
(HCC), intrahepatic cholangiocarcinoma, hepatoblastoma, 
fibrolamellar carcinoma, angiosarcoma, and hemangiosarcoma 
(Astrologo et al., 2023). HCC accounts for approximately 75% of all 
liver cancer cases. Infection with hepatitis B and C is the major risk 
factor for HCC; however, other factors may play a role, such as 
aflatoxin exposure, alcohol consumption, and smoking (Chuang et al., 
2009; Mittal and El-Serag, 2013). The treatment of hepatocellular 
carcinoma depends on several factors, including tumor size, cancer 
stage, extrahepatic metastasis, and the extent of vascular invasion. In 
general, patients with HCC have a poor prognosis, which is 
determined by the stage of liver disease, disease severity, and diagnosis 
timing. Therefore, early diagnosis is crucial for a better prognosis 
(Galle et al., 2018; Marrero et al., 2018).

Serum biomarkers, such as alpha-fetoprotein (AFP-L3), 
des-gamma-carboxy prothrombin (DCP), Golgi protein 73 (GP73), 
and glypican-3 (GPC3), have beneficial value for early diagnosis. 
Several trace chemicals, such as circulating tumor noncoding RNA 
(ct-ncRNA), cell-free DNA (cfDNA), circulating tumor DNA 
(ctDNA), and circulating tumor cells (CTCs), are released into 
biological fluids and could serve as valuable diagnostic agents (Di 
Tommaso et al., 2009; Toyoda et al., 2011; Guo et al., 2018; Choi et al., 
2019). Fine-needle aspiration (FNA) biopsy is considered an 
additional confirmation test (Galle et  al., 2018). Computed 
tomography (CT) and magnetic resonance imaging (MRI) are widely 
used in cancer monitoring and diagnosis. Nevertheless, their 
sensitivity and specificity for early HCC detection are relatively low, 
so liver-specific contrast agents are used to improve imaging accuracy. 
The combination of gadolinium-ethoxybenzyl diethylenetriamine 
pentaacetic acid (Gd-EOB-DTPA) and MRI improves the diagnosis 
of liver lesions, but this combination is not optimal for small lesion 
detection (Yu et al., 2014; Marrero et al., 2018). Furthermore, imaging 
techniques depend on observer interpretation, which represents a 
major source of error and misdiagnosis; therefore, artificial intelligence 
(AI)-based models have been developed to overcome this issue.

Radiomics analysis is a novel tool developed for extracting data 
from medical images and combined with imaging techniques for 
better performance (Lambin et al., 2012; Wang et al., 2023). Other AI 
models are based on machine learning, deep learning (DL), and 
convolutional neural networks (CNNs). The algorithms generated by 

machine learning must first undergo training on datasets to make 
predictions. Deep learning is a subset of machine learning that learns 
and extracts difficult data using multiple layers. Another technology 
is convolutional neural networks (CNNs), which are considered the 
ideal model for diagnosis because they can process complex visual 
data through multiple layers and filters. Different models have been 
developed in conjunction with traditional methods to optimize the 
diagnosis process. AI tools are unbiased, smart, cost-effective, and 
noninvasive, and their efficacy is comparable to that of humans 
(Yamashita et al., 2018; Saba et al., 2019; Awal et al., 2023). In this 
systematic review and meta-analysis, we  aimed to evaluate the 
diagnostic performance of different AI models for the diagnosis of 
hepatocellular carcinoma in comparison with human expertise.

Methods

Literature search

This systematic review and meta-analysis was registered in 
PROSPERO; CRD42024517634; https://www.crd.york.ac.uk/
PROSPERO/#recordDetails and conducted in compliance with the 
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) statement (Moher, 2009). We searched electronic databases, 
including PubMed, Scopus, Cochrane, and Web of Science, through 
the 15th of February 2024. We used the relevant keywords and MeSH 
terms for artificial intelligence, machine learning, liver cancer, 
hepatocellular carcinoma, and diagnosis.

Inclusion and exclusion criteria

Studies were included if they (1) compared the performance of 
the AI model with that of physicians and (2) reported the sensitivity 
of the model in diagnosing HCC. Studies were excluded if they (1) 
were non-English, (2) did not compare AI models with clinicians, (3) 
did not report the model’s ability to differentiate between HCC and 
other types of liver cancer, or (4) did not report the outcomes 
of interest.

We excluded reviews, correspondences, editorials, errata, case 
reports, animal studies, and conference abstracts. No restrictions were 
applied to the publication year.

Study selection and data extraction

Two independent authors filtered the studies according to their 
titles and abstracts. The screening was assisted by Rayyan, an online 
software tool (Ouzzani et  al., 2016). Disagreements were settled 
through discussions. The data were extracted by two independent 
authors using a standard data extraction sheet, and disagreements 
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were resolved through discussion. We  extracted the general 
characteristics of the included studies, such as the first author name, 
year of publication, country, sample size, aim of the study, model used, 
diagnostic technique used, and limitations of the study.

Quality assessment

We used the QUADAS-AI tool to assess bias in the included 
studies. Two independent authors assessed the quality of the included 
results, and any discrepancies were resolved through discussion 
(Sounderajah et al., 2021). This tool addresses four main domains:

 1. Subject selection domain: signaling questions evaluate the 
quality of input data, patient eligibility criteria, source of 
datasets, image preprocessing, and information about the 
scanner model.

 2. The external validation process is evaluated in the index 
test domain.

 3. Reference standard domain: this domain assesses the ability of 
the reference standard to classify the target condition correctly.

 4. Flow and timing domain: evaluate whether the time between 
index testing and reference standardization is reasonable.

A study is considered to be  at low risk of bias if all signaling 
questions are answered with “yes,” questions answered with “no” flag 
potential bias, and further discussion is required to reach a final 
decision. If sufficient data were not available, questions were answered 
with “unclear.”

Statistical analysis

We used R version 4.2.2 (2022-10-31) and RStudio [version 
2022.07.2 (2009–2022)] from RStudio, Inc. (R Core Team, 2022; 
RStudio Team, 2022). We conducted a meta-analysis of the sensitivity, 
specificity, and accuracy of AI models for the diagnosis of 
hepatocellular carcinoma (HCC) with the “metafor” package. The 
outcomes of the various studies were aggregated using fixed effects 
and random effects models because of the significant heterogeneity 
observed in the preliminary analysis. Statistical heterogeneity was 
evaluated using I-squared (I2) and chi-square statistics. High I2 values 
suggested considerable between-study variability, warranting the use 
of a random-effects model. Leave-one-out sensitivity analysis was 
conducted to assess the impact of individual studies on the overall 
meta-analysis.

Results

Search results and baseline characteristics 
of included studies

We retrieved 1,573 articles from database records. In total, 365 
duplicates were detected. Title and abstract screening was performed 
for 1,172 records, and only 63 studies were eligible for full-text 
screening. Seven studies (Hamm et al., 2019; Kim et al., 2020; Zhen 
et al., 2020; Gao et al., 2021; Nishida et al., 2022; Liu et al., 2023; Urhuț 

et  al., 2023) were included in the meta-analysis, as shown in the 
PRISMA flow diagram (Figure 1) (Page et al., 2020).

General characteristics of the included 
studies

The general characteristics of the included studies are shown in 
Table  1. Seven studies demonstrated the potential of AI tools for 
improving the accuracy and efficiency of HCC diagnosis. Liu et al. 
(2023) established a Faster Region-based Convolutional Neural 
Network (RCNN) model for the differential diagnosis of primary clear 
cell carcinoma of the liver and common hepatocellular carcinoma 
(CHCC) (Liu et al., 2023). Similarly, Gao et al. (2021) developed an 
automatic diagnostic model to differentiate the types of malignant 
hepatic tumors based on multiphase contrast-enhanced computed 
tomography (CECT) and clinical data (Gao et al., 2021). Hamm et al. 
(2019) developed a custom convolutional neural network (CNN) 
model for classifying hepatic lesions on multiphasic MR images 
(Hamm et al., 2019). Kim et al. (2020) utilized a fine-tuned CNN to 
develop a deep learning model for detecting HCC using contrast-
enhanced magnetic resonance imaging (MRI) (Kim et  al., 2020). 
Urhuț et al. (2023) evaluated the accuracy of an automated method for 
classifying liver lesions using contrast-enhanced ultrasound (CEUS) 
(Urhuț et al., 2023). Nishida et al. (2022) constructed AI models for 
diagnosing liver tumors using B-mode ultrasonography, specifically 
CNNs, based on the visual geometry group network (VGGNet) model 
(Nishida et al., 2022). Finally, Zhen et al. (2020) developed a deep 
learning system (DLS) for classifying liver tumors based on enhanced 
and unenhanced MR and clinical data using CNNs based on the 
Inception-ResNet V2 network (Zhen et al., 2020).

Quality assessment

All studies had a low risk of bias in patient selection, index tests, 
and reference standards, except for Gao et al. (2021). Gao et al. (2021) 
reported a high risk of bias in the patient selection domain. All studies 
had concerns regarding the flow and timing domains, as the reported 
process was not sufficient to judge this domain. Overall, Gao et al. 
(2021) had a high risk of bias, while the other studies had a low risk 
(Figure 2).

Results

First of all, it is necessary to outline and explain the parameters of 
common effect and random effects models employed in the analysis. 
The fixed-effect model, also known as common-effect model assumes 
one true effect size underlying all studies included in this meta-
analysis. In cases where studies are assumed to be similar enough in 
design and population, that’s when this model is appropriate. The key 
parameter for this particular model is pooled effect size which 
represents average of the sizes of the effects obtained from all 
the studies.

Contrarily, random-effects model believes that there is a difference 
in true effect sizes among studies. It takes into consideration variability 
within and between variables across various research thus becoming an 
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appropriate choice if considerable heterogeneity exists amongst several 
researches. Within this specific model the vital parameters include 
pooled effect size and between-study variance commonly referred to as 
Tau2 indicating how much there exists variation amidst true effects.

The between-study variance in a meta-analysis is calculated by 
Tau2 (Tau-squared) and it helps us understand how much the effect 
sizes vary across studies over and above what would be expected by 
chance alone. Although there is no exact cutoff, we can interpret small 
heterogeneity of values near 0, moderate heterogeneity ranging from 
0.01 to 0.1, and large heterogeneity indicated by values greater than 
0.1 (West et al., 2010). For example, in this context, a Tau2 value of 
0.0057 indicates that there is moderate heterogeneity which implies 
that while there may be some variation of the effect size found across 
the studies; it is not excessive enough to be  called very high 
heterogeneity as such. In other words, differences between results of 
these studies are due to more than random occurrences but are not 
too far apart.

Sensitivity

We included the sensitivities reported in seven studies. Figure 3 
shows the meta-analysis of 26 arm. We tested the included studies in 
the random and fixed effects models. According to the fixed effect 
model, the pooled sensitivity was 0.9317 (95% CI [0.9219, 0.9415]), 
suggesting high consistency across studies assuming a single 
underlying effect. The sensitivity of the random effects model was 
0.8360 (95% CI [0.7909, 0.8811]), which accounts for the observed 
heterogeneity among studies and indicates a broader range of effect 
sizes. The average sensitivity of the AI-based models or physicians 
was 0.93, highlighting that the AI models, on average, perform 
similarly to physicians under the fixed effects model assumption, but 
these results showed more variability under the random 
effects model.

The performance of the AI models varied significantly depending 
on the specific model and diagnostic technique used. Some models, 
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Scopus (n = 318)
Web of Science (n = 146)

Records removed before 
screening: 

Duplicate records removed  
(n = 365)

Records screened
(n =1172) Records excluded (n = 1109)

Reports sought for retrieval
(n =63)

Reports not retrieved
(n = 0)

Reports assessed for eligibility
(n =63) Reports excluded due to wrong 

study design, wrong 
comparators, wrong outcomes, 
wrong patients population (n 
=56)

Studies included in the final 
meta-analysis (n =7)

Identification of studies via databases and registers

Id
en

tif
ic

at
io

n
Sc

re
en

in
g

In
cl

ud
ed

FIGURE 1

PRISMA flow diagram.
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TABLE 1 General characteristics of the included studies.

Ref. Country
Sample 
size (total)

Title Aim of the study
Diagnostic 
techniques used

AI tool used Limitations of the study

Liu et al. (2023) China 30 patients Diagnosis of primary clear cell 

carcinoma of the liver based on 

Faster RCNN

Establish a Faster RCNN 

model for differential 

diagnosis of PCCCL and 

CHCC

Deep learning analysis 

of CT images

Faster RCNN Single center study.

-The sample size of the patients with PCCCL was small.

Gao et al. (2021) China 159 patients Deep learning for differential 

diagnosis of malignant hepatic 

tumors based on multiphase 

CECT and clinical data

Develop an automatic 

diagnostic model to 

differentiate types of 

malignant hepatic tumors

Multiphase CECT Deep learning 

model (STIC)

Single-center study.

-A limited number of imaging studies. Only typical lesions on 

MRI were used, excluding lesions with poor quality and more 

complex lesion types such as infiltrative HCC or complicated 

cysts.

-Pathological proof was not available for all lesions.

Hamm et al. 

(2019)

USA 296 patients Deep learning for liver tumor 

diagnosis part I: development of 

a CNN classifier for multiphasic 

MRI

Develop a CNN for classifying 

hepatic lesions on multiphasic 

MRI

Multiphasic MRI Custom CNN Relatively small training and testing dataset.

-The included group was heterogeneous in terms of tumor types.

-Insufficient number for some categories, such as focal nodular 

hyperplasia, liver abscess, liver adenoma, and 

cholangiocarcinoma.

-Using only one type of ultrasound equipment and a single 

contrast agent for ultrasound.

-Valuable information collected in daily clinical practice, such as 

tumoral markers, was not integrated.

Kim et al. (2020) South Korea 950 images Detection of Hepatocellular 

Carcinoma in Contrast-

Enhanced MRI Using Deep 

Learning Classifier

Develop a deep learning 

model for detecting HCC 

using MRI

Contrast-enhanced 

MRI

Fine-tuned CNN The image quality of the arterial phase was affected by transient 

severe motion artifacts.

-The training dataset was obtained from a single vendor.

-The study population had relatively good liver function.

-The model is unable to detect atypical HCCs and low signal 

intensity in hepatobiliary phase MRI.

Urhuț et al. 

(2023)

Romania 49 patients Diagnostic Performance of an 

AI Model Based on CEUS in 

Patients with Liver Lesions

Evaluate the accuracy of an 

automated method for 

classifying liver lesions using 

CEUS

CEUS (contrast-

enhance ultrasound)

AI system based on 

algorithms

Single center study.

-Lesions segmentation in the training validation set was done 

manually by doctors.

Nishida et al. 

(2022)

Japan 55 patients Artificial intelligence models for 

the ultrasonographic diagnosis 

of liver tumors

Construct AI models for 

diagnosing liver tumors using 

ultrasonography

B-mode 

ultrasonography

CNNs based on 

VGGNet

A single-center retrospective study.

-Patients who have specific types of focal liver diseases (small 

HCC, HCC without pathology, inflammation, etc.) need to 

be included in future training.

Zhen et al. (2020) China 201 patients Deep Learning for Accurate 

Diagnosis of Liver Tumor Based 

on MRI and Clinical Data

Develop a DLS for classifying 

liver tumors based on MRI 

and clinical data

Enhanced and 

unenhanced MRI

CNNs based on 

Inception-ResNet 

V2

The AI model focuses on diagnosis not detection.

-Other types of rare liver tumors were not involved in the 

training set.
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FIGURE 2

Quality assessment of the included studies.

FIGURE 3

Forst plot of sensitivity analysis for AI models in hepatocellular carcinoma diagnosis.

such as the RCNN model and the various classifiers used in Zhen et al. 
(2020), exhibited particularly high sensitivities. In contrast, the 
CNN-based models reported by Nishida et al. (2022) demonstrated 
lower sensitivities.

The heterogeneity of these studies was high. The I2 statistic was 
89.1%, indicating a large variation among the studies’ estimates not only 
due to random error. The heterogeneity test was highly significant 

(Q = 229.76, df. = 25, p value <0.0001). The Tau2 statistic was 0.0105 (95% 
CI [0.0058–0.0277]), supporting moderate heterogeneity and reinforcing 
the need for a random-effects model to accurately capture the variability 
in sensitivities among different studies. The leave-one-out sensitivity 
analysis revealed that the pooled sensitivity estimates of the fixed effects 
model ranged from 0.8678 to 0.9390, and those of the random effects 
model ranged from 0.8292 to 0.8506, which confirmed the robustness 
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of our findings, with pooled sensitivity estimates remaining stable across 
different models. These results suggest that no single study unduly 
influenced the meta-analysis results. Figure 4 represents the funnel plot 
of the included studies, suggesting potential publication bias.

Specificity

The specificity of the AI models used in the diagnosis of 
hepatocellular carcinoma (HCC) was evaluated in six studies 
(Figure 5). The common effect model showed a perfect specificity of 
1.0000 (95% CI [0.9999, 1.0001]). The specificity in the random effects 
model was 0.9252 (95% CI [0.8915, 0.9589]), reflecting the variability 
among the studies. In Kim et al. (2020), the optimized CNN model 
had the same specificity as the expert radiologist (93%). Model F in 
Zhen et al. (2020) had the highest specificity (96.2%), while the model 
in Urhuț et al. (2023) had the lowest value (56.2%) (see Figure 6).

Heterogeneity among the studies was quantified using several 
statistical methods. The I2 statistic was 89.5%, which indicates that the 
total variation in the study estimates was due to heterogeneity rather 
than chance. The Tau2 statistic was 0.0035 (95% CI of [0.0024–0.0185]), 
which suggests moderate heterogeneity in specificity estimates across 
studies. This heterogeneity may be influenced by the varying odds of 
having HCC across these studies. Higher odds might reduce specificity 
due to the greater chance of false positives in a more homogenous 
patient population. The heterogeneity test was highly significant 
(Q = 209.54, df. = 22, p value <0.0001), confirming significant between-
study variability, justifying the use of the random-effects model.

Accuracy

The accuracy of the AI models used in the diagnosis of 
hepatocellular carcinoma (HCC) was evaluated in four studies 
(Figure 7). The common effect model showed an accuracy of 0.9096 
(95% CI [0.8958,0.9234]), suggesting high consistency across studies 
assuming a single underlying accuracy. The random effects model 
showed a slightly lower accuracy of 0.8423 (95% CI [0.7879–0.8966]). 

Most of the AI-based models achieved accuracies similar to or 
marginally better than those of physicians. Model 3 by Nishida et al. 
(2022) achieved the highest accuracy (92.7%), while the models of Kim 
et al. (2020) and Gao et al. (2021) had slightly better accuracy than did 
the other models (90% vs. 91 and 72.6% vs. 70.8%, respectively). The 
Urhuț et al. (2023) model had the lowest accuracy (69.6%), which was 
consistent with the specificity value. The I2 statistic was 74.1%, 
indicating that a large proportion of the total variation in the study 
estimates was due to heterogeneity rather than chance. The Tau2 
statistic was 0.0057 (95% CI [0.0013, 0.0211]), highlighting moderate 
heterogeneity in the accuracy estimates across studies. This variability 
may be  influenced by the differing odds of HCC among the study 
populations. Higher odds might lead to greater accuracy due to the 
increased incidence of the condition, while lower odds might result in 
lower accuracy as the model encounters more non-HCC patients. The 
heterogeneity test result was highly significant (Q = 42.53, df. = 11, p 
value <0.0001), supporting the use of the random-effects model due to 
significant between-study differences.

Figure 8 illustrates a funnel plot utilized in the meta-analysis to 
examine potential publication bias; the funnel plot indicates potential 
publication bias among the included studies.

Odds of HCC in study populations

To provide context for evaluating the models’ performance, the 
odds of having hepatocellular carcinoma (HCC) were calculated for 
each study population. In Liu et al. (2023), the odds of having HCC 
were infinite because the sample consisted entirely of HCC patients. 
According to Gao et  al. (2021), the odds of having HCC are 
approximately 1.69. According to Hamm et al. (2019), the odds ratio 
was approximately 2.08. Kim et al. (2020) reported that the odds of 
having HCC were approximately 0.73. The odds ratio of Urhuț et al. 
(2023) was approximately 0.69. Nishida et al. (2022) reported odds of 
approximately 1.2%. Finally, Zhen et al. (2020) reported that the odds 
of having HCC were approximately 2.94 (Table 2).

The varying odds of HCC across these studies could influence 
the reported sensitivities and specificities. For instance, Nishida 

FIGURE 4

Funnel plot demonstrating publication bias in the meta-analysis of sensitivity across various models for hepatocellular carcinoma detection.
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FIGURE 6

Funnel plot demonstrating publication bias in the meta-analysis of specificity across various models for hepatocellular carcinoma detection.

et  al. (2022) demonstrated lower sensitivities, which may 
be influenced by the odds of having HCC in their study population 
(approximately 1.2%). A greater risk of HCC might lead to greater 
sensitivity due to the increased incidence of this condition. In 
comparison, lower odds might result in lower sensitivity as the 
model encounters more non-HCC patients. Specificity may also 
be  affected similarly, with higher odds potentially reducing 
specificity due to the greater chance of false positives in a more 
homogenous patient population.

Discussion

In this systematic review and meta-analysis, we aimed to explore 
the potential of artificial intelligence tools for the diagnosis of 
hepatocellular carcinoma compared with human expertise. New 

models are being developed daily, which is considered an invaluable 
opportunity for advancing diagnostic accuracy and saving doctors’ 
time. Several scientists have debated whether these tools can replace 
humans in the future. Our study is the first systematic review to 
compare AI-based tools with physicians in the diagnosis of HCC. Early 
diagnosis of HCC is pivotal because patient survival is linked to 
hepatocellular carcinoma staging; patients diagnosed in early stages 
have higher five-year survival rates than those diagnosed in late stages 
(70 and 20%, respectively). Therefore, there is an urgent need to 
develop accurate and sensitive tools to optimize the diagnostic process 
for HCC (American Cancer Society, 2020).

Our analysis showed that most AI models are more sensitive than 
physicians, except for Kim et al. (2020), in which the expert radiologist 
had greater sensitivity than the AI model (98 vs. 87, respectively); 
however, they had almost the same specificity (93%). The proposed 
model had a sensitivity similar to that of a nonexpert radiologist 

FIGURE 5

Forst plot of specificity analysis for AI models in hepatocellular carcinoma diagnosis.
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(approximately 86.5%) (Kim et al., 2020). In some cases, the diagnosis 
of HCC using imaging techniques is quite challenging and requires 
strong experience, as there is great heterogeneity within HCC cells; 
different areas can have different growth patterns and levels of 
differentiation (Quaglia, 2018).

To address this issue, Zhen et al. (2020) developed an AI model 
that combines MR images and clinical data. This combination 
significantly improved the classification ability of the new models 
[AUC = 0.985 (95% CI, 0.960–1)]. Furthermore, Zhen et al. (2020) 
investigated the impact of sequence number on model performance. 
Different imaging sequences were used to train the model. Six 
sequences (contrast-enhanced T1 sequence, contrast-enhanced T1 
sequence, diffusion, late arterial, portal venous, and equilibrium) or 
three sequences (T1, T2, and diffusion) as well as clinical data were 
utilized as model inputs. When clinical data were built into the 
model, the number of sequences did not have an impact on the 
performance. However, for models based on images only, model A, 
which had only three unenhanced sequences (AUC = 0.925, 95% 

CI = 0.871, 0.978), had better results than model B, which had 0.879, 
95% CI = 0.813, 0.9452 (Zhen et al., 2020). Gao et al. (2021) measured 
the sensitivity and accuracy of AI-assisted physicians versus the AI 
model (STIC) or physicians alone. The AI-assisted physicians and the 
STIC model had approximately comparable sensitivities of 83.3 and 
86.5%, respectively. Physicians had the lowest sensitivity (78.4%), but 
their accuracy did not significantly differ from that of the STIC model 
(70.8 and 72.6%, respectively) (Hamm et al., 2019; Kim et al., 2020; 
Zhen et al., 2020; Gao et al., 2021; Nishida et al., 2022; Liu et al., 2023; 
Urhuț et al., 2023).

The most sensitive model was the faster region-based 
convolutional neural network (RCNN) proposed by Liu et al. (2023). 
Models based on RCNNs exhibit a good ability to extract data from 
various images (Hamm et al., 2019; Kim et al., 2020; Zhen et al., 2020; 
Gao et al., 2021; Nishida et al., 2022; Liu et al., 2023; Urhuț et al., 
2023). Raimundo et al. (2023) developed an AI model that combines 
RCCN and MRI for the diagnosis of breast cancer. Similarly, this 
model achieved a high accuracy of 94.4%. Another model by Liu et al. 

FIGURE 7

Forst plot of accuracy analysis for AI models in hepatocellular carcinoma diagnosis.

FIGURE 8

Funnel plot demonstrating publication bias in the meta-analysis of accuracy across various models for hepatocellular carcinoma detection.
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(2022) was developed based on the RCNN and medical images for 
diagnosing bile duct tumor thrombi in patients with HCC. In 
addition, this model showed a high sensitivity of 94% and a good 
specificity of 78%, which confirms the efficiency of RCNN-based 
models in improving the diagnosis of medical images (Liu et al., 2022, 
2023; Raimundo et al., 2023).

Several diagnostic AI models based on convolutional neural 
networks (CNNs) have evolved because they do not require a clear 
definition of the lesion to interpret the images. Yamashita et al. (2020) 
proposed a CNN-based model that could classify hepatic observations 
without predefining hand-crafted imaging features with 60.4% 
accuracy. Similarly, Wang et al. (2019) investigated a convolutional 
neural network (CNN)-based model for the differentiation of liver 

masses via dynamic contrast agent-enhanced computed tomography 
(CT). The model achieved a median diagnostic accuracy of 0.84 
(Yasaka et al., 2018).

Nishida et al. (2022) developed three different models to establish 
the relationship between the training dataset size and CNN 
performance. Model 3, which had the most training data, performed 
better than the other two models and the physicians did. Increasing 
the training set size has a proven impact on improving the accuracy 
of CNN-based models; nevertheless, large training sets consume more 
money, time, and effort (Radiuk, 2017; Nishida et al., 2022).

Clinical data have a major influence on imaging interpretation. 
Urhuț et  al. (2023) compared the performance of novel AI-based 
contrast-enhanced ultrasound (CEUS) with that of two groups of 

TABLE 2 Odds of HCC in study populations.

Study Arms
Odds 
ratio

Sample size
Sensitivity 
(95% CI)

Specificity 
(95% CI)

Accuracy 
(95% CI)

Kim et al. (2020)

Optimized CNN architecture

0.73 549

0.8700 0.93 0.90

Expert radiologist 0.9800 0.92 0.91

Less expert radiologist 0.8600 0.93 0.94

Gao et al. (2021)

STIC (Spatial Extractor-Temporal 

Encoder Integration-Classifier)
1.69 60

0.8650 0.87 0.73

Doctors’ consensus 0.7840 0.95 0.71

AI assisted doctors 0.8330 0.92 –

Hamm et al. 

(2019)

Concept convolutional neural network 

(CNN) based deep learning system (DLS)
2.08 88

0.9000 0.98 –

Radiologist 1 0.7000 1.00 –

Radiologist 2 0.6000 1.00 –

Urhuț et al. 

(2023)

Unblinded clinician

0.69 24

0.5833 1.00 0.83

Blinded clinician 0.5000 1.00 0.80

AI based Contrast-enhanced ultrasound 

(CEUS)
0.8691 0.56 0.70

Liu et al. (2023)

RCNN model

Infinite 21

0.9600 – –

Radiologist 1 0.9270 – –

Radiologist 2 0.9170 – –

Zhen et al. (2020)

Model A: seven-way classifier with six 

sequences.

2.94 47

0.8720 0.92
–

Model B: seven-way classifier with 3 

unenhanced sequences
0.7450 0.86

–

Radiologists’ consensus 0.8720 0.95 –

Model E: three-way classifier with sixes 

sequences.
0.9360 0.67

–

Model F: three-way classifier with six 

sequences and clinical data
0.9570 0.96

–

Model G: three-way classifier with three 

sequences and clinical data.
0.9570 0.90

–

Radiologists’ consensus 0.8910 0.90 –

Nishida et al. 

(2022)

CNN AI model 1

1.2 18

0.6110 0.84 0.86

CNN AI model 2 0.7220 0.88 0.87

CNN AI model 3 0.7780 0.90 0.93

Physicians 0.6910 – 0.69
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clinicians: the first group knew all relevant clinical data, while the 
second group was blinded. The sensitivity and accuracy of the blinded 
group were lower than those of the unblinded group (58.3 and 83% vs. 
50 and 79.6%, respectively). Furthermore, the AI-based contrast-
enhanced ultrasound (CEUS) model had high sensitivity (86.9%) but 
less accuracy (69.9%) than did clinicians who were aware of the 
patient’s case (Urhuț et al., 2023). The sensitivity of contrast-enhanced 
ultrasound varies across different studies. A meta-analysis involving 
studies conducted in 1996–2016 showed that the sensitivity of CEUS 
for detecting HCC was 85%, although Jiang et al. (2021) reported a 
lower sensitivity of 69% for lesions <20 mm and 75% for lesions 
≥20 mm. The combination of CEUS and AFP levels showed promising 
results, and the sensitivity increased to 83.1%; therefore, there is a need 
to establish evidence of the efficiency of CEUS in the diagnosis of HCC 
and to investigate the performance of the triple combination of CEUS, 
AFP levels, and AI models (Zhang et al., 2017; Jiang et al., 2021). In 
addition to diagnosing HCC, machine learning has a promising role in 
liver transplantation. Machine learning-based models could provide 
excellent predictions of the risk of complications and short-and long-
term mortality. Furthermore, they can predict posttransplant outcomes 
better than traditional scoring systems. The incorporation of AI into 
the transplantation process saves time and money and increases the 
rate of transportation success (Chongo and Soldera, 2024). In general, 
AI has great potential in diagnosing different gastrointestinal tract 
pathologies due to its ability to use complex mathematical data 
involving multiple parameters and sophisticated formulas to draw 
conclusions that would be challenging or unfeasible for humans to 
process alone. However, many concerns are associated with the 
potential of AI in prognostication, such as the need for high-quality 
images for model training, ethical considerations of data usage, and the 
cost–benefit ratio (Do and Gastrointestinal, 2023).

Limitations of the study

In our meta-analysis, high heterogeneity was observed, which 
may be attributed to the use of various AI models and diagnostic tools, 
in addition to differences in sample size. Some were single-center 
preliminary studies with small sample sizes, which is considered a 
major limitation. Another limitation is the inadequate inclusion of 
rare and complex liver lesions in the training and validation datasets 
of the AI models. There is a great need for randomized clinical trials 
with larger sample sizes. Moreover, developers should incorporate 
clinical history, laboratory findings, prior pathology reports, and 
immunohistochemistry tests to maximize model efficiency during the 
development of new AI models.

Conclusion

Compared with physicians, AI models have the ability to improve 
the diagnosis of hepatocellular carcinoma. Faster R-CNN-based 
models are excellent for imaging classification and data extraction. 
CNN-based models have high sensitivity, and increasing the size of 
the training database significantly augments the accuracy of CNN 
models. The sensitivity of CEUS in the diagnosis of HCC is debatable; 

however, the combination of CEUS and AI models yields high 
sensitivity. Despite the promising results, AI models should not 
entirely replace humans in the diagnostic process; rather, they should 
be used as an assistant tool for more accurate and less timed decisions. 
We need to conduct more studies on the performance of AI-assisted 
physicians versus physicians without assistance, considering 
physicians’ level of experience.
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Glossary

HCC Hepatocellular Carcinoma

AFP Alpha-fetoprotein

DCP Des-gamma-Carboxy Prothrombin

GP73 Golgi Protein 73

GPC3 Glypican-3

Ct-ncRNA Circulating tumor noncoding RNA

CfDNA Cell-free DNA

CtDNA Circulating tumor DNA

CTC Circulating tumor cell

FNA Fine Needle Aspiration

WSI Whole-Slide Imaging

CT Computed Tomography

MRI Magnetic Resonance Imaging

CNN Convolutional Neural Network

AI Artificial Intelligence

DL Deep Learning

VGGNet Visual Geometry Group Network

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-

Analysis

RCNN Region-based Convolutional Neural Network

CECT Contrast-Enhanced Computed Tomography

PCCCL Primary Clear Cell Carcinoma

CHCC Common Hepatocellular Carcinoma

CEUS Contrast-enhanced ultrasound

https://doi.org/10.3389/frai.2024.1398205
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

	Diagnostic performance of AI-based models versus physicians among patients with hepatocellular carcinoma: a systematic review and meta-analysis
	Introduction
	Methods
	Literature search
	Inclusion and exclusion criteria
	Study selection and data extraction
	Quality assessment
	Statistical analysis

	Results
	Search results and baseline characteristics of included studies
	General characteristics of the included studies
	Quality assessment

	Results
	Sensitivity
	Specificity
	Accuracy
	Odds of HCC in study populations

	Discussion
	Limitations of the study

	Conclusion
	Author contributions
	Glossary

	References

