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Introduction: The development of machine learning models for symptom-
based health checkers is a rapidly evolving area with significant implications 
for healthcare. Accurate and efficient diagnostic tools can enhance patient 
outcomes and optimize healthcare resources. This study focuses on evaluating 
and optimizing machine learning models using a dataset of 10 diseases and 
9,572 samples.

Methods: The dataset was divided into training and testing sets to facilitate model 
training and evaluation. The following models were selected and optimized: 
Decision Tree, Random Forest, Naive Bayes, Logistic Regression and K-Nearest 
Neighbors. Evaluation metrics included accuracy, F1 scores, and 10-fold cross-
validation. ROC-AUC and precision-recall curves were also utilized to assess 
model performance, particularly in scenarios with imbalanced datasets. Clinical 
vignettes were employed to gauge the real-world applicability of the models.

Results: The performance of the models was evaluated using accuracy, F1 
scores, and 10-fold cross-validation. The use of ROC-AUC curves revealed 
that model performance improved with increasing complexity. Precision-recall 
curves were particularly useful in evaluating model sensitivity in imbalanced 
dataset scenarios. Clinical vignettes demonstrated the robustness of the models 
in providing accurate diagnoses.

Discussion: The study underscores the importance of comprehensive model 
evaluation techniques. The use of clinical vignette testing and analysis of 
ROC-AUC and precision-recall curves are crucial in ensuring the reliability and 
sensitivity of symptom-based health checkers. These techniques provide a 
more nuanced understanding of model performance and highlight areas for 
further improvement.

Conclusion: This study highlights the significance of employing diverse 
evaluation metrics and methods to ensure the robustness and accuracy of 
machine learning models in symptom-based health checkers. The integration 
of clinical vignettes and the analysis of ROC-AUC and precision-recall curves 
are essential steps in developing reliable and sensitive diagnostic tools.
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1 Introduction

Symptom-based health checkers are a fascinating intersection of 
technology and healthcare offering accessible preliminary assessments 
based on reported symptoms. The concept operates in a straightforward 
manner: Symptoms are entered into the system, which then employs 
artificial intelligence (AI) algorithms such as machine learning (ML) 
to offer potential diagnoses or health recommendations. These tools 
have a rich history evolving from basic rule-based systems to 
sophisticated AI-driven models (Thani and Kasbe, 2022; Vida, 2022; 
Kumar and Meenakshi Sundaram, 2023; Wen and Huang, 2023). 
Historically, early health checkers were quite basic relying on 
predefined rules and simple decision trees. These systems were limited 
in scope and accuracy and often failing to account for the complexity 
and variability of human health conditions. However, the capabilities 
of these tools rose following the evolution of computational power and 
data availability (Beam and Kohane, 2018; Balogh and Adamkó, 2023).

The introduction of electronic health records (EHRs) and the 
explosion of medical data provided a fertile ground for more advanced 
models (Johnson et  al., 2023). In recent years, the accuracy and 
reliability of health assessments have been significantly enhanced by 
health checkers utilizing ML and deep learning technologies (Tripathi 
and Goel, 2021). Modern symptom-based health checkers now 
incorporate various types of data, including user-reported symptoms, 
EHRs, and even data from wearable devices, making them more robust 
and comprehensive (Wynants et al., 2020). One notable example is the 
COVID-19 pandemic accelerating the development and adoption of 
symptom-based health checkers and many institutions developed 
AI-driven tools to help triage patients and manage healthcare resources 
more effectively (Hashemi et al., 2024). These tools demonstrated the 
potential of ML in rapidly evolving healthcare scenarios (Pogoncheff 
et al., 2023). There are many models and techniques used in these 
advanced health checkers. Decision trees and random forests remain 
popular for their interpretability and robustness across different 
datasets (Amorim et  al., 2021). Enhanced with feature selection 
techniques and natural language processing (NLP) for handling free-
text symptoms, these models have improved in understanding the 
complexity of user inputs (Jia et  al., 2023). Deep learning models, 
especially convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), have taken center stage for their ability to capture 
intricate patterns in large datasets. CNNs are particularly effective for 
image-based diagnostics, while RNNs excel in handling sequential 
data, such as time-series health records (Shah et al., 2020).

The validation of these models is crucial. Cross-validation, 
especially k-fold cross-validation, remains a standard practice to 
ensure that the models generalize well to unseen data. This technique 
splits the data into k parts, trains the model k times, each time using 
a different part as the test set and the remaining parts as the training 
set, thus providing a comprehensive evaluation of the model’s 
performance (Shah et al., 2020; Chiu et al., 2024). Hyperparameter 
tuning is another critical aspect. Methods like grid search, random 
search, and bayesian optimization are employed to find the optimal 
parameters that enhance model performance and achieve the best 
possible predictive accuracy (Mavridou and Laws, 2004; Chicco and 
Jurman, 2020). To measure the effectiveness of these models, metrics 
like ROC (Receiver Operating Characteristic) curves and AUC (Area 
Under the Curve) are extensively used. These metrics are particularly 
useful in handling either imbalanced and balanced datasets, which are 
common in medical diagnostics. A high AUC value indicates that the 

model has a good ability to distinguish between different classes, such 
as healthy versus diseased (Chen et  al., 2023; Liu et  al., 2023). 
Ensemble methods have also shown great promise in recent years. 
Techniques like stacking, boosting, and bagging combine multiple 
models to improve predictive performance (Aissaoui Ferhi et al., 2019; 
Fei and Wang, 2020). Studies have demonstrated that ensemble 
methods can significantly enhance the accuracy and reliability of 
symptom-based health checkers compared to individual models 
(Veloski et al., 2005; García-Carretero et al., 2020). Explainable AI 
(XAI) is becoming increasingly important in healthcare. While 
complex models like deep learning offer high accuracy, they often 
operate as black boxes. XAI techniques aim to make these models 
more transparent, providing healthcare professionals with insights 
into how decisions are made. This transparency is crucial for clinical 
acceptance and trust in AI-driven diagnostics (You et  al., 2022; 
Ahmad et al., 2023; Jia et al., 2023; Miao et al., 2024).

The integration of EHRs and patient-generated data has further 
advanced the capabilities of health checkers. By incorporating 
comprehensive datasets, these models can consider a wider range of 
patient histories and variables, leading to more accurate and 
personalized health assessments (Wynants et al., 2020; Griner et al., 
2021; Johnson et  al., 2023). Natural language processing (NLP) 
advancements have significantly improved the ability of health 
checkers to process and understand free-text inputs from users. 
Enhanced NLP algorithms can extract relevant information from 
unstructured data, which is a common way people report symptoms, 
thereby improving the performance and usability of these tools 
(Pogoncheff et  al., 2023; Hashemi et  al., 2024). Transfer learning, 
where models pre-trained on large datasets are fine-tuned on specific 
medical datasets, has also been a breakthrough. This approach gives 
models a head start, especially beneficial when dealing with limited 
medical data. It’s like leveraging prior knowledge to quickly adapt to 
new tasks (Amorim et al., 2021; Jia et al., 2023). The trend toward 
real-time data and continuous monitoring is also noteworthy. 
Wearable devices and mobile health apps generate a constant stream 
of health data that can be  fed into these models for real-time 
monitoring and prediction. This capability not only enhances accuracy 
but also allows for timely interventions, potentially preventing 
diseases from progressing (Son et al., 2020; Alwazzan, 2023). Overall, 
symptom-based health checkers powered by ML represent a 
significant advancement in digital health. By leveraging sophisticated 
ML techniques, robust validation methods, and comprehensive data 
integration, these tools are becoming more reliable and accurate.

In the context of recent advancements in health checkers, our work 
stands out for its meticulous approach to enhance diagnostic accuracy 
and reliability. Our primary objectives have been to enhance the precision 
and robustness of symptom-based health checkers by leveraging high-
quality datasets and validating performance using clinical vignettes. 
We  have implemented rigorous validation techniques and analyzed 
performance using many metrics to ensure the models’ generalizability 
and reliability. We’ve taken our health checker to the next level by 
leveraging a high-quality dataset sourced from trusted medical 
repositories and methodically curated by a co-author who brings 
invaluable expertise as a practicing doctor making the dataset the 
backbone of our system and ensuring that our models are trained on 
robust and representative data. Additionally, we have tested the health 
checker using clinical vignettes, which are crucial for validation. Clinical 
vignettes (Veloski et al., 2005; García-Carretero et al., 2020) allow us to 
simulate real-world scenarios and evaluate the performance and accuracy 
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of our health checker in a controlled, yet realistic setting. This 
comprehensive approach helps us fine-tune our models and ensures that 
our tool is reliable and effective in diverse clinical situations. We’ve also 
put our models through the wringer with rigorous validation techniques. 
We have subjected our models to an exhaustive 10-fold cross-validation 
to ensure their capacity to generalize across a diverse array of datasets and 
to overcome overfitting. Furthermore, we  have undertaken a 
comprehensive optimization of our models’ hyperparameters to achieve 
best performance. Importantly, we have also engaged in a deep analysis of 
our models’ Area Under the Receiver Operating Characteristics 
(AUROC) and Area Under the Precision-Recall (AUPR) curves and 
scores which are rigorous diagnostic tools to quantify our models’ 
performance characteristics and to equip us with the insights necessary 
to fine-tune and validate their reliability. Our goal is to deliver a health 
checker that healthcare professionals and patients alike can rely on 
with confidence.

2 Methods

2.1 Data collection and domain 
understanding

The effectiveness of symptom-based health checkers is profoundly 
influenced by the quality and comprehensiveness of the data they 
utilize. Ensuring meticulous data collection from a multitude of 
trustworthy sources is vital as it enables the creation of representative 
and comprehensive datasets. Among the most valuable sources of data 
are EHRs due to their detailed clinical information, wearable devices 
due to the real-time health monitoring, and patient-reported outcomes 
due to nuanced understanding of health conditions (Wongvibulsin 
et al., 2019; Alzubaidi et al., 2023). In addition, public health databases 
maintained by organizations such as the CDC and WHO provide 
aggregated data on disease prevalence, health behaviors, and 
population health trends. Examples include the CDC’s Behavioral Risk 
Factor Surveillance System (BRFSS) and the WHO’s Global Health 
Observatory (GHO). These databases are mandatory for understanding 
broader health patterns and training symptom-based health checkers 
to recognize and predict public health issues effectively (Salvador et al., 
2020; Mulchandani et al., 2022). Also, specialized health databases such 
as the UK Biobank and the National Health and Nutrition Examination 
Survey (NHANES) provide rich datasets that can be  leveraged for 
health checker tools. The UK Biobank, for example, contains detailed 
health and genetic information from half a million UK participants, 
offering a comprehensive resource for studying the interplay between 
genetics, lifestyle, and health outcomes (Mavridou and Laws, 2004; 
Douaud et al., 2022). Some studies such as (Mavridou and Laws, 2004) 
identify and maps the expanding data collection strategies used in 
qualitative researches in the healthcare. In addition to collecting high-
quality data, a deep understanding of the medical domain is equally 
important. Symptom-based health checkers need to be designed with 
a deep understanding of medical terminology, clinical workflows, and 
patient behavior patterns to ensure accurate data interpretation and 
clinically relevant recommendations (Machen, 2023; Aissaoui Ferhi  
et al., 2024). Analyzing patient behavior patterns is another critical 
aspect of domain understanding. This involves understanding how 
patients adhere to treatment plans, the frequency of their medical 
visits, and their lifestyle choices. Data from mobile apps and wearables 

can offer insights into these behaviors, enabling health checkers to 
deliver more personalized and effective health advice (Woodcock et al., 
2021; Ozonze et al., 2023). The importance of clinical vignettes and 
clinical case reports in the validation process of symptom-based health 
checkers cannot be  overstated. Clinical vignettes are detailed, 
hypothetical patient scenarios used to simulate real-life clinical 
encounters. Clinical case reports are detailed (Veloski et al., 2005) real 
patient scenarios and are used to describe and interpret the experienced 
symptoms and signs, final diagnosis, adapted treatment and follow up. 
In our article, we used the term “clinical vignette” to indicate either a 
clinical vignette or a clinical case report. By testing health checkers with 
these vignettes and case reports, researchers can evaluate the accuracy 
and reliability of the tool in a controlled realistic environment. This 
method helps identify potential gaps in the tool’s diagnostic capabilities 
and ensures it performs well across a variety of clinical scenarios, which 
is crucial for gaining clinical acceptance and trust. Our team is quite 
diverse including senior physician and senior researchers in 
information and communication technologies. The doctor’s medical 
expertise played a crucial role in ensuring the accuracy of the medical 
data we gathered. To really understand the medical diagnostic process, 
we  delved into a range of resources, from medical books, public 
datasets,1,2 to trusted websites like ViDAL and Mayo Clinic.3,4 We also 
had some enlightening conversations with other medical professionals 
to grasp the real-world steps involved in diagnosing medical issues in 
general practice. Patient backgrounds, like age, gender, and medical 
history, were carefully incorporated into our dataset. To verify the 
robustness of our health checker, we tested a symptom dataset and 
numerous clinical vignettes (Marcio, 2024a; Marcio, 2024b) to enhance 
the comprehensiveness and applicability of the health checker.

2.2 Data preprocessing and feature 
engineering

Data preprocessing (Kale and Pandey, 2024) and feature engineering 
(GADA et al., 2021) are crucial steps in the development of a symptom-
based health checker using ML. The aim is to prepare the collected dataset 
by cleaning it and converting raw data into a useful format for model 
training. Data cleaning involves handling missing values, removing 
duplicates, and correcting inconsistent entries ensuring that all symptom 
descriptions are standardized (Machen, 2023). Feature engineering is the 
process of creating new features or modifying existing features to improve 
model performance (Chiu et al., 2024). For our symptom-based health 
checker, we created binary features that indicate the presence or absence 
of a symptom. Moreover, normalization or scaling and data 
transformation are often applied as part of preprocessing. They involve 
scaling numerical features to have a certain distribution and converting 
data into a format that is suitable for a specific ML algorithm (Cofre-
Martel et  al., 2021). Feature selection involves identifying the most 
relevant features for predicting the target variable (Chiu et al., 2024), 

1 https://www.kaggle.com/datasets/kaushil268/disease-prediction-using-

machine-learning [Accessed 01 June 2024].

2 https://data.mendeley.com/datasets/dv5z3v2xyd/1 [Accessed June 

02, 2024].

3 https://www.vidal.fr [Accessed June 02, 2024].

4 https://www.mayoclinic.org [Accessed June 02, 2024].
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which in our case would be the health condition associated with the given 
symptoms. Recent studies have emphasized the importance of these steps. 
For instance, a study published in March 2024 highlighted the use of ML 
for the early prediction of cardiovascular disease (Machen, 2023). The 
researchers used advanced ML algorithms to discern predictive factors 
within electronic health data. This underscores the importance of data 
preprocessing and feature engineering in developing effective symptom-
based health checkers (Cofre-Martel et al., 2021; Machen, 2023; Chiu 
et al., 2024).

2.3 Model selection and hyperparameters 
tuning

In this step, the constructed dataset is used to train the selected 
models. In our study, we have chosen those models: Decision Tree, 
Random Forest, Naive Bayes, Logistic Regression and K-Nearest 
Neighbors. Starting with Decision Trees, they are a popular choice 
in medical diagnosis due to their interpretability where each node 
in a decision tree represents a feature, such as a symptom or test 
result, and each branch represents a decision rule. This structure 
facilitates a clear visualization of the diagnostic process, which is 
essential for ensuring accuracy and effectiveness in a medical 
context (Yu et  al., 2022; Faviez et  al., 2024; Miao et  al., 2024). 
Moreover, decision trees can handle both categorical and numerical 
data, accommodating a wide range of patient information. Random 
Forest is an ensemble of decision trees that further enhances the 
robustness of the model. Each tree in the random forest votes for a 
class and the class with the most votes becomes the model’s 
prediction. This approach is particularly suitable for medical 
diagnosis where datasets often have high dimensionality. 
Additionally, Random Forest provides a measure of feature 
importance identifying the most relevant symptoms or test results 
for a particular disease (Wongvibulsin et  al., 2019; Chato and 
Regentova, 2023). On the other hand, Naive Bayes (Fauziyyah et al., 
2020) classifiers offer computational efficiency and apply Bayes’ 
theorem with strong independence assumptions between the 
features. Despite their simplicity, Naive Bayes classifiers can 
be effective in predicting the probability of a disease given a set of 
symptoms or test results (Fauziyyah et al., 2020). Logistic Regression 
is another model that is commonly used in medical diagnosis able 
to predict the probability of either a binary or a multiple outcome. 
It can handle both categorical and continuous variables providing 
probabilities that can be  interpreted as risk. It also captures the 
effect of different symptom combinations (Chen et al., 2023). Lastly, 
K-Nearest Neighbors (KNN) is a type of instance-based learning 
algorithm that classifies a new instance based on the majority class 
of its ‘k’ nearest instances in the feature space. KNN can be used to 
predict a patient’s disease status based on the disease status of 
similar patients and it is particularly useful when there is no prior 
knowledge about the distribution of the data (Tran and Ditto, 2020). 
Each of these models brings unique strengths to our health checker 
system. However, the performance of these models can depend 
heavily on the quality and characteristics of the data they are trained 
on. Therefore, we have conducted careful preprocessing and feature 
selection to overcome those issues. Model hyperparameter tuning 
(Chicco and Jurman, 2020; Shah et al., 2020) was a crucial step in 
our work to enhance the performances of our ML models. It 

involves adjusting the parameters that govern the training process 
itself rather than the model parameters learned from the data. 
We have performed this process using 10-fold cross-validation to 
ensure the generalization of the selected hyperparameters to unseen 
data. For Decision Tree, we  have tuned the hyperparameters: 
maximum depth of the tree (max_depth), minimum number of 
samples required to split an internal node (min_samples_split), 
minimum number of samples required to be at a leaf node (min_
samples_leaf). For Random Forest, we  have tuned the 
hyperparameters: number of trees in the forest (n_estimators), 
maximum number of features to consider for splitting (max_
features), and maximum depth of each tree (max_depth). 
Hyperparameter tuning has not improved Naive Bayes classifier’s 
accuracy due to the simplicity of the model. For Logistic Regression, 
we have tuned the hyperparameters: penalty hyperparameter and C 
hyperparameter that both work together in order to minimize the 
generalization error of the model and control overfitting, and solver 
hyperparameter determining the algorithm to use in optimization. 
For K-Nearest Neighbors, we  have tuned the hyperparameter: 
number of neighbors to consider (n_neighbors), method used to 
calculate the distance (metric, e.g., Euclidean, Manhattan, etc.) and 
weight function used in prediction (weights, options include 
“uniform” or “distance”) The choice of the best hyperparameters can 
greatly influence the performance of the models and their efficient 
tuning is essential to achieve optimal results.

2.4 Model evaluation and benchmarking

2.4.1 Model evaluation
After training a ML model, rigorous testing is essential to 

evaluate its performance using a variety of metrics. K-fold cross-
validation is a fundamental method involving data partitioning into 
k subsets, training the model k times, each time using a different 
subset as the test set while the remaining subsets are used for 
training. This approach aids in evaluating the model’s robustness 
and generalization capabilities while mitigating the risk of 
overfitting (Zhang et al., 2022). The confusion matrix (Zhang et al., 
2022; Prakash et al., 2024) is also a key tool for model evaluation 
which tabulates the true positives (TP), true negatives (TN), false 
positives (FP) and false negatives (FN) offering a comprehensive 
view of the model’s performance in classification tasks including 
multitask classification, which is the focus of our study. From this 
matrix, we derive several crucial metrics such as accuracy (Ceney 
et al., 2020) which measures the proportion of correctly classified 
instances out of the total instances. For imbalanced datasets, 
accuracy alone can be misleading and metrics like precision and 
recall become vital: precision indicates the ratio of correctly 
predicted positive observations to the total predicted positives, 
while recall (or sensitivity) measures the ratio of correctly predicted 
positive observations to all observations in the actual class. As 
harmonic mean of precision and recall, the F1 score provides a 
single metric that balances these two aspects especially useful for 
irregular class distribution. Receiver Operating Characteristic 
(ROC) curve and Precision-Recall (PR) curve are another 
sophisticated metrics plotting the true positive rate against the false 
positive rate and the precision against the recall at various threshold 
settings. Area under the Curve (AUC) is a comprehensive metric to 
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evaluate classification models and to capture the model effectiveness 
in distinguishing between classes across all thresholds. The joint of 
all these metrics, often summarized in a classification report, offer 
a nuanced and comprehensive assessment of a model’s performance 
and effectively guide researchers in refining their models for better 
predictive accuracy and reliability (Liu et al., 2020, 2023). In our 
study, we combined all these metrics to evaluate the robustness of 
our health checker.

2.4.2 Clinical vignette testing
For an online health checker, clinical vignette testing is a valuable 

tool to validate the ML models. The models are trained on a vast array 
of these clinical vignettes, learning to associate symptoms and patient 
history with potential diagnoses. This enables the online health 
checker to deliver more accurate and personalized health assessments. 
Moreover, clinical vignette testing serves as a benchmark to evaluate 
the performance of these ML models. By comparing the model’s 
predictions with expert-provided diagnoses for these vignettes, 
we can measure the model’s accuracy and we can prove the reliability 
of our health checker and its ability to handle a wide variety of real-
world scenarios. In our work, we  have used 10 clinical vignettes 
(Table 1) corresponding to the diseases being studied (Veloski et al., 
2005; García-Carretero et al., 2020).

2.4.3 Health checker benchmarking
To further validate the performance of our models, it is essential 

to benchmark our health checker against existing similar platforms 
(Semigran et al., 2015). This comparative analysis helps us to identify 
areas of strength and potential improvement. It is a way to verify how 
our health checker meets or exceeds industry standards. We have 
cibled freely accessible online symptom checkers that are dedicated to 
human disease diagnosis. The criteria for our selection were as follows:

 - The platforms are web-based applications,
 - They had to be  directly accessible to individuals without 

necessitating the creation of a user account,
 - They should not be specialized toward single conditions such as 

diabetes, arthritis, pediatrics, etc.

 - The platforms should be interactive, soliciting information from 
the user and providing responses, rather than merely offering 
condition information via an alphabetical list.

Thus, we targeted comprehensive, user-friendly platforms that 
could cater to a wide range of health concerns.

2.5 Solution architecture and model 
serving

Our solution’s architecture (Figure 1) consists of four key components: 
FrontEnd, Authentication module, BackEnd, and the Database. The 
FrontEnd serves as the user interface allowing users to interact with the 
expert system engine and user requests are received and directed to the 
appropriate server-side endpoints. The BackEnd supplies the necessary 
endpoints for task execution and houses the ML module including the 
inference engine and the knowledge base. The knowledge base, designed 
to suit a ML-based expert system, contains a dataset of patient symptoms 
and diagnoses. To expedite the inference engine’s task, the global 
knowledge base is formed of many knowledge bases in a way that each 
knowledge base is specified in a particular chief complaint (cough, 
headache, dizziness, etc.). The inference engine uses this knowledge to 
generate system predictions. The Database stores user information, 
system predictions and doctors’ comments useful for user registration and 
sign-in processes. The Authentication module employs a session-based 
authentication method. This streamlined architecture ensures efficient 
and secure user interactions with our solution.

3 Results

3.1 Data collection and domain 
understanding

Data collection aims to assemble a coherent dataset from one or 
more trustful sources like databases, mobile devices, records, files, etc. 
Our constructed dataset includes 10 diseases (Figure  2) with a 
relatively similar number of samples to avoid an imbalanced dataset.

We have allocated a significant portion of the samples (75%) to 
train our models ensuring efficient learning from a diverse range of 
diagnosis and we  have also reserved 25% of samples for testing 
(Table 2) to evaluate model generalizability and robustness.

3.2 Data preprocessing and feature 
engineering

Data preprocessing and feature engineering are crucial steps in the 
development of a symptom-based health checker. In our study, 
we created binary features that indicate the presence or absence of a 
symptom. Feature selection identifies predictive factors which in our 
case include gender, age, risk factors and patient history associated 
with the given symptoms.

In our study, we  focus on a common chief complaint: cough. 
We investigate the various causes that could lead to cough as a primary 
symptom. While there are multiple diseases that could explain cough, 
we are currently concentrating on a select few. The diseases that are 

TABLE 1 Clinical vignettes.

Clinical vignette Diagnosis

Vignette 1 Pertussis (Anh and Hong, 2019)

Vignette 2 Acute bronchitis (Marcio, 2024a)

Vignette 3 Pneumonia (Marcio, 2024b)

Vignette 4 Common Colda

Vignette 5 Influenza (Heaney and Gallagher, 2020)

Vignette 6 Bronchiolitis (Mavridou and Laws, 2004)

Vignette 7 Gastroesophageal reflux disease (Atmaja et al., 2021)

Vignette 8 Acute sinusitisb

Vignette 9 Asthma (Ong et al., 2004)

Vignette 10 Chronic sinusitis (Sattar and Casillas, 2007)

ahttps://bestpractice.bmj.com/topics/en-gb/252/case-history [Accessed June 02, 2024]. 
bhttps://cpsa.ca/news/a-case-study-on-acute-rhinosinusitis-ars-do-no-harm [Accessed June 
02, 2024].
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FIGURE 1

Solution architecture.

FIGURE 2

Constructed dataset.
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included in our dataset are: Pneumonia, Asthma, Bronchitis, Common 
cold, Pertussis, Acute sinusitis, Gastroesophageal reflux disease, 
Chronic sinusitis and Bronchiolitis.

Taking into consideration the pros and cons of the shape of data 
in existing datasets addressed to symptom based medical diagnosis 
systems, the data in our dataset is designed to be clean from the start. 
It is organized in a way that the columns contain the possible 
symptoms (features) and the possible diagnosis (target) and that the 
rows represent samples of artificial patients. Each sample is a possible 
combination of some symptoms that may lead to a diagnosis. Our 
dataset is composed of 9,572 samples of artificial patients, 70 features 
describing the characteristics and the type of the cough in addition to 
the risk factors and the possible associated symptoms leading to the 
manifestation of a disease, and 10 possible diagnoses as targets. The 
distribution of samples in our current dataset after the execution of 
the “train_test_split (Dataset, test_size = 0.25, random_state = 0)” 
instruction is shown in Table 2.

3.3 Model selection and hyperparameters 
tuning

In our study, we  selected the following models: Decision Tree, 
Random Forest, Naive Bayes, Logistic Regression, and K-Nearest 

Neighbors. The choice of optimal hyperparameters has significantly 
influence the performance of these models. After hyperparameter tuning, 
the selected models are:Clf1: DecisionTreeClassifier (max_depth = 9, 
max_features = ‘sqrt’, min_samples_leaf = 3, min_samples_split = 8).

Clf2: RandomForestClassifier (max_depth = 8, max_features =  
‘sqrt’, estimators = 1,000).

Clf3: MultinomialNB (force_alpha = True).
Clf4: LogisticRegression (C = 100, penalty = ‘l2’, solver =  

‘newton-cg’).
Clf5: KNeighborsClassifier (metric = ‘euclidean’, n_neighbors = 1, 

weights = ‘uniform’).
Due to the large volume of model results, we have opted to present 

the results for Random Forest as a template, with the methodology 
being the same for all models. In Tables 3, 4, we present an illustration 
of the variation in Random Forest results achieved by employing 
different values for the max_depth hyperparameter, highlighting the 
corresponding performance enhancements.

By incrementally increasing the max_depth parameter from 1 to 
10 (Figure 3) in our Random Forest model, we observed a continuous 
improvement in precision, recall, and F1 scores. This suggests that as 
we allowed the decision trees to grow deeper, the model was better 
able to capture more complex relationships within the training data, 
resulting in improved ability to generalize and accurately predict 
classes in the test set. The ongoing enhancement in performance is a 

TABLE 2 Training and testing samples.

Condition Number of samples for training Number of samples for testing Total

Influenza 609 212 821

Common cold 894 286 1,180

Chronic sinusitis 760 264 1,024

Gastroesophageal reflux disease 570 183 753

Pneumonia 852 310 1,162

Bronchitis 667 213 880

Acute sinusitis 683 228 911

Pertussis 520 162 682

Bronchiolitis 849 286 1,135

Asthma 775 249 1,024

Total 7,179 2,393 9,572

TABLE 3 Random Forest results for different max_depth hyperparameter.

Max_depth Accuracy on training set Accuracy on testing set f1_score (weighted avg) f1_score (macro avg)

1 0.718 0.725 0.661 0.611

2 0.870 0.884 0.853 0.822

3 0.966 0.967 0.965 0.960

4 0.987 0.984 0.984 0.982

5 0.990 0.989 0.989 0.988

6 0.993 0.993 0.993 0.992

7 0.997 0.998 0.998 0.998

8 0.998 0.998 0.998 0.998

9 0.998 0.998 0.998 0.998

10 0.998 0.998 0.998 0.998
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positive indicator of the effectiveness of our Random Forest model 
and its capacity to learn more discriminative patterns as the trees’ 
depth increases. However, this improvement may come with the risk 
of overfitting if the depth of the trees becomes too great. Therefore, 
careful evaluation is required to identify the optimal parameters that 
enhance the model’s performance while preserving its ability to 
generalize to new data.

Starting from max_depth = 8, the precision, recall, and F1 scores, 
as well as the confusion matrix, show strong performance 
(Figures 3,4).

When analyzing the performance of our Random Forest model using 
different max_depth values, we observed that the ROC-AUC curves 
(Figure 5) showed a significant improvement after max_depth = 1, with 
subsequent depths demonstrating strong performance. The initial 
underperformance at max_depth = 1 can be attributed to the model’s 
limited complexity. On the other hand, the precision-recall curves provide 
additional insights particularly for evaluating models on imbalanced 
datasets. Precision-recall curves are especially useful for highlighting 
performance differences in such scenarios, as they focus on the balance 
between precision and recall rather than just the overall accuracy.

When using a Random Forest classifier with very low max_depth 
values less especially for value 1, the precision-recall curves indicate 
poor performance (Figure 6) particularly with one disease (Asthma) 
showing significantly worse results. This can be  explained by 
underfitting. In fact, with low max_depth values, the Random Forest 
model is too simple to capture the complexity of the data and fails to 
learn important patterns in the data. Consequently, it cannot 
accurately distinguish between different classes leading to poor 
precision and recall. As max_depth increases, the model captures 
more complex patterns reducing false positives and improving the 
identification of true positives. This results in higher precision and 
recall, as reflected in the enhanced precision-recall curves (Figure 6). 
Starting from max_depth = 8, the precision-recall curve shows strong 
performance showing the model’s improved ability to handle 
imbalanced datasets and classes. In contrast, ROC curves, which plot 
true positive rate (sensitivity) against false positive rate (1-specificity) 
may not reveal the same degree of improvement for imbalanced 
classes. While both curves reflect model performance, precision-
recall curves are more informative for imbalanced datasets, 
highlighting the enhanced precision and recall starting from 
max_depth = 8.

3.4 Model evaluation and benchmarking

3.4.1 Model evaluation
The ML models have been evaluated through 10-fold cross 

validation, accuracy and f1_score metrics, and confusion matrices. 
Tables 5, 6 present the classification report for the selected models and 
show excellent performances (superior to 99%) for all the models 
except for the decision tree model that show lower scores for the 
accuracy and the F1 scores (93%).

F1_score (weighted avg) calculates the F1 score for each class 
considering class imbalance and giving more weight to classes with 
more samples. F1_score (macro avg) calculates the unweighted 
average of F1 scores for all classes treating all classes equally regardless 
of their distribution.

All optimized models demonstrate excellent performance with 
10-fold cross-validation with slight differences for all the models except 
for Clf1. Clf1 (DecisionTreeClassifier) has the lowest accuracy in both 
training set and testing set, and show varying accuracies across the 10 
folds indicating it is less consistent and more susceptible to overfitting 
compared to the other models. Both Clf2 (RandomForestClassifier) 
and Clf3 (MultinomialNB) have very high accuracy showing high 
consistency. Clf4 (LogisticRegression) and Clf5 (KNeighborsClassifier) 
are the top-performing models across all splits.

3.4.2 Clinical vignette testing
To evaluate our models for real-world use cases, we  tested 10 

clinical vignettes for each model. The results, highlighted in Table 7, 
show the rank and the presence of the correct diagnoses (provided by 
physicians) in the differential diagnosis list generated by our health 
checker (abbreviated as PRS in Table 7).

The results highlight a varying performances among the five 
classifiers (Clf1 to Clf5). Both Clf3 and Clf4 excelled and correctly 
diagnosed 10 out of 10 vignettes with consistently high rankings making 
them highly suitable and reliable for real-world diagnostic applications. 
Clf2 also performed well and correctly diagnosed 9 out of 10 vignettes 
with varied rankings but it remains a strong contender for clinical use. 
Nevertheless, Clf1 is unreliable for real-world applications and 
demonstrated poor performance with only 2 correctly diagnoses out of 
10 vignettes. On the other hand, Clf5 correctly diagnosed 3 out of 10 
vignettes and often ranked correct diagnoses at the top but still falls short 
of the accuracy required for clinical reliability.

TABLE 4 10-Fold Cross Validation for different max_depth hyperparameter.

Max_
depth

10-Fold Cross Validation

Split1 Split2 Split3 Split4 Split5 Split6 Split7 Split8 Split9 Split 10

1 0.710 0.704 0.722 0.736 0.715 0.683 0.718 0.704 0.728 0.704

2 0.877 0.880 0.895 0.891 0.883 0.857 0.866 0.871 0.867 0.875

3 0.967 0.954 0.967 0.965 0.965 0.973 0.966 0.962 0.973 0.972

4 0.988 0.981 0.988 0.987 0.977 0.988 0.988 0.984 0.986 0.993

5 0.991 0.986 0.991 0.987 0.983 0.993 0.988 0.990 0.993 0.994

6 0.997 0.990 0.991 0.993 0.986 0.995 0.993 0.991 0.995 0.998

7 1 0.993 0.998 0.997 0.991 1 0.997 0.997 1 1

8 1 0.994 0.998 0.997 0.995 1 0.997 0.997 1 1

9 1 0.994 0.998 0.997 0.995 1 0.997 0.997 1 1

10 1 0.994 0.998 0.997 0.995 1 0.997 0.997 1 1
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FIGURE 3

Precision, recall and F1_scores for RandomForest.
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3.4.3 Health checker benchmarking
The selected symptom checkers are listed in Table 8. It was observed 

that all the mentioned symptom checkers follow three main steps:

 - Step 1: Entering primary symptoms to initiate the evaluation process.
 - Step 2: Responding to related questions about these symptoms to 

gather additional information.
 - Step  3: Presenting predictions for both diagnosis and triage 

(Berry et  al., 2019, 2022; Shen et  al., 2019) based on the 
entered information.

It was noted that there is no standardized method for symptom 
checkers to interact with users, and there are various approaches to 
displaying the system’s results for diagnosis and triage.

In the benchmarking of symptom checkers presented in Table 9, 
we observe varying performance levels between our top classifiers (Clf3 
and Clf4) and commercial symptom checkers. While Ubie Health 
displayed moderate reliability with mixed results across vignettes, 

Symptomate exhibited consistent performance ranking well in most cases. 
Docus demonstrated good overall performance, consistently achieving 
high rankings in several vignettes. On the other hand, Isabel showed 
mixed performance with some high rankings but lower rankings in other 
cases. WebMD’s results were inconsistent, with varying rankings across 
different vignettes. In comparison, Clf3 (MultinomialNB) and Clf4 
(LogisticRegression) consistently performed well achieving high rankings 
across multiple vignettes. Their reliable performance suggests their 
potential for real-world diagnostic applications outperforming the tested 
commercial symptom checkers in terms of consistency and accuracy.

3.5 Solution architecture and model 
serving

Figure 7 shows the home page of our use-friendly health checker.
Some of the tested symptom checkers (Table  6) were clinically 

validated and renowned for their accuracy in predicting the causes of 

FIGURE 4

Confusion matrix for RandomForest.
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patients’ experienced symptoms like Isabel Healthcare and our health 
checker. The majority of these applications were the result of the 
cooperation between physicians and data scientists. For the safety of users, 
on each symptom checker’s website, it is mentioned that the symptom 
checker does not substitute for professional medical advice or diagnosis, 
and it should be used only for informational and educational purposes.

4 Discussion

In this study, we  developed and evaluated a symptom-based 
health checker designed to diagnose 10 respiratory and digestive 
systems related diseases based on symptoms, particularly focusing on 
cough as a chief complaint. Our comprehensive constructed dataset, 
careful model selection and rigorous evaluation process allowed us to 

achieve significant insights and promising results for real-world 
diagnostic applications proved through clinical testing and 
benchmarking with existing commercial health checkers.

In addition to accuracy and F1 scores, we employed confusion 
matrices and ROC-AUC curves to further evaluate our models. These 
metrics provided deeper insights into the performance of each 
classifier. Confusion matrices helped us understand the distribution 
of true positives, true negatives, false positives, and false negatives, 
revealing the model’s strengths and weaknesses in classifying each 
condition. The evaluation of our Random Forest model using 
ROC-AUC curves revealed a significant improvement in performance 
beyond a max_depth of 1, with subsequent depths maintaining strong 
results. This indicates the model’s enhanced ability to distinguish 
between classes as its complexity increases. However, precision-recall 
curves provided a deeper insight, especially for lower max_depth 

FIGURE 5

ROC-AUC curve for RandomForest.
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values (1, 2, and 3), where they highlighted poor performance in 
identifying true positives for certain diseases. The divergence between 
these metrics highlights the importance of using both ROC-AUC and 

precision-recall curves, especially in the context of imbalanced 
datasets. While ROC-AUC curves offer a broad measure of model 
discrimination, precision-recall curves are crucial for understanding 

FIGURE 6

Precision-recall curve for RandomForest.

TABLE 5 Classification report for the selected models.

Classifier Accuracy on the 
training set

Accuracy on the 
testing set

f1_score (weighted 
avg)

f1_score (macro 
avg)

Clf1 0.937 0.933 0.932 0.934

Clf2 0.998 0.998 0.998 0.998

Clf3 0.997 0.996 0.996 0.996

Clf4 1 1 1 1

Clf5 1 0.999 0.999 0.999
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TABLE 6 10-Fold cross validation of the selected models.

Classifier 10-Fold cross validation

Split1 Split2 Split3 Split4 Split5 Split6 Split7 Split8 Split9 Split 10

Clf1 0.967 0.962 0.991 0.954 0.965 0.958 0.972 0.976 0.973 0.986

Clf2 1 0.994 0.998 0.997 0.995 1 0.997 0.997 1 1

Clf3 0.998 0.994 0.997 0.995 0.994 1 0.997 0.995 1 1

Clf4 1 1 1 1 1 1 1 1 1 1

Clf5 1 1 1 1 1 1 1 1 1 1

TABLE 7 Results of clinical vignette testing.

Classifier Clf1 Clf2 Clf3 Clf4 Clf5

PRS Rank PRS Rank PRS Rank PRS Rank PRS Rank

Vignette

V1 No * Yes 8 Yes 7 Yes 8 No *

V2 No * No * Yes 7 Yes 8 No *

V3 No * Yes 3 Yes 3 Yes 2 Yes 1

V4 No * Yes 4 Yes 2 Yes 2 No *

V5 Yes 1 Yes 1 Yes 1 Yes 1 No *

V6 No * Yes 4 Yes 4 Yes 4 No *

V7 Yes 1 Yes 4 Yes 2 Yes 5 No *

V8 No * Yes 1 Yes 1 Yes 2 Yes 1

V9 No * Yes 1 Yes 1 Yes 1 Yes 1

V10 No * Yes 5 Yes 3 Yes 2 No *

TABLE 8 List of some web-based symptom checkers.

Symptom checker URL

Ubie health https://ubiehealth.com

Symptomate https://symptomate.com

Docus https://docus.ai/symptom-checker

Isabel https://symptomchecker.isabelhealthcare.com

WebMD https://symptoms.webmd.com

TABLE 9 Benchmarking results: comparative analysis with our health checker (Clf3 & Clf4).

Classifier Ubie Symptomate Docus Isabel WebMD Clf3 Clf4

PRS Rank PRS Rank PRS Rank PRS Rank PRS Rank PRS Rank PRS Rank

Vignette V1 Yes 7 Yes 4 No * No * Yes 18 Yes 7 Yes 8

V2 Yes 3 Yes 4 Yes 1 Yes 1 Yes 2 Yes 7 Yes 8

V3 Yes 4 Yes 1 Yes 1 Yes 9 Yes 1 Yes 3 Yes 2

V4 Yes 2 Yes 1 Yes 1 Yes 2 Yes 2 Yes 2 Yes 2

V5 No * Yes 1 Yes 1 Yes 2 Yes 1 Yes 1 Yes 1

V6 No * No * No * Yes 11 No * Yes 4 Yes 4

V7 Yes 2 Yes 8 Yes 2 Yes 9 Yes 1 Yes 2 Yes 5

V8 Yes 1 Yes 2 Yes 1 Yes 1 Yes 3 Yes 1 Yes 2

V9 Yes 1 Yes 1 Yes 1 Yes 1 Yes 2 Yes 1 Yes 1

V10 Yes 1 Yes 1 Yes 1 Yes 4 Yes 2 Yes 3 Yes 2
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the trade-off between precision and recall, ensuring more reliable and 
sensitive diagnostic performance.

During clinical testing, the evaluation of our ML models 
demonstrated that results highlight a varying performances among 
the five classifiers (Clf1 to Clf5). The difference in performance among 
the models can be  attributed to several factors including the 
characteristics of each ML model, the number of clinical vignettes and 
the inherent complexity of the data. Clf1, a Decision Tree classifier, 
tends to overfit the training data which limits its ability to generalize 
explaining its poor performance with only 2 correct diagnoses out of 
10. The limited number of clinical vignettes might intensify this issue 
due to lack of enough diverse examples.

Clf2, a Random Forest classifier, benefits from ensemble learning 
enhancing robustness and generalization and resulting in 9 correct 
diagnoses but with some variability in ranking. This variability might 
be due to the way different trees in the forest prioritize features leading 
to inconsistent rankings across different vignettes.

Clf3, a Multinomial Naive Bayes classifier, performed exceptionally 
well with 10 correct diagnoses. Its probabilistic nature and simplicity 
make it effective for handling class imbalances and providing reliable 
classifications. It also tends to perform well even with a smaller 
number of samples which could explain its high accuracy.

Clf4, a Logistic Regression model, also diagnosed 10 out of 10 
vignettes correctly. Its ability to model linear relationships and manage 
complex interactions between features contributes to its high 
performance. Logistic Regression is generally robust to smaller 
datasets maintaining accuracy even with fewer vignettes.

Clf5, a K-Nearest Neighbors classifier, showed moderate 
performance with 4 correct diagnoses. While effective in some cases, 
KNN can struggle with more complex data distributions and lacks 
the consistency needed for clinical reliability. KNN’s performance 
heavily depends on the local distribution of data points and with a 
limited number of vignettes, it might not have enough neighbors to 
make accurate predictions.

Overall, the high performance of Clf3 and Clf4 makes them suitable 
for real-world diagnostic applications while Clf1 and Clf5 fall short of the 
required accuracy. Factors such as model complexity, susceptibility to 
overfitting, handling of class imbalances, and the limited number of 
vignettes all play a role in these performance differences.

Our benchmarking against commercial symptom checkers 
revealed that our optimized Naive Bayes and Logistic Regression 
models outperformed existing solutions such as Ubie Health, 
Symptomate, Docus, Isabel, and WebMD. While some commercial 
checkers like Symptomate and Docus demonstrated good 
performance with high rankings in several vignettes, others like 
Isabel and WebMD showed inconsistent results and highlighting the 
variability in commercial solutions’ diagnostic accuracy 
and reliability.

The consistently high performance of our health checker indicates 
that it could serve as a reliable alternative or complement to existing 
commercial symptom checkers, potentially providing users with more 
accurate and dependable diagnoses. The comparative Table  10 
evaluates different health checkers (Ubie, Symptomate (Infermedica), 
Docus, Isabel and WebMD) and our health checker based on 

FIGURE 7

Health checker home page.
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diagnostic performance. Performance is measured by the percentage 
of cases where the correct diagnosis (Dg) is ranked in the top 3, top 5, 
or included in the list of proposed diagnoses. The data come from 
various studies and are compared among the health checkers to assess 
their accuracy (Berry et al., 2019, 2022; Shen et al., 2019). The missing 
data are due to gaps in the available research.

Our health checker exhibits notable performance across different 
diagnostic accuracy metrics:

 - Top 3 diagnoses: our health checker achieves a strong performance 
with 70% of correct diagnoses appearing in the top 3 positions. This 
indicates that the correct diagnosis is among the top three 
suggestions in 70% of cases, demonstrating a significant level of 
accuracy in providing the most likely diagnoses early in the list.

 - Top 5 diagnoses: the performance improves further with 80% of 
correct diagnoses appearing in the top 5 positions. This shows that 
our health checker is effective in including the correct diagnosis 
within the top five suggestions in 80% of cases, enhancing the 
likelihood of users receiving relevant diagnostic options.

 - In the list: the performance of our health checker is exceptional, 
with 100% of correct diagnoses appearing somewhere in the 
complete list of proposed diagnoses. This means that every 
correct diagnosis is included in the overall list of suggestions, 
ensuring that users always have access to the correct diagnosis, 
even if it’s not among the top suggestions.

To further enhance our health checker, future research should 
focus on the following:

 - Diverse real-World data integration by incorporating real-world 
patient data from diverse sources such as electronic health 
records and mobile health applications can improve the model’s 
accuracy and generalization.

 - Expansion of disease overage by extending the range of 
diagnosable conditions to include more diseases and symptoms 
can broaden the utility of the health checker.

 - Longitudinal studies by conducting longitudinal studies to track 
the health checker’s performance over time and across diverse 
populations will provide valuable insights into its effectiveness 
and areas for improvement.

5 Conclusion

In conclusion, our symptom-based health checker has made several 
significant contributions to the field. Firstly, it has demonstrated 
exceptional precision and robustness, particularly through the effective 
application of Naive Bayes and Logistic Regression models. We have 
validated the reliability of these models using confusion matrices and 
ROC-AUC curves, highlighting their effectiveness in diagnostic 
applications. This study lays a solid foundation for developing diagnostic 
tools that are not only accurate but also user-friendly. Our work 
contributes to the body of knowledge by advancing methodologies in 
health checker development, particularly through rigorous validation 
techniques and the integration of high-quality datasets. Future research 
will build on this foundation by incorporating diverse real-world data, 
expanding disease coverage, and exploring advanced modeling 
techniques, thereby enhancing the health checker’s utility and impact in 
both clinical and consumer health contexts.T
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