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Self-attention with temporal
prior: can we learn more from
the arrow of time?

Kyung Geun Kim1*† and Byeong Tak Lee2†

1VUNO Inc., Seoul, Republic of Korea, 2Medical AI Co., Ltd., Seoul, Republic of Korea

Many diverse phenomena in nature often inherently encode both short- and

long-term temporal dependencies, which especially result from the direction of

the flowof time. In this respect, we discovered experimental evidence suggesting

that interrelations of these events are higher for closer time stamps. However,

to be able for attention-based models to learn these regularities in short-term

dependencies, it requires large amounts of data, which are often infeasible. This

is because, while they are good at learning piece-wise temporal dependencies,

attention-based models lack structures that encode biases in time series. As a

resolution, we propose a simple and e�cient method that enables attention

layers to better encode the short-term temporal bias of these data sets by

applying learnable, adaptive kernels directly to the attention matrices. We chose

various prediction tasks for the experiments using Electronic Health Records

(EHR) data sets since they are great examples with underlying long- and short-

term temporal dependencies. Our experiments show exceptional classification

results compared to best-performing models on most tasks and data sets.
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1 Introduction

Time series are realizations of diverse phenomena in nature with underlying dynamics

of long and short-term temporal dependencies. Although the long-term and point-wise

dependencies can also be critical for certain tasks, it is natural to believe that data points

that are close in time are highly interrelational (Tonekaboni et al., 2021). One reason

this might be plausible is that the direction of time is linear and asymmetric in the

physical world. Particular models with such underlying philosophy and inductive bias, like

Markov Chains, are useful in many situations. With these observations, we hypothesized

that allowing models to directly encode this interrelational time dependencies while still

attending to long-term time dependencies can introduce a powerful inductive bias for

better performance in relevant prediction tasks.

RNNs, including their extensions, have these inductive biases already encoded

(Battaglia et al., 2018). However, it is well-known that, although RNNs can theoretically

account for long-term dependencies, learning long-term dependencies with gradient

descent is difficult in practice (Bengio et al., 1994). Attention-based models, such as

Transformers, are designed to solve these issues (Vaswani et al., 2017).While Transformers,

with the proper structure, can attend to any pairs of discrete time stamps in parallel, it

has no monotonic, interrelational bias between data points that are close in the temporal

domain (Dosovitskiy et al., 2021). We hypothesized that by explicitly enabling the capacity

to learn these temporal biases, Transformers could learn relevant underlying temporal

regularities that are more optimal for prediction tasks of interest.
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To best achieve this, we reasoned that encouraging specific

structures on the attention matrices would be the most simple

and efficient solution. By designing kernels inspired by various

correlation functions applied to the attention matrix directly, we

propose an extension to the Transformer with Self Attention

with Temporal Prior (SAT-Transformer). The designed kernels

are parameterized with minimal amounts of learnable parameters

to enforce temporal bias to some degree. Although the main

experiments use Electronic Health Records (EHR) data sets, which

take the standard form of time series data sets, we believe the SAT-

Transformer is generalizable to other time series data sets. The SAT-

Transformer achieved significant performance gains compared to

the current best-performing model on various prediction tasks

across multiple data sets. In addition, we have implemented the

kernels of SAT-Transformers in a way that vectorized element-

wise matrix multiplication can be possible. Compared to vanilla

Transformers, SAT-Transformer only requires minimal additional

computation, which can be done efficiently. As a result, SAT-

Transformer is far more effective than Transformers and RNNs

performance-wise while being almost as efficient as Transformers.

The main contribution of this paper is that from the idea

of underlying monotonic temporal bias in time series, we have

designed the SAT-Transformer that can learn to exploit these

regularities directly. In Section 3, we show some direct supporting

evidence for our initial hypothesis in addition to performance gains

in Section 4. In addition, we show multiple ablation experiments

and extensions of our model to gain more insight into the

performance of our model in terms of the temporal regularities

of the data sets. Through our experiments, we also show that our

model can be more useful, especially in situations with a limited

amount of data. We believe that the results of our paper suggest a

direction to explore, which is, rather than expecting neural network

models to learn from scratch, exploiting temporal biases of time

series can result in room for improvement.

2 Related works

2.1 Structural bias of model and
generalization

Structural bias, including inductive bias of machine learning

models, has been studied ever since the field of machine learning

was studied. Researchers have gradually realized that for different

structures of data, different kinds of structural bias must be applied

to models to achieve a jump in performance. With this wisdom,

researchers have developed models such as CNNs (LeCun et al.,

1999), RNNs (Jordan, 1986), Graph Neural Networks (Gori et al.,

2005), or Transformers (Vaswani et al., 2017) for better prediction

performance on data sets such as images, time series, and natural

language.

More recently, with very similar philosophies, enabling models

or learning agents to generalize to a more sophisticated task or

different data formats is being explored extensively. Specifically,

with the right inductive bias, one can train a reinforcement learning

agent to glue blocks together to build a tower (Hamrick et al., 2018)

or perform better in transfer learning problems (Li et al., 2018). In

some tasks, the generalization of trained models differs not only

in performance but also qualitatively (McCoy et al., 2020). These

works altogether suggest that for specific types of tasks, specific

structural or inductive biases are required.

However, more evidences supporting that these structural

biases might not be absolutely necessary are being discovered.

A recent work done by Dosovitskiy et al. (2021) shows that

Transformers can be trained to outperform the state-of-the-art

CNN models on image data if the training set is extremely large.

From these experiments, an intuitive conclusion can be drawn

about the relation between the size of the data set and the flexibility

of the model. That is, a more flexible model can eventually perform

better than highly structural models when enough data are given.

2.2 Event prediction in medicine using EHR

It is widely known in medicine that prediction or detection

of deterioration in the ICU can contribute to better patient

management, which leads to better outcomes (Power and Harrison,

2014). While this is a critical issue, it is still a challenging task.

Various machine learning-based approaches have been suggested

recently to tackle these issues and discover the underlying

characteristics of those patients.

Most of the works concentrate on improving the prediction

performance by better imputing missing values, which have always

been considered the biggest problem in EHR data analysis. The

GRU-D, one of the earliest and most prominent works, predicts

missing values based on the tendency that missing variables become

closer to specific values as time goes by Che et al. (2018). This

is done by exponential decay given to missing values and hidden

states to specific values. The GRU-D outperforms vanilla GRU

on the benchmark data sets by a significant margin. Phase LSTM

introduces an additional time gate inside the LSTM cell. The time

gate regularizes the access to the hidden state, enabling the hidden

state to preserve the historical information for a more extended

period (Neil et al., 2016). In another work by Li and Marlin

(2016), the missing values were estimated using the Gaussian

Process. The Gaussian Process and prediction network are trained

together, where the output of the Gaussian Process is used as

the input of the RNN. An extension of this idea is proposed in

Futoma et al. (2017), which applies a multivariate Gaussian Process

for imputation. Recently, Shukla and Marlin (2019) proposed

an interpolation prediction network that applies multiple semi-

parametric interpolation processes to obtain regularly sampled

time series data. SeFT proposed by Horn et al. (2020) attempts to

solve this problem from a different perspective. It directly predicts

the events without the imputation process by relaxing the sequence

order condition of the input data.

As the Transformers are becoming more popular in natural

language processing and computer vision, many recent works

utilize the Transformers to solve medically critical tasks using

EHR data. In Yang et al. (2023), an encoder-decoder framework

with a novel pretraining is proposed to enhance the detection of

pancreatic cancer and self-harm in patients with post-traumatic

stress disorder. Similarly, Meng et al. (2021) utilized bidirectional

representation learning with the Transformer architecture to

predict depression from EHR data. In addition, many interesting
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A B C D

FIGURE 1

Attention matrices of single layer vanilla Transformer. (A–D) Indicate the attention matrices when trained using 1, 10, 50, 100% of the PhysioNet data

set.

works attempt to overcome the structural limitations of the

Transformer architecture. In Li et al. (2021), the authors showed

that applying a hierarchical Transformer on EHR data to expand

the receptive field of the model better incorporates long-term

dependencies. Because EHR data is highly irregular in time

intervals, applying the Transformer directly can result in some

suboptimal performance. Tomitigate these issues, Peng et al. (2021)

employs the Neural Ordinary Differential Equation in conjunction

with the Transformer architecture, and Tipirneni and Reddy

(2022) invented a novel Continuous Value Embedding technique to

embed continuous time variables instead of applying discretization

methods.

3 Proposed method

3.1 Learning underlying structure of a time
series

We hypothesized that time series data have an underlying

structure regardless of the prediction tasks. To elaborate, for a

time series {Xt}
T
t=1 interrelation between time stamps i and j are

larger for closer time stamps. Note that we do not mean this in a

mathematically rigorous manner. Although this hypothesis seems

rather trivial, learning relevant structures without inductive bias

requires a tremendous amount of data (Dosovitskiy et al., 2021).

In order to observe this behavior experimentally, we trained an

extremely simple single-block transformer with a minimal amount

of parameters. Though the model is too small to be useful for

any real-world tasks, it is sufficient for the purpose of testing our

hypothesis considering the size of the available data sets. The target

task was guessing the value of a randomly chosen position on the

eICU data set (Devlin et al., 2018), which is explained in detail in

Section 4.1. As shown in Figure 1, we observed how the values of the

attention matrix change with respect to the percentage of the data

set used in training. The values along the diagonal of the attention

matrix can be represented as the interrelation of a value at a time

step to itself. We observed that the attention values converged to

the diagonal as larger data samples were used. Therefore, from

this experiment, we drew the following conclusions. First, as we

proposed in our original hypothesis, there is indeed a higher

dependency on time stamps that are closer. Second, learning this

intricate regularity requires quite a large amount of data, even for

this extremely simple model.

Inspired by our original hypothesis and these elementary

experiments, we devised temporal kernels for the Transformers’

attention matrices. Although the experiments seem to suggest only

monotonic kernels, we believe there can be additional unobserved

dependencies. For this reason, the kernels should be designed with

additional domain knowledge.

3.2 Architecture of the attention matrix

We first considered kernels taking the form of exponential

covariance function:

Ce (Xt1 ,Xt2 ) = σ 2e−(αh)β (1)

where h = |t1 − t2| for time stamps at Xt1 and Xt2 and α and β

are learnable parameters. Additionally, in this paper, we considered

periodic kernels because the medical data sets used in our main

experiments are highly periodic:

Cp (Xt1 ,Xt2 ) = σ 2e
−2α2 sin2( πh

β
)

(2)

where h = |t1 − t2| for time stamps at Xt1 and Xt2 and α and β

are learnable parameters as Equation 1. Note that in Equations 1,

2, though the names of learnable parameters are the same, this

is just due to the simplicity of the notation, and thus, they have

different values in actual implementation. Also, we first normalize

the data using z-normalization, resulting in σ 2 = 1 for simplicity

of notation throughout this paper.

Let A ∈ R
T×T be the attention matrix with V = {vi} ∈ R

T×di

as the input sequence andW1,W2 ∈ R
di×dk be the learnedmatrices

for transforming V into query and key representations of Q =

VW1, K = VW2. The kernels defined in Equations 1, 2 are applied

to each element of the query and key matrices as follows:

Q̂i,j = Ce (Qi,i,Qi,j)Qi,j
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K̂i,j = Cp (Ki,i,Ki,j) Ki,j

getting the attention matrix with kernelization as follows:

Â = softmax

(
Q̂K̂⊤

√
dk

)

However, applying these kernels element-wise is

computationally inefficient because it harms parallelism. We

have stacked kernel elements in a matrix format to solve this

issue by applying vectorized multiplication. Since kernels are not

dependent on the input’s values but rather on their time stamps, a

fixed kernel matrix can be derived for an attention matrix of fixed

size. Therefore, the kernel matrices C(e) ∈ R
T×T and C(p) ∈ R

T×T

can be defined as following:

C
(e)
i,j = e−(α|i−j|)β (3)

C
(p)
i,j = e

−2α2 sin2(
π |i−j|

β
)

(4)

With these matrix versions of kernels, we can rewrite the

attention matrix to take advantage of vectorization.

Â = softmax

(
(C(e) ⊙Q)(C(p) ⊙ K)⊤√

dk

)

Where⊙ denotes element-wise multiplication.

4 Experiments

4.1 Data sets

We used three different open EHR data sets, which contain

multiple labels described below.

The PhysioNet Challenge 2019 data set (Goldberger et al.,

2000; Reyna et al., 2020) consist of hourly clinical variables

collected from intensive care unit (ICU) of two hospital systems.

Clinical variables include eight vital signs, 26 laboratory values,

and six demographic information. The data set contains 40,336

patients with the number of rows of 1,424,171. With this data

set, the task is to predict sepsis within 12 h, where the onset of

sepsis is defined by sepsis-3 criteria (Singer et al., 2016; Reyna

et al., 2020). Since the original data set does not contain event

labels in the time window of 6–12 h prior to the onset of

sepsis, we inserted additional labels to the corresponding points.

The number of septic patients is 2,932, accounting for 7.2% of

entire subjects.

MIMIC-III (Johnson et al., 2016) is a multivariate clinical time

series database collected at Beth Israel Deaconess Medical Center.

We processed the data set for mortality prediction based on the

method defined at Harutyunyan et al. (2019). The extracted data set

contains 21,139 ICU stays, and each ICU stay includes 17 clinical

variables with measurement intervals of 1 h. The objective is to

predict in-hospital mortality using the measurements from the first

48 h of ICU stay. The number of positive cases is 2,797, which is

13.2% of the total number of patients.

The eICUCollaborative ResearchDatabase (Pollard et al., 2018)

is a freely available multi-center database containing over 200,000

admissions to ICU. The database was collected from 335 units

at 208 hospitals in the US. We processed the data set following

the procedure defined at the PhysioNet challenge 2019 (Reyna

et al., 2020). Additionally, we excluded patients if there was at

least one unmeasured time stamp. Among 200,859 admissions,

132,112 admissions with 7,692,965 rows are extracted as a result.

Each of the data points includes 40 variables measured in one-

hour intervals. Here, we defined multiple tasks of predicting

Heart failure, Respiratory failure, and Kidney failure within 12 h

prior to diagnosis. Each event is set based on the ICD-9 code

(HF: 428.0, RF: 518.81, KF: 584.9) on EHR. The number of

patients is 4,286 (3.24%), 8,279 (6.27%), and 4,357 (3.30%) for

each task.

4.2 Models and settings

We compared our method to the widely used, best-performing

models in time series prediction. (1) GRU-Simple: an extension of

GRU that takes time series and information about missing variables

as input. (2) GRU-D: an extension of GRU that implements

hidden state decays and missing value decays, encouraging

convergence to the mean value. (3) Interpolation Network: predicts

missing values using adjacent measurement and radial basis

functions. (4) SeFT: encodes each observation separately as an

unordered set and pooling them together in the attention layer.

(5) Transformer: uses self-attention matrices, which considers

the entire sequence to encode the relationship between each

time stamp.

Unlike the MIMIC-III data set, the PhysioNet and eICU data

set does not contain a fixed number of sequence lengths, making

the prediction to be made using varying lengths of time series. To

limit the memory requirement, we used the window of 48 h prior

to prediction points. For all data sets, we used 80% of the instance

as a training set and the rest as a testing set. Within the 80% of the

training set, 20% of the data are randomly selected as the validation

set. For PhysioNet and MIMIC-III, the test sets were constructed

to be exactly the same as Horn et al. (2020) for a fair comparison.

The test set for eICU was created by randomly selecting 20% of the

data samples.

Since EHR data sets are highly skewed, we constructed a

balanced batch by sampling event and non-event cases to the

same ratio during training. The area under the precision-recall

curve (AUPRC) was used to measure the validation performance

of the model to determine the best hyperparameters. We stopped

training if AUPRC does not improve for 30 epochs. In the

tuning process, more than 200 hyperparameter sets are explored

for each model trained on PhysioNet and MIMIC-III data

sets. In addition, we repeated the experiments 3 times using

different random seeds for stable performance. The eICU database

contains more than 7,000,000 rows, making it difficult to conduct

extensive hyperparameter searches. Thus, we explored smaller

hyperparameter space where each hyperparameter set was tested

twice with different random seeds. Training was stopped if the

increase of AUPRC was not observed for 5 epochs. We tested
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TABLE 1 Performance of models for each data set and task.

PhysioNet MIMIC-III eICU-HF eICU-RF eICU-KF ms/iter

AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

GRU-S 15.0±

0.5

82.5±

0.4

51.6±

0.6

85.4±

0.4

2.46±

0.11

77.0±

0.5

3.48±

0.01

71.8±

0.1

2.65±

0.01

76.8±

0.5

24.8

GRU-D 14.9±

0.6

82.8±

0.3

52.8±

0.5

86.1±

0.7

2.92±

0.05

80.1±

0.2

3.42±

0.13

72.3±

0.7

2.60±

0.16

78.3±

0.7

41.9

IP-Nets 15.3±

0.2

82.7±

0.1

51.8±

0.9

85.4±

0.1

2.92±

0.01

80.8±

0.1

3.30±

0.02

73.4±

0.1

2.31±

0.03

77.1±

0.1

25.8

Transformer 15.0±

0.2

81.4±

0.2

49.7±

0.3

84.8±

0.2

2.92±

0.08

81.3 ±

0.1

3.58±

0.06

73.5±

0.2

3.09±

0.28

80.8±

0.3

6.71

SeFT 13.3±

0.2

82.0±

0.1

46.2±

0.1

85.1±

0.3

3.16 ±

0.01

78.3±

0.7

3.32±

0.03

72.4±

0.3

3.08±

0.30

78.3±

0.1

3.78

SAT-Trans 16.7 ±

0.3

83.0 ±

0.7

53.7 ±

0.5

86.4 ±

0.3

3.10±

0.09

81.0±

0.3

3.80 ±

0.03

73.7 ±

0.2

3.33 ±

0.03

81.0 ±

0.5

7.23

Bold represent the highest values among them.

around 50 hyperparameter sets for each model for each task from

the eICU data set. Further, all ablation studies and extension

experiments are done on the PhysioNet data set. As a result, the

baselines shown throughout this paper are at least as good as the

baselines used in many works in literature, if not better. All the

details discussed in this section, including baseline references and

search space for hyperparameters, are included in the provided

Supplementary material.

4.3 Results

Table 1 shows the performance of the SAT-Transformer against

other well-known models with the best performance up to date.

Regarding AUPRC, which is the most appropriate metric for

unbalanced data sets, SAT-Transformer performs significantly

better than other models in almost every task across multiple

data sets. In terms of AUROC, while it is highly affected by the

imbalance in the data sets, SAT-Transformer still performs best in

most of the tasks. Additionally, while the second best-performing

model significantly varies for different tasks and data sets, SAT-

Transformer achieves that best performance significantly across all

tasks. To measure computational efficiency, time (in milliseconds)

per iteration has been measured and averaged over multiple trials.

As a result, the SAT-Transformer is comparable to or only slightly

slower than the vanilla Transformer and much more efficient than

other RNN-based models.

To demonstrate the effect of the encoded inductive bias of

the SAT-Transformer according to the size of the data set, we

examined the drop in performance when only a subset of data is

used in training. We selected GRU-Simple, vanilla Transformer

as a representative in each category. As shown in Figure 2,

the performance difference between SAT-Transformer and GRU-

Simple becomes significant as the size of the data set increases.

Another point to note is that the performance increase of the vanilla

Transformer becomes more significant as more data samples are

used, achieving similar performance as GRU-Simple when 100% of

the data set was used. A recent study in Dosovitskiy et al. (2021)

suggests that models with more flexibility or less inductive bias can

eventually outperform models with more structures in the case of

FIGURE 2

Performance of each model with respect to reduction of data set

size.

extremely large data sets. Similar behavior can be observed when

the two models are compared with SAT-Transformer. Since GRU-

Simple is highly structured due to the recurrent architecture when

dealing with time series and Transformers are more flexible, a less

dramatic drop in the performance of GRU-Simplemakes sense. The

SAT-Transformer, however, can be thought of as being almost as

flexible as the Transformer while it is capable of maintaining the

inductive bias of the RNNs.When given an extremely large data set,

the vanilla Transformer may eventually outperform every model,

but the performance difference shown in Table 1 suggests that this

is currently almost infeasible.

4.4 Ablation study and extensions

The periodic kernels have been added due to the prior domain

knowledge of our medical data sets. To see the effect of this, we

performed an ablation study using only exponential kernels and

only periodic kernels. The experiments are done on PhysioNet

data sets with sepsis prediction as the target task. As the results

summarized in Table 2 show, the model performs better than

the vanilla Transformer when any kernels are used. Comparing
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exponential kernels and periodic kernels, the performance gain

resulting from exponential kernels is more significant than periodic

kernels.

We explored two types of additional extensions that can

be applied to SAT-Transformer. First, to demonstrate the

compatibility of SAT-Transformer as a module with the existing

framework, we added the Interpolation Network module defined in

Section 3.2.1 of Shukla and Marlin (2019) on top of our model. We

also trained a vanilla transformer with an Interpolation Network

added to the top for comparison. These experiments are done on

PhysioNet data sets with sepsis prediction as the target task. As

shown in Table 3, both models with Interpolation Network gain

additional performance as expected.

Second, because time series data can be highly diverse, kernels

that depend on temporal features can be beneficial. For example,

in certain prediction tasks involving EHR data, the length of the

vital sequence can be a significant factor affecting the prediction

performance (Li et al., 2019). Therefore, we designed temporal

feature adaptive kernels that the learnable parameters α and β from

Equations 3, 4 can be adaptive. Specifically, α and β are computed

from a linear model taking temporal features for each data point

{vt}
T
t=1 as an input. The temporal feature inputs are defined as

vectors of mean, standard deviation, sequence length, and average

time interval ( tT−t1
T ). The experiments are done on every EHR data

set as presented in Table 1, and the results are presented in Table 4.

TABLE 2 Performance of SAT-Transformer according to the use of

di�erent kernels.

Kernels AUPRC AUROC

No kernel 15.0± 0.2 81.4± 0.2

Exp 16.3± 0.6 83.2 ± 0.2

Periodic 15.9± 0.3 81.7± 0.1

Exp & periodic 16.7 ± 0.3 83.0± 0.7

Bold represent the highest values among them.

TABLE 3 Performance of Transformer models with Interpolation Network

added on top.

Models AUPRC AUROC

Transformer 15.0± 0.2 81.4± 0.2

Transformer & IP-Net 15.4± 0.6 82.0± 0.3

SAT-Transformer 16.7 ± 0.3 83.0 ± 0.7

SAT-Trans & IP-Net 17.5 ± 0.2 83.7 ± 0.3

Bold represent the highest values among them.

There are some minor improvements for some tasks using adaptive

kernels, but they are relatively inconsistent.

5 Discussion

From our original hypothesis, we have proposed the SAT-

Transformer, verifying that it significantly outperforms other

best-performing models up to date in multiple prediction

tasks across various medical data sets. In this section, we

further examine the learned attention matrices and kernels

of SAT-Transformer from the perspective of the original

hypothesis.

We first examine the learned attention matrices of the SAT-

Transformer and compare them against the attention matrices of

the vanilla Transformer. To show the effect across every element

of the model, we present the attention matrices for all three layers

for two different heads. As shown in Figure 3, many attention

matrices in SAT-Transformer reveal higher interrelation between

closer time stamps. In addition, the effects of periodic kernels

are observed in some attention matrices. In contrast, in the

exact same matrices in the vanilla transformer, such behaviors

are unobserved, showing rather similar attention maps across

multiple heads and layers. From these observations, we conclude

that with the assistance of the temporal kernels, the model was

able to learn a more relevant attention scheme for given medical

data sets and tasks of interest. In addition, with the previous

experiment shown in Figure 1 and attention matrices shown in

Figure 3, we demonstrate supporting pieces of evidence for our

original hypotheses.

In Figure 4, we show the shape of learned kernels without

the effect of the attention for multiple heads in all three layers.

Here, we observed that diverse kernels are learned for different

attention heads. In many cases, the effect of exponential and

periodic kernels coexist, but one of the kernels is dropped in

some cases. Kernels in some heads are tuned to have almost

no impact by obtaining values that are mostly close to 1

when necessary.

A recent study suggested that attention matrices in

Transformers with multiple heads tend to become very similar to

each other, collapsing into a single matrix (Voita et al., 2019). This

work suggests that because of this lack of diversity, Transformers

experience some limitations in its potential. In SAT-Transformer,

due to the effect of kernels, we found that attentionmatrices became

much more diverse compared to vanilla Transformer. Although

this may not be the main reason SAT-Transformer reaches

exceptional performance, we believe this might be one of the

minor reasons.

TABLE 4 E�ect of temporal feature adaptive kernels on performance.

PhysioNet MIMIC-III eICU-HF eICU-RF eICU-KF

AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

Non-adaptive 16.7 ± 0.3 83.0± 0.7 53.7 ± 0.5 86.4 ± 0.3 3.10 ± 0.09 81.0 ± 0.3 3.80 ± 0.03 73.7 ± 0.2 3.33 ± 0.03 81.0 ± 0.5

Adaptive 16.4± 0.3 83.3 ± 0.3 53.2± 0.6 86.0± 0.3 3.06± 0.06 81.0 ± 0.4 3.70± 0.01 72.8± 0.2 3.26± 0.01 80.7± 0.1

Bold represent the highest values among them.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1397298
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Kim and Lee 10.3389/frai.2024.1397298

A

B

FIGURE 3

Attention matrices from SAT-Transformer and vanilla Transformer for all three layers in two di�erent heads. (1), (2), and (3) denote layer 1, layer 2, and

layer 3 each. (A) Denotes the vanilla Transformer, and (B) denotes the SAT-Transformer. The Left and right figures in each group indicate two di�erent

heads.

FIGURE 4

Representative behavior of learned kernels for all three layers of

SAT-Transformer. The di�erent colors represent the behaviors of the

kernels of di�erent attention heads.

6 Conclusion

In this paper, we propose the SAT-Transformer and the

elemental philosophy. We believe that our model as well as the

analysis of the underlying phenomenon, provides an intuition

and potential to be generalized to various time series data sets.

Compared to other best-performing models known to date, SAT-

Transformer has achieved outstanding gains in performance.

In addition, we made an important observation of the fact

that time series data arising in nature have interrelational

bias between close data points. By taking advantage of these

underlying structures, we were able to gain a significant amount

of performance. Finally, although many evidences, including

ours, suggest that, these regularities can eventually be learned

with enough data. However, this often requires an extremely

large amount of data, which is still infeasible. In this respect,

imposing the right kind of inductive bias, such as the one in

SAT-Transformer, can be an extremely powerful concept in the

current era. In future work, we would like to apply variations of

our model to multiple time series data sets, exploring more efficient

and sophisticated methods to construct kernels with temporal

priors.
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