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PSO-XnB: a proposed model for
predicting hospital stay of CAD
patients

Geetha Pratyusha Miriyala and Arun Kumar Sinha*

School of Electronics Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India

Coronary artery disease poses a significant challenge in decision-making when

predicting the length of stay for a hospitalized patient. This study presents

a predictive model—a Particle Swarm Optimized-Enhanced NeuroBoost—that

combines the deep autoencoder with an eXtreme gradient boosting model

optimized using particle swarm optimization. The model uses a fuzzy set

of rules to categorize the length of stay into four distinct classes, followed

by data preparation and preprocessing. In this study, the dimensionality of

the data is reduced using deep neural autoencoders. The reconstructed data

obtained from autoencoders is given as input to an eXtreme gradient boosting

model. Finally, the model is tuned with particle swarm optimization to obtain

optimal hyperparameters. With the proposed technique, the model achieved

superior performance with an overall accuracy of 98.8% compared to traditional

ensemble models and past research works. The model also scored highest in

othermetrics such as precision, recall, and particularly F1 scores for all categories

of hospital stay. These scores validate the suitability of our proposed model in

medical healthcare applications.
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1 Introduction

Nearly 31% of all deaths around the globe are due to cardiovascular diseases, among
which coronary artery disease (CAD) is the most common. By 2030, an estimated 22
million people will likely be affected by CAD (Workina et al., 2022). The risk factors
causing CAD are inactivity, smoking, excessive alcohol consumption, poor diet, and a
sedentary lifestyle (Balen et al., 2024). To determine the patient mortality risk in the
health sector, clinicians often consider the patient’s length of stay (LOS) as a critical
indicator (Awad et al., 2017). The statistics show that approximately 33% of older adult
patients admitted to intensive care units (ICUs) due to prolonged LOS do not survive
(Li et al., 2024). Most statistical analysis and current research solely focus on predicting
the overall target LOS or singular LOS class, i.e., short or long stay. This limits the
ability to determine the important prediction insights of each hospital stay duration,
showing a significant research gap. Therefore, to address this gap, our study focuses on
four distinct LOS classes: short, medium, long, and extended stays (Abdurrab et al., 2024;
Junior et al., 2024; Momo et al., 2024). A short stay typically signifies quick recoveries,
though it may sometimes indicate early mortality. Whereas long stay often indicates the
presence of severe health issues or long-term illnesses. On the other hand, extended stay
refers to prolonged hospital stay due to severe illness (Heyland et al., 2015). Meanwhile,
a medium stay indicates ongoing treatment or monitoring of moderate medical issues.
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In the medical sector, the LOS plays a crucial role in
managing various health conditions such as diabetes (Ata et al.,
2023), cancer (Jung et al., 2023), tumors (Alzubi et al., 2019;
Muhlestein et al., 2019), chronic kidney disease (Neyra et al., 2023),
inflammatory conditions (Mangalesh et al., 2023), and infectious
diseases (Saadatmand et al., 2023). The accurate prediction of LOS
at the preliminary stage can aid clinicians and patients in decision-
making about treatment and recovery planning, resource, and
budget allocation and help patients reduce mortality rate (Asadi-
Lari et al., 2004). Therefore, it highlights the need for a single,
powerful machine-learning model to predict the LOS. Moreover,
researchers use various artificial intelligence techniques to classify
the LOS with automated decision-making systems (Masood et al.,
2022). However, the challenge lies in dealing with the variability of
data and the inherent uncertainties in predicting LOS. Therefore,
with advanced machine learning (ML), deep learning (DL),
comprehensive medical data, and fuzzy logic principles, our model
aims to develop a robust classifier model capable of predicting
LOS for CAD patients. This work proposes an enhanced modeling
strategy with Particle Swarm Optimization (PSO) to improve
accuracy. The main contributions of our research are:

• Developing a Particle Swarm Optimized-Enhanced
NeuroBoost (PSO-XnB) model combining PSO with
eXtreme Gradient Boosting (XGBoost). In this technique, the
enhancement is done using deep autoencoder techniques for
feature selection and dimensionality reduction.

• Developing Tuning rules of PSO to maintain convergence of
optimal solutions and balance exploration and exploitation of
the model hyperparameters.

• For multi-class LOS classification, the PSO-XnB model is
evaluated on performance metrics, i.e., accuracy, F1 score,
precision, recall, and area under the curve (AUC) score. Then,
it is compared with other traditional ensemble models.

This study is structured as follows: Section 2 presents the
related works on the importance of feature selection and classifiers
for predictions. Section 3 elaborates on the proposed PSO-
XnB framework, including the methodology and model design.
Section 4 presents experimental observations and performance
results comparing the PSO-XnB model with traditional ensemble
methods. Finally, Section 5 concludes the findings and discusses
potential future directions.

2 Related works

This section presents a literature survey highlighting previous
research works limited to the past 4 to 5 years based on the
importance of feature selection and the role of classifiers for
predictions. This section will also present various feature selection
methods used with classifiers to improve the medical diagnostic
process. Shah et al. (2020) focused on improving the feature
selection by combining the mean fisher-based feature selection
algorithm (MFFSA) and accuracy-based feature selection algorithm
(AFSA). The authors used a hybrid combination of feature selection
methods to train and using principal component analysis (PCA),
they selected the best features. These selected features were further

trained with an RBF-based support vector machine (SVM); the
overall accuracy scored was 92.1% using the Switzerland heart
disease dataset on 123 instances. The Fisher score algorithm
(FSA), F_score algorithm (FA), and extra trees classifier algorithms
(ETCA) were used by Nasarian et al. (2020) to select features with
the highest scores, specifically targeting the top 30%, 40%, and
50%. Subsequently, the selected features were trained with four
baseline classifiers, namely, Decision Tree (DT), Gaussian Naive
Bayes (GNB), Random Forest (RF), and XGBoost classifiers. The
average accuracy scored from the four models was 83.94%, 81.58%,
and 92.58%, using Hungarian, Long-beach-va, and Z-Alizadeh
Sani datasets, respectively. Another work by Amarbayasgalan et al.
(2021) used a two-step approach where PCA first divides initial
data into commonly distributed and highly biased groups. In
the next step, two variational autoencoders (VAE) were used to
add samples in highly biased groups. Finally, highly biased group
samples were trained with two Deep Neural Networks (DNN)
models, and the model scored 89.2% accuracy and 91.5% F1 score.
Mienye and Sun (2021) proposed a DL approach to improve
heart disease prediction, utilizing a stacked sparse autoencoder
network (SSAE) for feature selection. The selected features were
trained with the soft-max classifier optimized by PSO; with
this multilayer architecture, the authors scored 97.3% accuracy
using the Framingham dataset. Another work used a sparse
autoencoder (SAE) and softmax classifier; this combination scored
91% accuracy, as reported by Ebiaredoh-Mienye et al. (2020). This
work did not use any optimization step; therefore, the model’s
parameters were not fully optimized for heart disease prediction.
Ali et al. (2019) focused on eliminating irrelevant features followed
by preprocessing with the statistical model chi-square (χ2). The
over-fitting issue was minimized by configuring the χ2-DNN
model through an exhaustive search strategy, because of which the
model achieved 93.3% accuracy in heart disease prediction.

In discussing the use of ML models, Miriyala et al. (2021) used
a single LGBM to diagnose CAD in 1,190 instances, reporting
93.3% accuracy; the model has an overfit issue, which can be
solved through optimization. Barfungpa et al. (2023) optimized
features using an enhanced sparrow search algorithm (E-SSA).
Their focus was to minimize the dimensionality of data using deep-
dense residual attention Aquila convolutional network (Deep-
DenseAquilaNet). The model’s approach was to update the weights
using the Aquila optimization algorithm; this resulted in 99.57%
accuracy using the comprehensive heart dataset with <2,000
instances. A heart disease prediction model employing a Chaos
Game Optimization Recurrent Neural Network (CGO-RNN)
model was reported by Alam and Muqeem (2023). The authors
used integrated Kernel Principal Component Analysis (KPCA)
as a strategic choice for handling the data’s dimensionality and
computational intensity. The model novelty helped the authors to
achieve an accuracy of 98 ± 0.9%. However, the works reported by
Barfungpa et al. (2023) and Alam and Muqeem (2023) could not
converge during optimization.

As the research advanced, the LOS performance was improved
using various ML models. In this context, Harerimana et al.
(2021) propose three classes of LOS, where a hierarchical attention
network (HAN) was trained with the MIMIC-III text-oriented
dataset, achieving an AUC-ROC score of 0.82. Zou et al. (2023)
used MIMIC-III and divided it into three datasets with different
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feature sizes, and the LOS labels from the datasets were extracted
from the PostgreSQL DBMS. The authors proposed a generative
adversarial network (GAN) called Wasserstein-GAN to predict
the LOS class with a gradient penalty. For three datasets and
various LOS ranges, the highest class scored 96.6% accuracy among
other classes. Another work by Hempel et al. (2023) performed
prediction using the MIMIC-IV dataset; in this work, the LOS
was categorized into two classes: short and long stay. The authors
used the default parameters of the model in optimization and
classifier training using Logistic Regression (LR), RF, SVM, and
XGBoost; the result shows that RF scored the highest accuracy of
81%. A framework for LOS prediction using RF with three over-
sampling and three under-sampling techniques was proposed by
Alsinglawi et al. (2022). The oversampling technique using RF
scored 98% accuracy with a 95% confidence interval. González-
Nóvoa et al. (2023) developed the XGBoost model optimized with
Bayesian techniques to predict early ICU readmissions. The authors
utilized SHAP to determine important features, scoring 0.92 ±

0.03 AUC-ROC.
In discussing LOS prediction using the MIMIC dataset for

other diseases, El-Rashidy et al. (2022) developed a predictive
model for detecting sepsis in patients admitted to the post-ICU
during the initial 6 h of their stay. This innovative approach
combined the strengths of the non-dominated sorting genetic
algorithm-II (NSGA-II) and neural networks to extract optimal
features. This hybrid model was followed by a classifier-stacked
deep ensemble learning model to train the dataset. This model
scored an accuracy of 91.3% and AUC score of 0.906. The effect of
lung cancer on ICU patients was studied by Qian et al. (2023) using
the MIMIC-III dataset. The study analyzed 1,242 ICU admissions,
scaling them on illness severity AUC score; the predicted short-
term and long-term mortality scores were 0.714 and 0.717,
respectively. Bozkurt and Aşuroglu (2023) targeted their model in
LOS prediction for patients admitted with breast, lung, prostate,
and stomach cancer. The authors used the MIMIC-IV dataset and
LR-based feature selection. The selected features were trained on
five ML models: LR, DT, RF, SVM, and Multilayer Perceptron. The
performance given by RF was the highest among others; the F1
scores ranged from 0.73 to 0.82, and AUC-ROC scores ranged from
0.88 to 0.96. The research discussed in this section 2 is compared in
Table 1 according to the problem statement, the models used, and
the limitations observed.

The recent pandemic has forced researchers to use nature-
inspired metaheuristic optimization algorithms to target complex
datasets. Among these, algorithms such as the capuchin search
algorithm (Braik et al., 2023a), particle swarm optimization
sine cosine algorithm (Somgiat and Chansamorn, 2022), whale
optimizer (Nadimi-Shahraki et al., 2022), and snake optimizer
(Braik et al., 2023b) have shown promising results in ML and DL
applications. However, our study uses PSO optimization due to
its robustness in determining complex, multidimensional search
spaces from clinical data and its convergence toward optimal
solutions (Kennedy and Eberhart, 1995). The existing works
primarily focused on the binary classification of the LOS. In
contrast, our proposed model PSO-XnB focuses on showing the
best performance across multiple categories where the model
is implemented with deep autoencoders for feature selection
and dimensionality reduction, XGBoost for predictive modeling,

and PSO for fine-tuning the model’s hyperparameters. With the
development of specific tuning rules, our model also achieves a
balance between exploration and exploitation, leading to enhanced
model convergence and accuracy. Section 3 discusses the strategic
choices for developing PSO-XnB in detail.

3 Materials and methods

Our methodology of the PSO-XnB framework is depicted
in Figure 1. The work starts with data preparation, followed by
preprocessing, discussed in Section 3.1.

The framework of PSO-XnB model development to predict
LOS for CAD patients is discussed in Section 3.2.

3.1 Dataset preparation and preprocessing

This study uses the MIMIC-III clinical dataset (Goldberger
et al., 2000; Johnson et al., 2016). From the large dataset, our
selection process exclusively focuses on medical cases relevant
to CAD disease. Therefore, the keyword extraction method is
performed from the “admit diagnosis” feature. Keywords such as
CAD, heart, coronary, chest pain, myocardial infarction, angina,
cardiac aortic, and STEMI were utilized for extraction. After
this extraction, our final dataset included 9,989 patient instances
with 23 features. These features cover admission details, clinical
and care metrics, and medical outcomes, including diagnoses,
procedures, inputs/outputs, and length of stay. The continuous
patient records were gathered from the dataset. Data handling
practices were ensured to maintain the study’s integrity, reliability,
and reproducibility. The “LOSdays” (length of stay in days) is
selected as a target variable to predict hospital stay durations. This
work categorizes the LOS classes with fuzzy followed by three steps.
In the first step, the fuzzy sets for each LOS category are defined
as short, medium, long, and extended stays. The second step is
to define fuzzy rules based on data summary statistical analysis to
understand the inherent variability and patterns. The rules given
are as follows (Jena et al., 2022):

• IF LOSDays are ≤4.33 days, THEN the stay is likely a
“short stay.”

• IF LOSDays are >4.33 days AND are ≤6.75 days, THEN the
stay is likely “medium stay.”

• IF LOSDays are >6.75 days AND are≤10.21 days, THEN the
stay is likely a “long stay.”

• IF LOSDays are >10.21 days, THEN the stay is likely an
“extended stay.”

This observation defines fuzzy sets with boundaries reflecting
the data’s natural distribution, not arbitrary intervals. These rules
can capture overlaps and gradations of the LOS class. In the final
step through the inference mechanism, fuzzy rules are applied
with the trapezoidal membership to identify the complex patterns
where a patient’s LOS can simultaneously exhibit characteristics
of multiple categories. These rules help to make predictions more
accurate and adaptable because they are considered with different
possibilities and variations in LOS. Further, label encoding was used
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TABLE 1 Comprehensive literature survey table.

References Problem statement Methods used Limitations

Shah et al. (2020) Enhancing classifier performance by
feature selection

MFFSA and AFSA with PCA and
RBF-SVM

Sensitivity to parameter tuning

Nasarian et al. (2020) Ranking features for medical diagnostics FS, FA, ETCA with DT, GNB, RF, and
XGBoost

Potentially high computational cost and
complexity toward interpretations

Amarbayasgalan et al. (2021) Impact of living factors identification
using feature selection for CAD

PCA with VAE and DNNs High computational intensity

Mienye and Sun (2021) Feature selection-based CAD
identification

SSAE with PSO and Softmax Overfitting and high computational demands

Ebiaredoh-Mienye et al.
(2020)

Heart disease diagnosis with feature
reduction

SAE with Softmax Potential for model overfitting and
generalizability

Ali et al. (2019) Enhancing feature quality for cardiac
disease diagnosis

χ2 with Optimally Configured DNN Underfitting and the inherent complexity of
tuning deep neural networks

Miriyala et al. (2021) Diagnosis of CAD Single LightGBM Overfitting, need for optimization

Barfungpa et al. (2023) Feature selection and optimization for
heart disease prediction

E-SSA with Deep-DenseAquilaNet Vulnerability to convergence

Alam and Muqeem (2023) Heart disease prediction with
optimization

CGO-based RNN with KPCA Vulnerability to convergence

Harerimana et al. (2021) Predicting LOS with HAN HAN with SMOTE Overfitting in imbalanced data

Zou et al. (2023) Realistic LOS distribution using GAN WGAN with gradient penalty Misleading predictions in unseen scenarios
could be a limitation.

Hempel et al. (2023) LOS prediction on ICU patients LR, RF, SVM, XGBoost Computational intensity

Alsinglawi et al. (2022) LOS prediction framework RF over-sampling and under-sampling
techniques

Data biases, overfitting due to oversampling
techniques

González-Nóvoa et al. (2023) Early ICU readmission prediction XGBoost with Bayesian, SHAP for
feature importance

Computational intensity and interpretability

El-Rashidy et al. (2022) Sepsis prediction in ICU NSGA-II with neural networks and
stacked deep ensemble learning

Model transparency and explainability issues

Qian et al. (2023) Short-term mortality prediction for
Lung patients in ICU

Multivariate LR Potential applicability issue due to low
instances

Bozkurt and Aşuroglu (2023) Mortality prediction in cancer patients LR, DT, RF, SVM, MLP Data imbalance and noise were observed

as a preprocessing step to process the categorical variables into
numerical format (Boulif et al., 2023), and this preprocess data
was split into training and testing sets. The LOS classes obtained
from a fuzzy set of rules are distributed across training and testing
data, which is visualized in Figure 2, revealing the data imbalance.
Therefore, the Synthetic Minority Over Sampling Technique
(SMOTE), a standard technique in ML, is applied to balance the
data. This technique effectively addresses the imbalance issue and
augments the training and testing datasets from 7,991 and 1,998
instances to 18,188 and 4,548 instances. The data augmentation
does not fabricate new data randomly. Instead, it analyses the
existing data to identify underlying patterns specifically within the
underrepresented classes and creates additional synthetic data to
enhance those minority class representations.

3.2 Proposed PSO-XnB model

After data preprocessing, the MIMIC III dataset shows high
dimensionality due to the multiplicity of features and instances.
Therefore, our work uses a deep autoencoder, an artificial neural

network developed with TensorFlow (Abadi et al., 2016) and Keras
(Chollet, 2015). The deep autoencoder can find patterns within the
data that are not easily visible due to the complex relationXships
between features inmedical datasets (Bank et al., 2023; Shinde et al.,
2023). Let us denote the original data with the dimensions ofm×n,
where m and n, denote the number of instances and features. The
autoencoder is a combination of encoder and decoder, and it is
initialized with an encoder function E(X, θE), where θE determines
the network parameters of the encoder E. The encoder network
starts with the input layer of the original data Xin that matches the
feature space of the entire data where Xin = R

n, andRn determines
the n-dimensional space of real numbers. In this encoder, the two
mappings are typically used to reduce the dimensionality of the
input data. The first and second mappings E1 and E2 are used
as functions to transform data from R

n → R
128 and R

128 →

R
64. The function E1 transforms input data from n-dimensions to

128 dimensions by adding features and E2 then reduces this data
from 128 dimensions to 64 dimensions, focusing on obtaining the
most relevant features. Thus, and use the rectified linear activation
(ReLU) function to introduce non-linearity forming latent encoded
representation Z = E2(ReLU(E1(Xin))).
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FIGURE 1

The proposed framework for the PSO-XnB model.

The subsequent decoder function R, mirrors the two encoder
mappings as R1 :R

64 → R
128, and R2 :R

128 → R
n. These

mappings used in the decoder transform the encoded low-
dimensional data back to the reconstructed original data, so
the output of the decoder is Xout = R2(ReLU(R1(Z))). The
complete operation of the autoencoder A functions as A(X; θE) =
R(E(X)), where X, parameterized by θE, determines the process
initially transformed by the encoder E into lower dimensional
representations, and then the decoder reconstructs the input data
from this encoder representation. The optimization of encoder
parameters θE continues iterations with the mean square error
until the lowest possible difference between the original data
and the reconstructed data is achieved. The reconstruction data
obtained from the autoencoder at minimal loss shows reduced
dimensionality and a focus on important features.

This proposed approach uses the reconstructed data as input
for the XGBoost classifier to be optimized with PSO (Farahnakian
and Heikkonen, 2018). Le et al. (2019) and Jiang et al. (2020)
previously developed the PSO-XGBoost model, but their studies
faced challenges in predicting minority classes (Jiang et al., 2020)
and handling a high number of input variables (Le et al., 2019).
In contrast, our model, PSO-XnB, addresses these issues using
autoencoders, an effective approach to predict outcomes across
all LOS classes. The flowchart of the PSO-XnB model is shown
in Figure 3. Our work uses the XGBoost model, enhanced by
a gradient-boosting technique, for efficient performance in real-
world applications (Chen and Guestrin, 2016). Themodel XGBoost
trained without regularization could overfit the training data,
capturing noise from the underlying patterns (Kigo et al., 2023).

Therefore, fine-tuning the hyperparameters is crucial to balance
the model’s performance, ensuring it generalizes well without
overfitting (Yewale et al., 2023). In this study, Particle Swarm
Optimization (PSO) is used for hyperparameter tuning, a method
inspired by natural patterns in bird flocking and fish schooling
introduced by Kennedy and Eberhart (1995). This optimization,
combined with deep autoencoder reconstructed data, aims to
improve the predictive capacity of the XGBoost model, yielding
a highly accurate outcome. The entire model development is
structured into seven distinct steps:

1. Encoding Train and Test Input Data:

The reconstructed data Xout and the target variable Y is divided
into training and testing sets defined in Equation (1):

(Xout,train,Ytrain)(Xout,test ,Ytest) = split(Xout ,Y) (1)

Where Xout,train,Ytrain and Xout,test ,Ytest represents training and
testing input and output data.

2. Defining Hyperparameters for XGBoost:

The hyperparameters of the XGBoost model utilized in this
study are represented by a vector, θX = [lr, ne,md,mcw, ss, cbt], and
the variables in the vector are detailed in Table 2.

3. Define Search Space and PSO Initialization:
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FIGURE 2

Distribution of LOS on train test splits. (A) Training dataset. (B) Testing dataset.

Initially, search space is defined for PSO as a multidimensional
space, aiming to optimize different hyperparameters of the
XGBoost model within each dimension. The range for each

XGBoost hyperparameter used in this process determines the
boundaries of the search space (El Dor et al., 2012). Before
starting the PSO process, the configuration parameters and their
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FIGURE 3

Flowchart of PSO-XnB model.

TABLE 2 Shows the configured information of XGBoost Hyperparameters.

Hyper-parameter Default value Range Explanation

learning_rate (lr) 0.1 0.01–0.3 Sets the minimal loss function and controls the step size for each iteration.

n_estimators (ne) 100 50–1,000 The number of trees inside the group. Better speed, but more computation, is
possible with more trees

max_depth (md) 3 3–10 Maximum depth to which a tree can grow. The model’s complexity and the
likelihood of overfitting are both affected by this parameter.

min_child_ weight (mcw) 1 1–10 Maximum depth to which a tree can grow. The model’s complexity and the
likelihood of overfitting are both affected by this parameter.

subsample (ss) 1 0.5–1.0 Subsample ratio of the training instances. Although a lower number avoids
overfitting, underfitting might occur with values that are too low.

colsample_bytree (cbt) 1 0.5–1.0 When building each tree, use the subsample ratio of columns. Each created tree
undergoes subsampling once.

values play an important role in directing the particle’s movement
throughout the hyperparameter space. Our configurations start
with ten particles, each representing a possible solution within
the XGBoost hyperparameter search space. This specific number
of particles is selected to maintain computational efficiency while
providing a diverse set of initial candidate solutions. Six dimensions
are categorized for each particle. The hyperparameters of XGBoost
are outlined in Table 2. For the learning factors, the local learning
factor (C1) and global learning factor (C2) are set at 0.5 and

0.3. The setting value of C1 guides each particle toward its
best optimal position by fine-tuning solutions based on past
performance. The lower C2 value, on the other hand, encourages
particles to seek out new potential solutions in new regions
of the search space. Our model using PSO is limited to 50
iterations because this value achieved efficient convergence at initial
tests. Finally, ten independent runs were conducted to ensure
the reliability of the optimization process. These runs help to
validate the stability and replicability of our hyperparameter tuning
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results. After preliminary testing, the best hyperparameters were
ultimately chosen based on observing the optimal balance between
computational efficiency and the depth of exploration within the
hyperparameter space, ensuring the robustness of our findings.

Each particle’s i initial position and velocity in PSO are
described by vectors and vi

(0) that correspond to the values of
hyperparameters, i.e., learning rate, number of estimators, max
depth, min child weight, subsample size, and colsample by tree.
The position vector represents the initial point in the search space,
which is defined as xi(0) = [lri, nei,mdi,mcwi, ssi, cbti]. The velocity
vector sets the initial speed as zero or a value close to zero, allowing
particles to explore the search space without bias, defined asvi(0) =
[vlr i , vne i , vmd i , vmcw i

, vss i , vcbt i ].

4. PSO Iterative Process:

In the iteration process t, the particle positions and velocities
are updated using the predefined PSO rules. Therefore, the velocity
for each dimension d of i is adjusted and updated by Equation (2):

v
(t+1)
i,d = w · vi,d

(t) + c1 · r1 · (pi,d
best − xi,d

(t))

+c2 · r2 · (gd
best − xi,d

(t)) (2)

From the above equation, w determines the inertia weight
that balances exploration and exploitation, impacting the particle’s
current velocity, c1 determines cognitive coefficients, and c2
determines social acceleration coefficients. r1 and r2 are random
numbers ranging between 0 to 1 providing stochasticity to the
search, pi,d

best which is the best individual position found in the d
and gd

best is the best position obtained in the swarm by any particle
found in d. The term c1 · r1 · (pi,d

best − xi,d
(t)) represents a particle’s

memory of its best position, marked as a cognitive component, and
c2 · r2 · (gd

best − xi,d
(t)) represents the particle’s cooperation with the

swarm as a social component. Therefore, with the iterations, each
particle’s position xi,d

(t) in the search space updates according to
the velocity vi,d

(t+1). This updated position becomes the candidate
solution for the next iteration xi,d

(t+1), defined in Equation (3).

xi,d
(t+1) = xi,d

(t) + vi,d
(t+1) (3)

Through these equations, the PSO algorithm allows each
particle to explore the search space, adjusting its trajectory based
on its own experience and the swarm’s collective knowledge. By
updating each particle, the swarm converges to the best solution
of hyperparameters that results in the best model performance
according to the chosen fitness metric.

5. Fitness Evaluation and Model Training with Dimensionality:

The XGBoost model is trained using the hyperparameters
represented by the particle’s position (Qin et al., 2021), and the F1
score is chosen as the fitness function because it balances precision
and recall and can predict all classes accurately. This fitness metric
is especially suitable for imbalanced datasets. The fitness function
used in this work is defined by Equation (4) as:

f (xi) = F1_Score(XGBoost(Xout , y,
{
xi,d

}D
d=1)) (4)

The Equation (4) represents f (xi) a fitness function of the
particle i, and calculates the F1 score of the XGBoost model trained
with the reconstructed data and target, using the hyperparameters
of position vectors

{
xi,d

}D
d=1 across all dimensionsD for the particle

i. However, depending on the specific requirements of the task,
other metrics such as accuracy or precision could also serve as the
fitness score.

6. PSO Convergence to Best Hyperparameters

with Dimensionality:

To obtain the best hyperparameters θbestX across all dimensions
D, the global best positions defined across each dimension are
defined in Equation (5) as:

θbestX =
{
gd

best
}D
d=1

(5)

The PSO algorithm fine-tune the hyperparameters iteratively to
minimize a convex loss function. Simultaneously, the F1 score is
also used as a fitness measure. This dual-focus strategy ensures the
best hyperparameter solutions θbestX , which enhances the model’s
accuracy and reliability. To ensure the reach of the convergence of
the PSO, 10 independent runs with 50 iterations are executed. The
optimal set of hyperparameters is then selected based on the lowest
convex loss observed from the XGBoost model evaluations during
these runs, as presented in Table 3.

7. Training and Prediction with the Enhanced NeuroBoost Model

with Dimensionality:

Finally, the NeuroBoost model is trained with θbestX , obtained
from the PSO process defined by Equation (6) as:

ModelFinalNeuroBoost = Train(Xout , y; θ
best
X ) (6)

The final model is expected to demonstrate enhanced
performance due to being fine-tuned with the dimensionally
optimized hyperparameters. Further, the model is employed across
various classes of LOS as C = {cshort , cmedium, clong , cextended},
where each class in the set belongs to a specific LOS class. The
model predictions on the reconstructed test data are defined by the
Equation (7) as:

ŷtest,k = ModelFinalNeuroBoost(Xout,test)k (7)

Therefore, the final objective function of the PSO-XnB model,
Obj

θbestX

(t) at iterations t, sums over all classes k, and computes with

the best parameters given by Equation (8)as:

Obj
θbestX

(t) =

n∑

m=1

[∑

k∈C

l(̂y(t−1)
m,k , ym,k)+ f̂

(t)

θbestX

(xm)k

]
+ �

(
f̂
θbestX

)
(8)
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TABLE 3 Best XGBoost Hyperparameters obtained from PSO for ten independent runs.

Ind. run Learning
rate

N_estimators Max
depth

Min child
weight

Subsample Colsample
bytree

Best loss

1 0.1286 102 9 5.0232 0.9578 0.5423 0.0128

2 0.2611 66 9 5.3988 0.8418 0.5094 0.0129

3 0.2384 180 9 2.8733 0.8085 0.5831 0.0128

4 0.2478 109 9 4.676 0.814 0.5362 0.0129

5 0.2236 159 8 3.8692 0.9969 0.5470 0.0128

6 0.1619 146 7 1.2177 0.9935 0.6768 0.0123

7 0.2936 161 9 3.6239 0.9968 0.5270 0.0129

8 0.2765 112 8 6.0241 0.9502 0.5149 0.0126

9 0.19 127 5 5.4939 0.8721 0.5387 0.0130

10 0.2127 112 10 2.0516 0.8496 0.7971 0.0125

Where l is a differentiable convex loss function that measures
the difference between actual ym,k and predicted test ŷ

(t−1)
m,k

observations of instances m with k, �
(
f̂
θbestX

)
is the regularization

term that penalizes the complexity of the model to prevent

overfitting. f̂
(t)

θbestX

(xm)k is the predictive function of the model using

the best hyperparameters for input features of instances xm across
all target classes k. Due to the internal mechanism of XGBoost,
the L1 regularization terms get explicitly modified as best based
on cost per leaf γbest and the L2 regularization term based on leaf
weights λbest , both optimized via hyperparameters defined in the
Equation (9):

�

(
f̂
θbestX

)
= γbestT +

1

2
λbest ‖Ŵ‖

2
(9)

Here, T is the number of leaves in the tree, and Ŵ is the
vector of scores on the leaves. Finally, the performance metrics
are very important to evaluate the performance of a multi-class
classification problem, as discussed in Miriyala et al. (2021). In
this work, the overall model’s performance is observed using
accuracy as a primary metric, and the F1 score acts as an
alternative metric to understand the positive class predictions from
precision and recall across each LOS class. The Precision-Recall
(PR) curve and Receiver Operating Characteristic (ROC) curve are
also examined to gain insights into the model distinguishing the
target classes. These visual representations offer an understanding
of its capabilities. The Average Precision (AP) is also derived from
the PR curve and effectively summarizes the model’s performance
for each category (Le et al., 2019).

4 Experimental results and
performance observations

In this section, the simulation setup of the PSO-XnB model
is performed on a computational environment with NVIDIA R©

GeForce RTXTM 3050 Ti graphics card, Windows operating
system, and an 11th generation Intel CoreTM i7-11390H CPU for
simulation. PyCharm is the simulation environment used with

the Python 3.6.3 programming language (Van Rossum and Drake
Jr, 1995). The libraries that were utilized were NumPy, Pandas,
Matplotlib, SciPy, scikit-learn (Fandango, 2017), PySwarms (James
and Miranda, 2018), Bayesian optimization (Nogueira, 2014),
imbalanced-learn (LemaÃŽtre et al., 2017), TensorFlow (Abadi
et al., 2016), SHAP (Lundberg and Lee, 2017), and a few other
utilities for preprocessing data and evaluating models from scikit-
learn. Our primary data source was the MIMIC III dataset, and the
Pandas library was used mostly in data preparation. Initially, the
reconstructed data is obtained from deep autoencoder data with
the minimum MSE loss shown in Figure 4, where the training and
validation loss starts at 1.7450 and 0.8830 at Epoch 1. However,
over 50 iterations, the training loss consistently reduced to 0.3567,
and the fluctuations in the validation loss were identified in Epochs
30 and 50, indicating the challenges in generalization. Therefore,
to improve the model’s performance toward the data, for further
optimization is required.

4.1 PSO-XnB model results

In our study, to predict the LOS, the best XGBoost
hyperparameters from PSO are obtained to minimize convex loss,
showing the characteristic exploratory nature of PSO. These values
across ten independent runs are tabulated in Table 3. Each row
corresponds to a separate optimization run, showcasing the unique
set of hyperparameters. Figure 5A visualizes the PSO algorithm’s
efficacy, showcasing the convergence of loss for ten independent
runs to a mean of 0.01275. Figure 5B, showing a boxplot, highlights
a median loss of 0.0128, indicating a robust optimization process
with narrow variability. From Table 3, the best and worst losses
are observed as 0.013 and 0.0123, respectively, indicating tight
clustering of outcomes and suggesting stability in the optimization
process across ten independent runs. The standard deviation is
0.000217, and there is an extremely low variance. This visual and
statistical confirmation of the PSO’s performance underscores the
reliability of our model for healthcare predictive analytics.

With the selected hyperparameters highlighted in Table 3, the
PSO-XnB is trained on the test dataset. The performance metrics

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2024.1381430
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Miriyala and Sinha 10.3389/frai.2024.1381430

FIGURE 4

Deep autoencoder epoch-wise training and validation loss.

of PSO-XnB are calculated and shown in Table 4. The PSO-XnB on
extended stay class scored high in precision, recall, and F1 scores
metrics, suggesting that the model predicted accurately. However,
the perfect recall score for extended stay could indicate a need for
more diversity in the training set, potentially limiting the model’s
ability to handle a range of cases. On the other hand, there is a lower
recall score for the medium stay class, indicating that there may be
fewer true positive predictions for this category, which could be an
area focusing on improving the model. The overall accuracy of the
PSO-XnB was 98.8%, proving successful hyperparameter tuning
using PSO-XnB. From these performance results, it is clear and
promising that the deep autoencoder reconstructed data showed a
considerable scope for future research aiming for refinement with
the tools for broader applications in healthcare analytics.

4.2 Comparison with other models

In this subsection, the proposed model PSO-XnB is
compared with other ensemble models such as Random
Forest (RF) (Hempel et al., 2023), Gradient Boosting (GB)
(Naemi et al., 2021), Bagging (Tully et al., 2023), and
XGBoost (Hempel et al., 2023), to observe the effectiveness
of predicting LOS.

The overall accuracy of the other traditional ensemble
models, such as RF, GB, Bagging, and XGBoost, scored 85.74%,
69.04%, 86.98%, and 94%. The F1 scores obtained from each
ensemble model are compared with PSO-XnB, as shown in
Figure 6, and the comparison of performance metrics is shown
in Table 5. PSO-XnB showed the highest F1 scores of 0.99 for
short stays, 0.98 for medium stays, 0.99 for long stays, and
1.00 for extended stays. The XGBoost scored second highest
for three classes, i.e., short stay, medium stay, and long stay,

and the RF model performed highest only for extended stay.
Compared to the F1 score, gradient-boosting scores are the
lowest in all four classes. Along with the F1 score, the precision
and recall scores are also shown in Table 5, where the PSO-
XnB model scored higher for each LOS class than other
ensemble models.

For observing the significant validation, the consistent
performance of PSO-XnB over the baseline ensemble models is
performed with ten test splits, as shown in Supplementary Table S1.
These evaluations are further statistically tested with the paired
t-test to show the significance of the four LOS classes, i.e.,
short stay (SS), medium stay (MS), long stay (LS), and
extended stay (ES). The results from the statistical analysis
are summarized in Table 6. As reported in Table 6, the PSO-
XnB model shows significance over ensemble models across all
categories of LOS. For each class of short, medium, and long
stay, the p-values are <0.001, showing that our model PSO-XnB
is statistically significant compared to other baseline traditional
ensemble models. A similar trend of p-values close to 0.001
is observed for an extended LOS stay. These lowest p-values
determine a high degree of statistical confidence. Observing the
statistical analysis, the PSO-XnB model demonstrates superiority
in predicting the LOS categories compared to other baseline
ensemble models.

Figure 7A compares ROC-AUC scores as percentages; the
perfect score of 1.00 achieved by PSO-XnB represents a rate of
100% with no false positives across all thresholds. In contrast,
the XGBoost and Bagging models scored AUC with 98% and
97%, covering 2% and 3% less ROC space than the PSO-
XnB model. Similarly, both GB and RF models have an AUC
of 96%, covering 4% of the ROC area compared to PSO-
XnB. These percentages represent the varying capacities of each
model to differentiate between categories. While examining the
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FIGURE 5

Model tuning results of PSO-XnB for ten independent runs. (A) Convergence graph. (B) Loss dispersion graph.

Precision-Recall curves in Figure 7B, it becomes evident that
the PSO-XnB model establishes a standard with an Average
Precision (AP) score of 99.65%. Relative to this, the XGBoost,

GB, Bagging, and RF model shows a 4%, 5%, 10%, and 11%
decrease in an area with an AP with 95.36%, 94.54%, 90.23%,
and 88.92%, respectively. In practical terms, these percentages

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2024.1381430
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Miriyala and Sinha 10.3389/frai.2024.1381430

of AP reflect the degree to which each model’s performance
on precision and recall falls short of the near-perfect score
achieved by the PSO-XnB. A lower AP score means the model
is either less precise, less sensitive, or both, especially in
predicting positive instances within imbalanced datasets (Jiang
et al., 2020).

The impact of the PSO-XnB model on features over four
LOS classes is determined by SHAP analysis, as shown in
Figure 8; the main two features impacting each class are
discussed. In Figure 8A, the short stay shows the significance
of NumNotes and NumTransfers features, indicating the number
of medical notes and transfers between departments on patient
records. These are important to predict short stays. Similarly,
medium stay in Figure 8B shows NumCallouts determining
the number of times staff were called to attend a patient as
an impactful feature, along with NumTransfers. The features
such as NumDiagnosis and NumNotes highly influence the
long stay class in Figure 8C. These features show that the
number of documented diagnoses and notes is important for

TABLE 4 Confusion matrix scores of proposed PSO-XnB model.

Class Precision Recall F1 score

Short stay 0.9795 0.9959 0.9876

Medium stay 0.9894 0.9620 0.9785

Long stay 0.9845 0.9931 0.9888

Extended stay 0.9988 1.0000 0.9994

TABLE 5 Comparison of performance metrics with proposed model and

other ensemble models.

Class Model Precision Recall F1 score

RF 0.92 0.90 0.91

GB 0.96 0.85 0.90

SS Bagging 0.89 0.97 0.93

XGBoost 0.88 0.99 0.94

PSO-XnB 0.97 0.99 0.99

RF 0.69 0.78 0.73

GB 0.51 0.91 0.65

MS Bagging 0.83 0.83 0.83

XGBoost 0.99 0.755 0.86

PSO-XnB 0.99 0.96 0.98

RF 0.83 0.75 0.79

GB 0.6 0.18 0.29

LS Bagging 0.83 0.84 0.83

XGBoost 0.90 0.99 0.95

PSO-XnB 0.98 0.99 0.99

RF 0.99 0.99 1.00

GB 0.79 0.83 0.81

ES Bagging 0.92 0.84 0.88

XGBoost 0.99 1.00 1.00

PSO-XnB 0.99 1.00 1.00

The bold values for the PSO-XnB model represent the highest performance metric scores

achieved in comparison to the other ensemble models for each respective class: SS, Short Stay;

MS, Medium Stay, LS, Long Stay, and ES, Extended Stay.

FIGURE 6

Comparison of F1 score of PSO-XnB across various models.
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TABLE 6 Statistical significance summary: PSO-XnB with other ensemble models on LOS classes.

Descriptives N Mean Median SD SE Statistic df p

PSO-XnB–SS 10 0.988 0.988 0.00254 8.04E-04 N/A N/A N/A

PSO-XnB–RF_SS 10 0.907 0.915 0.02457 0.00777 10.35 9 <0.001

PSO-XnB–GB_SS 10 0.898 0.9 0.02325 0.00735 11.9 9 <0.001

PSO-XnB–Bagging_SS 10 0.932 0.933 0.01035 0.00327 17 9 <0.001

PSO-XnB–XGBoost_SS 10 0.936 0.935 0.00974 0.00308 15.55 9 <0.001

PSO-XnB–MS 10 0.971 0.972 0.00354 0.00112 N/A N/A N/A

PSO-XnB–RF_MS 10 0.729 0.732 0.01716 0.00543 44.49 9 <0.001

PSO-XnB–GB_MS 10 0.646 0.651 0.02473 0.00782 43.47 9 <0.001

PSO-XnB–Bagging_MS 10 0.828 0.831 0.03472 0.01098 12.37 9 <0.001

PSO-XnB–XGBoost_MS 10 0.861 0.866 0.04136 0.01308 8.17 9 <0.001

PSO-XnB–LS 10 0.983 0.984 0.00238 7.54E-04 N/A N/A N/A

PSO-XnB–RF _ LS 10 0.786 0.791 0.01742 0.00551 38.51 9 <0.001

PSO-XnB–GB _LS 10 0.275 0.281 0.03942 0.01247 57.28 9 <0.001

PSO-XnB–Bagging_LS 10 0.853 0.848 0.0695 0.02198 5.98 9 <0.001

PSO-XnB–XGBoost_LS 10 0.941 0.942 0.00416 0.00132 40.48 9 <0.001

PSO-XnB–ES 10 0.999 0.999 6.92E-04 2.19E-04 N/A N/A N/A

PSO-XnB–RF_ES 10 0.99 0.99 0.00592 0.00187 4.39 9 0.002

PSO-XnB–GB_ES 10 0.8 0.811 0.03639 0.01151 17.18 9 <0.001

PSO-XnB–Bagging_ES 10 0.885 0.886 0.0515 0.01629 7.01 9 <0.001

PSO-XnB–XGBoost_ES 10 0.992 0.992 0.00542 0.00171 4.49 9 0.002

TABLE 7 Comparison of the proposed model with previous literature.

References Models No. of LOS
classes

Accuracy

Our proposed

model

PSO-XnB 4 98.8%

Tavakolian
et al. (2023)

GAOCNN 13 94.1%

Zou et al.
(2023)

WGAN-GP 3 96.6%

González-
Nóvoa et al.
(2023)

XGBoost with
Bayesian

1 92.0%

Hempel et al.
(2023)

XGBoost With
self-optimization

2 81.0%

Harerimana
et al. (2021)

Hierarchical
Attention
Network

3 86.0%

Wang et al.
(2020)

Random forest 1 92.3%

Gentimis et al.
(2017)

Neural Network 2 79.8%

long-stay predictions. Lastly, in Figure 8D, NumDiagnosis
and NumProcs are influential for extended stays, where
NumProcs determines the medical procedure that the patient

has undergone. These high-impactful features on predictions
are represented in red, whereas low features are depicted in

blue. The insights into features impacting LOS classes can
help clinicians optimize resource allocation. Also, hospitals can

reduce complication risks and improve capabilities, enhancing
patient outcomes.

From the literature review, some of the limitations observed

were resolved with our proposed model PSO-XnB, such as
overfitting, sensitivity of feature space dimensionality, and class

imbalance. Although the PSO-XnB performs well in interpreting
clinical data, its specific design is a limitation when considering its

utility for various data analysis applications. Another limitation is
that the optimization heavily depends on complex computational

processes (Cao et al., 2023). This high computational demand

could restrict the model’s practical use, especially in healthcare

environments. Addressing these challenges will broaden the
model’s applicability in decision-making and real-time processing,

ensuring its utility in diverse healthcare scenarios. The comparison
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FIGURE 7

Performance evaluation graphs of PSO-XnB with other ensemble models. (A) ROC-AUC curve. (B) Precision recall curve.
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FIGURE 8

Feature impact model analysis using SHAP (A) Short stay. (B) Medium stay. (C) Long stay. (D) Extended stay.

of our proposed model with other works from past literature is
shown in Table 7.

5 Conclusion

In this research, the Particle Swarm Optimized-Enhanced
NeuroBoost (PSO-XnB) model showed significant achievement in
predicting Hospital Length of Stay for CAD patients. This model
combines particle swarm optimization with an eXtreme gradient-
boosting model that utilizes a deep autoencoder technique for
dimensionality reduction. Our proposed model PSO-XnB model
showed outstanding performance efficiency with 98.8% accuracy.
The model also scored the highest F1 score of all four LOS
categories, compared with other ensemble models, with 0.99 for
short stays, 0.98 for medium stays, 0.99 for long stays, and 1.00 for
extended stays. This proposed model also demonstrated the high
scores for other metrics such as precision, recall, and AUC. With
accurate LOS predictions, healthcare services and patients can use
our PSO-XnB model to take immediate initiatives. In the future,
distributed and federated learning will be focused on observing the
effects on classifier performance to reduce computational demands.
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