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This study aims at addressing the challenging incremental few-shot object

detection (iFSOD) problem toward online adaptive detection. iFSOD targets to

learn novel categories in a sequential manner, and eventually, the detection

is performed on all learned categories. Moreover, only a few training samples

are available for all sequential novel classes in these situations. In this study,

we propose an e�cient yet suitably simple framework, Expandable-RCNN, as

a solution for the iFSOD problem, which allows online sequentially adding new

classes with zero retraining of the base network. We achieve this by adapting the

Faster R-CNN to the few-shot learning scenario with two elegant components to

e�ectively address the overfitting and category bias. First, an IOU-aware weight

imprinting strategy is proposed to directly determine the classifier weights for

incremental novel classes and the background class, which is with zero training

to avoid the notorious overfitting issue in few-shot learning. Second, since the

above zero-retraining imprinting approach may lead to undesired category bias

in the classifier, we develop a bias correction module for iFSOD, named the

group soft-max layer (GSL), that e�ciently calibrates the biased prediction of

the imprinted classifier to organically improve classification performance for the

few-shot classes, preventing catastrophic forgetting. Extensive experiments on

MS-COCO show that our method can significantly outperform the state-of-the-

art method ONCE by 5.9 points in commonly encountered few-shot classes.

KEYWORDS

object detection, few-shot learning, zero-shot learning, incremental learning, long-

tailed recognition

1 Introduction

In recent years, the computer vision community shows growing interest in the area

of few-shot object detection (FSOD). While existing methods mainly focus on enhancing

detection performance of data-rare classes, the critical aspect of computational efficiency is

often neglected. In the real-world scenario where detection tasks evolve frequently, novel

unseen categories usually come in a consecutive manner, which causes the conventional

approaches to suffer from repeatedly model retraining. Moreover, GPU resources are not

always accessible or simply too expensive to use in many practical industrial applications,

e.g., IoT, robotics, and autonomous vehicles deployed on edge devices (Alabachi et al.,

2019). Consequently, this motivates the development of real-world few-shot techniques,

which are suitable for online learning and on-site model adaptation. Given the inherently
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constrained computational resources of mobile devices, it is

essential to address efficiency issue in few-shot techniques to fast

and accurate model adaptation.

Computation cost for training deep neural networks can be

calculated from the following two prospective: computational

complexity (FLOPs in each iteration) and adaptation speed (total

training iterations). First, computational complexity denotes the

computation expense in each iteration during model adaptation.

Existing methods computational cost primarily come from three

sources: auxiliary networks, trainable parameters, or extra inputs.

Second, adaptation speed constitutes a crucial determinant of the

adaptation efficiency, which refers to the total training iterations

during fine-tuning. From our observation, existing methods (Kang

et al., 2019; Yan et al., 2019), which require to fine-tune the

feature extraction layers, are more likely to suffer from slow

adaptation issue, since there are more trainable parameters. In this

article, we study a more challenging detection learning setting, i.e.,

incremental few-shot object detection (iFSOD) (Perez-Rua et al.,

2020). Unlike the conventional FSODmethods, iFSOD requires not

only to reduce the time and resource requirement for retraining

but also to retain the comparable detection performance. Hence,

a desirable solution should contain two important aspects. First,

novel classes should be added with rapid adaptation and high

accuracy. Second, previous knowledge gained from base classes

should be preserved without catastrophic forgetting. According

to previous studies (Yang et al., 2020), bounding box regression

is category-irrelevant and can be easily generalized to unseen

classes without further adaptation. In contrast, bounding-box

classification is category-specific, which has to be progressively

learned for any new-coming classes. Previous studies employ either

a generalizable embedding space (Karlinsky et al., 2019) or feature

channel attention (Kang et al., 2019) to facilitate the learning of few-

shot classes. However, those approaches are generally unsuited to

the iFSOD setting due to the intrinsic need for model fine-tuning.

Hence, the objective of this study is to design an incremental few-

shot box classifier that can continually expand its capability with

new classes in a resource-efficient manner.

To learn from a few samples, imprinting (Qi et al., 2018) is a

common approach proposed for modern low-shot classification,

which takes the means of normalized embeddings as the

class proxies. In this study, we propose to extend the weight

imprinting scheme for incremental few-shot detection tasks in

order to overcome the overfitting and catastrophic forgetting.

Our study reveals that (1) the imprinted foreground-class weights

should be IOU-aware, i.e., it should produce higher response

to those boxes with larger IOU and (2) the background class

should be robust to semantic distribution shift caused by the

incrementally added novel classes, which is also IOU-related

with foreground classes. To achieve these, we propose an IOU-

aware incremental weight imprinting approach to systematically

address the incremental weights for both foreground and back-

ground classes in iFSOD. Specifically, a prime sample foreground

imprinting strategy is proposed to learn the object weights, which

pay more attention to the high-quality proposals other than

attending all of them equally, and an adaptive background fusion

strategy is designed to update the background weight by adaptively

fusing background knowledge across different learning steps. As

a result, such a zero-training imprinting technique can ideally

avoid the overfitting issue in iFSOD, which greatly alleviates the

catastrophic forgetting.

However, due to the lack of model fine-tuning, the feature

extractor could suffer from category confusion and fail to

discriminate between similar classes. As a result, the proxies

of novel classes could be drifted away from their desired

location and get confused with proxies of retrained base classes,

which lead to a biased prediction. Model fine-tuning can be

viewed as an explicit way to remit this issue. However, the

retraining cost is not affordable in incremental setting as the

classification heads always keep extending their size (Singh

et al., 2018). To achieve the low computational overhead during

model evolvement, instead of fine-tuning the entire detection

model with millions of parameters, we explore a middle-

ground solution by employing an additional lightweight layer

to correct the prediction bias, which is termed as group soft-

max layer (GSL). By promoting the correlation between few-shot

detection and incremental learning, our approach can rapidly

assimilate new categories with only a few annotations without

catastrophic forgetting of previous knowledge. Therefore, we

term our framework as Expandable Region-based Convolutional

Neural Network.

In summary, the main contributions of this study can be listed

as three-fold:

• An IOU-aware incremental imprinting strategy is proposed

for iFSOD with zero-retraining, which not only promotes

the detector classifier to be IOU-aware but also alleviates the

background semantic shift issue during the incremental steps.

• The proposed GSL module provides a simple yet

effective solution to address the prediction bias issue in

iFSOD, where experimental justification is analyzed for

validating its effectiveness on bias correction to avoid the

catastrophic forgetting.

• The proposed Expandable-RCNN achieves state-of-the-art

performance in both iFSOD and normal FSOD settings on

standard object detection datasets, e.g., MS- COCO and

PASCAL VOC.

2 Related works

2.1 General object detection

Deep learning-based object detection relies on learning from

abundant training data to improve its detection accuracy. Recent

detection frameworks can be mainly divided into two groups,

i.e., anchor-based and anchor-free. In anchor-based approaches,

a set of predefined anchor boxes are predicted by the RPN to

roughly cover objects of different sizes and scales. Then, they

are further classified into foreground or background patches,

and parallelly, refined by an extra regression branch to better

fit with ground truth. Representative approaches include Faster

Region-based Convolutional Neural Network, FPN, and SSD (Liu

et al., 2016; Lin et al., 2017; Saucedo-Dorantes et al., 2020; Zhou
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et al., 2020). Instead of using anchor box, anchor-free approaches

focus on detecting object as key points such as object center or

corner, e.g., CenterNet (Zhou et al., 2019) detects objects through

predicting object center with spatial size represented by class-

specific heatmaps, and CornerNet (Law and Deng, 2018) detects

a pair of object corners to form the detection box. The proposed

method in this study can be easily plugged into the existing anchor-

based frameworks by simply replacing the original classification

head with our proposed expandable classifier. Such plug-and-play

property makes it practical for incremental and few-shot detection.

2.2 Few-shot learning

Few-shot learning is attracting increasing attention due to its

realistic applications (Finn et al., 2017; Xue and Wang, 2020).

However, most of the existing methods are proposed to address the

single image classification problem and are not readily applicable to

object detection task. Our method falls within the context of metric

learning, and it is mostly related to the previous study on classifier

weight imprinting (Qi et al., 2018). We extend its usage from image

classification to object detection by explicitly squeezing the prime

knowledge from vast proposals.

2.3 Few-shot object detection

Most recent few-shot detection approaches are adapted from

few-shot learning paradigm; one-shot organ segmentation (OS2)

(Yang et al., 2023) leverages a novel support-query interactive

embedding module and a self-supervised contrastive learning

framework to effectively segment organs from medical images

using minimal annotation. FSVOS (Liu et al., 2023) enhances

segmentation performance through multi-grained temporal

guidance, local and long-term prototype analysis, and a novel

loss function. The study mentioned in the reference (Liu et al.,

2022b) introduces the Non-Target Region Eliminating (NTRE)

network for few-shot semantic segmentation, which effectively

identifies and removes background and distracting objects through

a novel framework and prototypical contrastive learning. The

study mentioned in the reference (Liu et al., 2022a) proposes an

Intermediate Prototype Mining Transformer (IPMT) for few-shot

semantic segmentation that bridges the category information gap

between support and query images through iterative learning. The

study mentioned in the reference (Chen et al., 2018) proposes

a distillation-based approach with background depression

regularization to eliminate the redundant amount of distracting

backgrounds. A meta learning-based attention generation network

is proposed in the study mentioned in the reference (Kang

et al., 2019) to emphasize the category-relevant information by

reweighting top-layer feature maps with class-specific channel-wise

attention vectors. Sharing the same insight, meta-RCNN (Yan

et al., 2019) applies the generated attention to each region proposal

instead of the top-layer feature map. TFA (Wang et al., 2020)

replaces the original classification head of Faster R-CNN with a

cosine classifier to stabilize the adaptation procedure.

However, existing FSOD methods mainly consider the non-

incremental learning setting. When new classes are to be added,

they generally require retraining the whole framework, which

dramatically restricts their scalability into realistic applications

such as IoT and robotics, where the access to the expensive

computational resource is often prohibitive. To surmount this

high-cost model retraining barrier, we consider the more practical

incremental few-shot setting, where the proposed Expandable-

RCNN is almost training-free for registering novel classes.

Moreover, our Expandable-RCNN is also fully compatible with the

non-incremental FSOD setting if retraining is allowed.

3 Methodology

The iFSOD problem is formulated as a two-phase learning task

in this study. In the first representation learning phase (t = 0), a

detection model F0 (·|W0,Θ ) is pretrained on a large set of base

classes, where W0 denotes the pretrained classification weights for

base classes andΘ represents all other remaining parameters in the

detection model. In the second incremental learning phase (t >

0), model updating Ft (·|Wt,Θ ) is performed over multiple stages,

called learning steps. During the t-th learning step, the previous

label space Y t−1 is expanded with novel classes Ct so that Yt =

Yt−1 ∪ Ct , where Yt−1 ∩ Ct = ø is assumed for simplicity. To

achieve incremental adaptation in Expandable-RCNN, only the

new classification head is updated from the previous detector, i.e.,

Wt−1 → Wt, while the vast majority of network parameter Θ is

frozen. As a result, the proposed Expandable-RCNN is extremely

lightweight to expandwith novel classes over steps, where its overall

pipeline is shown in Figure 1.

3.1 IOU-aware incremental weight
imprinting

Since each incremental step is few-shot, the classification

weights need to be reliably extended without overfitting. In view

of the specialties of the detection classification, we propose a novel

IOU-aware weight imprinting scheme for systematically addressing

the incremental weights for foreground and background classes in

iFSOD, which is with zero training step to avoid overfitting.

3.1.1 Prime-sample guided foreground
imprinting

Region-based object detection aims at selecting the bounding

box which has the maximum overlap with the ground truth from

a large pool of candidate proposals. Through NMS, only the

bounding box with the largest confidence is preserved while all

other nearby proposals are eliminated. Hence, a high-performance

object detector should be able to predict higher scores on those

positive anchors with higher ground truth IOUs and suppress those

only partially overlapped with lower scores. Regarding this, our

study reveals that the importance of each proposal depends on how

its IOU compares with that of the others that overlap with the

ground truth; we argue that the imprinted weights should be more

biased toward prime samples with high IOU other than evenly

treating all positive proposals. Therefore, we propose the prime-

sample guided imprinting strategy to focus more on high IOU

proposals instead of treating all proposals equally.
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FIGURE 1

The architecture of our Expandable-RCNN (E-RCNN) framework. When the detector is adapted to a new few-shot task Dt, only the existing box

classifier needs to be extended correspondingly. For simplicity, we describe how to update the classification weights for an airplane category. Step 1:

Training images of the airplane category are passed through the backbone and RPN to get region proposals (ROIs). Step 2: Prime-sample guided

sampling is applied to select a number of confident proposals, according to their IOU with ground-truth boxes. wobj is formed by summarizing the

selected ROI features φobj in Eq 4. Step 3: A number of background proposals are randomly sampled to form the background proxy φbi for the current

class i. The background weight wbg is fused by summarizing all background proxies for experienced classes in a collection Lt. Step 4: A

bias-correction module (GSL) is learned from an unbiased data distribution to suppress the over-activated logits of new-added classes in order to

correct the prediction bias.

For a feature extractor trained with cosine similarity, the

distribution of category proxy could match with the distribution

of training samples. If certain samples occur more frequently in

the imprinting set, the imprinted weights (proxies) will be closer

to those samples in embedding space, which promotes a better

classification accuracy on them. Therefore, the resultant classifier

is more accurate on the prime samples which have high IOUs.

We proposed a biased sampling strategy where the localization

accuracy is employed as the measurement of importance to

indicate the sample priority. Specifically, taking 1-shot N-way as an

example, foreground proposals p that overlap with the same object

box are divided into four bins according to their IOUs, denoted

as Bi in the Equation (1):

Bi =
{

p|li < IOU
(

p
)

< ui
}

(1)

where i=1, 2, 3, and 4 and li and ui denote the lower-bound and

upper-bound IOU thresholds for i-th bin, respectively, and ui−1

= li when i > 1. For each IOU interval, proposals are sampled

by a different sampling ratio ηi for class weight imprinting, where

ηi is larger for high-IOU bins and
∑4

i=1 ηi = 1, so the resultant

classifier is biased toward high-IOU proposals. Assuming a number

of 128 proposals will be selected from each image, there are total Ni

proposals in the i-th bin, the selected probability.

Pi for each proposal in this bin is calculated by Equation (2):

Pi =
ηi · Ni

m
, (2)

Thus, the sampling function S(·) is defined in Equation (3):

ϕobj ∼ S (Bi, Pi) (3)

where φobj denotes the sampled foreground ROI features. The class

proxy for foreground categories can be calculated by averaging the

L2-normalized vectors of those sampled proposals that belong to

the same class:

ωobj =
1

Nobj

∑ ϕobj
∥

∥ϕobj

∥

∥

2

, ϕobj ∼

4
⋃

i=1

S (Bi, Pi) , (4)

where Nobj is the total number of imprinting set. By exploring

the generalizable feature representation of prime proposals, ωobj

can be treated as a robust proxy for novel classes.

3.1.2 Adaptive background fusion
Different from the classical image classification, region-based

detectors commonly include a background class for discriminating

foreground and background proposals. However, it is observed that

the pretrained background weights often fail to generalize beyond

the source-domain (base) categories. We conjecture that this is

mainly due to the fact that hard negatives can be highly class-

specific as they usually cover themost discriminative part of objects.

As a result, the semantics associated with the background class

always changes when novel classes are incrementally encountered.

Consequently, the background parameters used for a certain

learning step may not be appropriate for distinguishing hard

negatives in the subsequent steps. To tackle this semantic shift issue,

we propose to adaptively update the background weights at each

incremental step by fully exploring the IOU-aware background

information from current and previous learning steps.
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Specifically, for learning step t, consider its training set Dt =

{(Ii, ci)} where Ii denotes the image sample set for a new class

ci ∈ Ct . For a class ci, a fixed number of n background features

ϕbij|
n
j=1

are randomly sampled from images IεIi based on IOU so

that its background proxy φbi for class ci can be approximated by

ϕbi =
1
n

∑n
j=1 ϕbij. To adaptively update the background, φbi will

be added to a background collection Lt = Lt−1 ∩
{

ϕbi|ci ∈ Ct
}

to preserve background proxies for all encounted classes until step

t, so the adaptive background weights at step t can be calculated

as follows (Equation 5):

ωt
b =

1

Nt

∑ ϕbi

‖ϕbi‖2
, ϕbi ∈ Lt , Nt = |Lt| , (5)

Moreover, it is worth noting that the proposed weight

imprinting approaches for foreground and background also

provide a better starting point than random initialization if fine-

tuning is allowed in normal FSOD setting, which results in better

detection performance for few-shot categories.

3.2 Group softmax layer (GSL)

Although the proposed imprinting approach provides an

efficient way for adding new classes, the obtained performance is

still away from satisfactory compared with those non-incremental

approaches. Due to the lack of model fine-tuning, the pretrained

embedding space could be biased toward features that are salient

and discriminative among base classes. As a result, the proxies of

novel classes could be drifted away from their desired location and

get confused with proxies of pre-trained base classes, which causes

the proposals from some base classes to be misclassified into novel

classes and leads to the key problem of catastrophic forgetting.

To validate our hypothesis, extensive experiments are

conducted on VOC 2007 test set. Specifically, the prediction

confidence for all positive proposals is recorded, and two indicators

are designed to reflect the prediction bias: (a) the approximate

cosine distance to the proxy of ground truth class-expected

prediction accuracy Eacc and (b) the approximate cosine distance

to the proxy of hard-negative class-expected prediction error Eerr .

Given a set of region proposals {pi} with their softmax confidence

{ci}, the former calculates the average likelihood of making a

correct (true-positive) detection, i.e., Eacc = 1
N

∑N
i=1 c

u
i , where u

is the index of ground truth class. The latter evaluates the risk of

making a wrong (false-positive) detection, i.e., Eerr = 1
N

∑N
i=1 c

v
i ,

where v is the index which yields the highest response among the

rest negative classes. As shown in Figure 2, after extending with

new classes, the expected accuracy Eacc for the base classes drops

dramatically from 61.5 to 15.4 and the expected error increases

significantly from 6.3 to 40.5.

To eliminate such prediction bias, a bias correction module

is proposed and incorporated with our iFSOD framework.

Concretely, the bias correctionmodule is required to be lightweight

with only a few parameters in order to enable fast model updating

and overfitting avoiding. We first divide the output logits into three

groups, i.e., base classes Cbs (t = 0), novel classes Cnv (t > 0), and

background classes Cbg . As shown in Equation (6), the proposed

bias diminishing approach is built on top of the last fully connected

layer to perform a linear transformation, which is applied to correct

the prediction bias on the output logits for the novel classes, while

output logits of the other two groups (base and background) are

kept to be unchanged.

q =











sk + bbs, k ∈ Cbs

αnvsk + βnv + bnv, k ∈ Cnv

sk + bbg , k ∈ Cbg

, (6)

where αnv and βnv denote two tunable parameters, sk denotes the

classification logit of a specific class, and bbs denotes a learnable bias

parameter. The final prediction is calculated in Equation (7):

p = Softmax
(

q
)

, (7)

To better learn the prediction bias, training samples for GSL

should be unseen to the detector. Specifically, its training set

contains equal number of samples for all existing classes. Samples

selected for base classes are excluded from detector pretraining,

while samples for novel classes are the same as those used for weight

imprinting. During each learning step t, the GSL is re-initialized

and learned jointly with a standard softmax cross-entropy loss.

The effectiveness of GSL is presented in Figure 2, which shows

the significant Eerr reduction on base classes with the correction

of over-activated Eacc on novel classes. With the help of an

unbiased validation set, GSL enables a biased classifier to calibrate

its prediction and correct its bias, which provides an efficient way

to reduce category confusion caused by the lack of fine-tuning.

However, one may wonder if the reduced Eacc on novel classes

could lead to any performance degradation. We argue that the

absolute value of Eacc is not always related to the final detection

performance as the non-maximum-suppression is performed on

proposals of each class independently. In contrast, Eerr is more

meaningful as it is often inversely proportional to the total amount

of false positives. As presented in Figure 2, the overall expected

error Eerr is significantly reduced after introducing GSL, thus

the detector is expected to perform much better after more false

positives are removed.

4 Experiments

4.1 Experiment setting on MS-COCO

For the first same-domain evaluation, we train our model on

the union of the 80K train set and 35K trainval set of MS-COCO,

and test on the 5K minival set. For the total 80 categories, 20

categories that are overlapped with Pascal VOC are selected as

novel classes, and the remaining 60 classes serve as base classes.

It is worth noting that base set images may also contain instances

from novel classes. However, we do not provide any annotations

for novel class instances during pretraining. Upon the arrival of

each novel class, the model can only access the annotation of k

instances, where k = {1, 5, 10, 30} for all experiments. For the

cross-domain evaluation from MS-COCO to VOC, the model is

first trained onMS-COCO and then evaluated onVOC2007 test set.

Different from the first experiment that focuses on evaluating cross-

category model generalization, this setup is to further appraise the

cross-domain generalization ability.
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FIGURE 2

Visualization of the prediction bias. Eacc is calculated based on foreground proposals of base classes, novel classes, and all classes, respectively.

“Pretrained” denotes the model pretrained on base set, thus only base classes are presented. “Imprinted” denotes that weights of novel classes are

added to the pretrained classifier. “GSL” denotes that model prediction is refined by the proposed GSL model. (A) Expected prediction accuracy. (B)

Expected prediction error.

4.2 Experiment setting on Pascal-VOC

For the Pascal VOC dataset, we train our model on the union

of 07 and 12 train/validation set and evaluate on 07 test set. In

particular, we consider the following split of base and novel class:

bird, bus, cow, bike, and sofa/the other. During training, the model

can only access to k instances for each few-shot class, where we set

k= {1, 2, 3, 5, 10}.

4.3 Implementation details

We use Faster R-CNN as our base detector, and an ImageNet

pretrained Resnet-50 (He et al., 2016) is employed as the backbone.

For the representation learning phase (t = 0), a detector model

is trained with inner product similarity in the first 10 epochs

using SGD with a minibatch size of 16, learning rate of 0.02,

momentum of 0.9, and weight decay of 0.0001. Then, we freeze

the feature extractor and RPN while only fine-tune the conv5

layer and detection heads with cosine-similarity for another two

epochs using a smaller learning rate of 0.006. In the second

incremental learning phase (t > 0), to adapt the existing detector

with new classes, we select m = 40 foreground proposals and

32 background proposals from each few-shot training sample for

weight imprinting. The foreground IOU interval is split into four

bins {0.5–0.6, 0.6–0.7, 0.7–0.8, and 0.8–1.0} in (1). The sampling

ratio {ηi} for each bin is set to {0.1, 0.2, 0.3, and 0.4}. For the

learning of GSL model, we initialize the temperature parameter

αnv to be 1 and the bias parameter βnv to be 0. GSL is trained

using SGD with a learning rate of 0.01 and momentum of 0.9.

A fixed number of 32 foregrounds and 96 backgrounds are

sampled from the top 300 proposals for each training image.

Each minibatch is constructed with 12 images. All experiments

are implemented on PyTorch 1.0 and trained with 4 RTX 2080

Ti GPU.

4.4 Incremental few-shot object detection

4.4.1 Experimental setup
To evaluate our approach, we follow the common practice of

k-shot but with the key difference that only the GSL model is

learned while the other part of the detection model is frozen. In

particular, our approach is evaluated on the commonly used object

detection benchmarks, Pascal VOC (Everingham et al., 2010) and

MS-COCO (Lin et al., 2014), following the same experiment setting

with meta-RCNN (Yan et al., 2019).

For the first same domain evaluation, we train our model on

the union of the 80K train set and 35K trainval set of MS-COCO

and test on the 5K minival set. For the total 80 categories, 20

categories that are overlapped with Pascal VOC are selected as

novel classes, and the remaining 60 classes serve as base classes.

It is worth noting that base set images may also contain instances

from novel classes. However, we do not provide any annotations

for novel class instances during pretraining. Upon the arrival of

each novel class, the model can only access the annotation of k

instances, where k = {1, 5, 10, 30} for all experiments. For the

cross-domain evaluation from MS-COCO to VOC, the model is

first trained onMS-COCO and then evaluated onVOC2007 test set.

Different from the first experiment that focuses on evaluating cross-

category model generalization, this setup is further to appraise the

cross-domain generalization ability.

4.4.2 Results on MS-COCO
As shown in Table 1, on the proposed few-shot detection

benchmark, we have compared our approach with three baselines.

For the first baseline denoted as “Feature-Reweight” (Kang et al.,

2019), it is a meta-learning-based approach which is originally

designed for non-incremental learning and is adapted to the

incremental setting (Perez-Rua et al., 2020). The second baseline
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TABLE 1 Comparison with iFSOD baselines on MS-COCO.

Methods Novel AP Base AP

1-shot 5-shot 10-shot 1-shot 5-shot 10-shot

Feature-reweight; Kang

et al. (2019)

0.1 0.8 1.5 2.5 3.3 3.4

ONCE; Perez-Rua et al.

(2020)

0.7 1.0 1.2 17.3 16.9 19.7

Meta-RCNN; Yan et al.

(2019)

1.6 2.3 4.2 21.5 20.3 20.1

Imprinting; Qi et al.

(2018)

3.0 4.3 6.6 23.6 24.9 24.6

EWC; Kirkpatrick et al.

(2017)

3.1 4.0 4.6 11.6 14.9 15.8

IMM; Lee et al. (2017) 3.3 4.6 6.5 23.4 22.9 24.2

E-RCNN w/o GSL 3.5 5.8 7.8 27.3 27.4 28.0

E-RCNN 3.7 6.1 8.0 28.5 28.5 28.7

Bold values indicate mAP (mean Average Precision).

is the state-of-the-art approach ONCE (Perez-Rua et al., 2020),

which is also the only incremental few-shot detection benchmark

available to date. The third baseline is a simplified version of

our framework, where only the proposed imprinting process is

preserved, denoted as “E-RCNN w/o GSL”. Regarding the results,

we have several observations. (1) The accuracy of the existing

meta learning approaches is still far away from satisfaction.

Although they can be further improved after fine-tuning the

meta model, the episodic learning scheme is memory inefficient

when the number of classes increases, which makes them not

feasible for real-world iFSOD scenarios. (2) Compared with

the baseline “E-RCNN w/o GSL”, the GSL model can bring

significant AP (Average Precision) improvement of 0.7 points

on base classes, which naturally solves the issue of catastrophic

forgetting. (3) Our method achieves the best performance in

all different data splits and different numbers of training shots.

The improvements, up to 6.8 points in mAP (mean Average

Precision), indicate the effectiveness of our approach. (4) The

proposed imprinting approach outperforms the original imprinting

approach by 1.4 points under the 10-shot scenario, which indicates

blindly making use of all the positive anchors can lead to degraded

performance. We conjecture this because the distribution of ROIs

generated by the RPN is highly skewed to low IOU levels (Pang

et al., 2019). Random sampling may result in the imprinted

weights to be biased toward low IOU level and thus fails to

recognize high IOU anchors that are more crucial for improving

detection performance.

4.4.3 Results on MS-COCO to Pascal VOC
We then evaluated the proposed method in a cross-

dataset setting, where the model is first trained on MS-

COCO and evaluated on PASCAL VOC2007 test set. The

results show that our approach outperforms the state-of-

the-art ONCE by 10.1 points under 10-shot case (2.6 vs.

12.7), which confirms the generalization advantages of our

method when transfers to a test domain different from the

training one.

4.4.4 Results on Pascal VOC
We provide the AP50 performance on VOC 07 test set, as

shown in Table 2. Our methods consistently outperform meta-

learning approaches by approximately 10–20 points in fewer shots

and achieve comparable results with the state-of-the-art non-

incremental approach TFA, though our model does not fine-tune.

In all experiments, the performance gain of GSL is significant

and robust for base classes, i.e., up to 5 points improvement in

AP50, which validates its remarkable performance in distinguishing

catastrophic forgetting caused by prediction bias. However, when

the total shots get fewer, the performance gain on novel classes

becomes lower simultaneously; since under the extremely low data

diversity, the model may fail to capture the intra-class variation of

the category (Hariharan and Girshick, 2017).

4.5 E�ciency analysis

We evaluate the efficiency of various baselines during model

adaption. It is important to note that the adaption efficiency

depends on both computational complexity and adaptation speed.

First, we compute the FLOPs for each iteration and average the

results among different iterations to get the final computational

complexity. We implement this through using the open-source

library “DeepSpeed”. Next, we measure adaptation speed by

counting the total training iterations for the adaptation process.

Furthermore, we also report the actual memory cost during few-

shot adaptation to directly reflect the memory efficiency of different

methods. In particular, we utilize three metrics to measure the

computational efficiency of the different baselines.

Computational complexity: calculating the computational cost

of training a deep neural network in FLOPs involves considering

both the inference step and the backward gradient step. In this

study, we use Faster R-CNN with Resnet-50 as the back-bone,

and we calculate computational complexity based on FLOPs in

a single training iteration, with a fixed image size of 1,000 ×

800. In particular, model training is based on the top 256 ROI
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extracted by RPN. As shown in Table 3, our method could achieve

the best trade-off between computational complexity and detection

performance. As we can observe, efficiency issues remain a major

concern for meta-learning methods, since the addition of a support

branch considerably leads to larger computational cost. The

naive imprinting method achieves slightly lower computational

complexity than our approach, but it yields worse detection

performance. We believe that this is caused by underfitting due

to the lack of necessary fine-tuning of model parameters. On the

contrary, the proposed GLSmodel can effectively alleviate this issue

and generate unbiased prediction for novel classes, with negligible

computation cost.

Adaptation speed: We define adaptation speed as the total

training iterations during fine-tuning. To avoid overfitting, we

employ an early stopping strategy during the few- shot adaptation.

Meta-learning methods require to fine-tune the ROI feature

extractor that contains millions of parameters, which leads to poor

adaptation speed. From the result, our method adapts significantly

fast, achieving seven times adaptation speed boost compared with

the meta-learning methods.

Memory cost: in addition to other performance metrics,

memory cost serves as an important metric of overall

computational efficiency during the backward-propagation

process, as it is directly tied to the number of trainable parameters

in the model. A com- parison presented in table reveals that our

proposed method requires significantly less GPU memory than

alternative meta-learning approaches during model adaptation.

This can be attributed to our concise network design, where the

proposed GSL model only consists of a few trainable parameters,

resulting in less memory overheads. For instance, our method

consumes a mere 16.7% of the memory required by meta-

RCNN, demonstrating its superior efficiency in terms of memory

utilization. Comparing with the naive imprinting baseline, the

proposed IOU-aware imprinting additionally consumes 4%

memory cost, with a relative improvement of 21.2% percent in

detection accuracy, which indicates that our method achieves a

better efficiency performance trade-off.

4.6 Ablation study

4.6.1 Extensive experiments on GSL model
We first analyze the averaged activation on base and

novel classes, respectively. In particular, we collect the softmax

distributions from all foreground proposals. We average all the

softmax distributions to get the mean distribution. The averaged

activation strength on base classes is calculated by summing all the

scores that belong to base classes. Calculation for novel classes can

be done in the same way. In Figure 3, before applying GSL model,

the imprinted classifier presents much larger activation strength on

novel classes than base classes, which indicates that the logits of

novel classes is over-activated. Regarding this issue, GSL can inhibit

the over-activated logits of novel classes with two bias parameters,

which successfully eliminates the above prediction bias.

To validate the performance of the proposed GSL model, we

evaluate an imprinted Faster R-CNN on Pascal VOC 2007 test

set and count the total number of misclassified proposals before
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TABLE 3 Results of computation e�ciency on MS-COCO dataset.

Methods FLOPs (G) Iterations Memory (Gb) mAP

Feature-Reweight; Kang et al. (2019) 980.2 1.5k 4.04 1.5

ONCE; Perez-Rua et al. (2020) 1,679.1 2.0k 7.81 1.2

Meta-RCNN; Yan et al. (2019) 1,280.0 1.8k 6.35 4.2

Imprinting; Qi et al. (2018) 270.3 0.2k 1.02 6.6

E-RCNN w/o GSL 270.3 0.2k 1.05 7.8

E-RCNN 270.9 0.2k 1.06 8.0

FIGURE 3

Averaged activation strength on base and novel classes: “w/o GSL” denotes only the imprinted classifier is used for evaluation; “w GSL” denotes that

the final prediction is further refined by the proposed GSL model.

and after applying GSL. In particular, we collect all the foreground

proposals from the test set. According to the classification results,

we divide them into two groups. (1) All the proposals that are

misclassified into a wrong class. (2) Proposals belong to base

classes but are misclassified into one of the novel classes. (3)

Proposals belong to novel classes but are misclassified into one

of the base classes. Regarding the results shown in Figure 4,

we have several observations, (1) Over 90% of the misclassified

proposals are from base classes but are falsely classified into

novel classes, which is mainly due to the biased prediction caused

by the overactivated novel class logits. (2) GSL can effectively

inhibit the over-activated logits of novel classes, thus significantly

reduce over 90% percent of the misclassified base class proposal

(from 100,448 to 10,370), as well as the overall mistakes (from

101,763 to 23,026). (3) As a side effect, logits of novel classes

may be overinhibited, which causes a small amount of novel-class

proposals to be misclassified into base classes. However, this effect

is negligible since the overall mistake is reduced, which indicates

that smaller category confusion is achieved after applying GSL. This

can be further validated by the fact that final detection performance

on novel classes is significantly improved (more than 2 points

under AP50).

4.6.2 Ablation on each component
To evaluate the importance of each component, we gradually

add prime-sample guided foreground imprinting (FG-IMP),

adaptive background fusion (BG-IMP), and group softmax layer

(GSL) to our framework. The results are shown in Table 4. First,

without background fusion, background weight is always set to be

ω
bg
t=0 for all learning steps. The detection performance decreases

from 8.0 (FG-IMP + BG-IMP) to 7.3 (FG- IMP only), which

reveals that semantic distribution shift is a key issue when fine-

tuning is not allowed. Second, the GSL model can significantly

improve the detection performance on base classes from 28

to 28.7, validating the effectiveness of this simple method in

preventing catastrophic forgetting. As we can observe, different

components of our framework are simple yet effective. They

can cooperatively address incremental few-shot detection in a

unified manner.

4.6.3 Ablation on di�erent sampling strategies
To study the effects of different sampling strategies, random

sampling, IOU-balanced sampling, and prime-sample guided

sampling are applied on positive samples, respectively. As shown in

Table 5, the proposed imprinting approach outperforms randomly

sampling by 1.4 points, which indicates blindly making use of

low quality proposals may lead to noisy weights. The distribution

of ROIs generated by the RPN is highly skewed to low IOU

levels (Pang et al., 2019). Randomly sampling may result in

the imprinted weights to be biased toward low IOU level, thus

performs poorly in recognizing high IOU anchors. IOU-balanced

sampling provides only small improvements (0.4 points higher AP)

compared with random sampling, which reveals that assimilating

balanced information from each IOU interval is not necessary. In

contrast, our method achieves the best performance, since it can

enforce the classifier to be more accurate on samples with high

IOUs, which are also more important for the overall detection

performance (Cao et al., 2020).
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FIGURE 4

Comparison of number of false positives.

TABLE 4 Ablation study of each component.

Shot Methods Novel Base

10 FG-IMP 7.3 27.9

FG-IMP+ BG-IMP 7.8 28.0

FG-IMP+ BG-IMP

+ GSL

8.0 28.7

Bold values indicate mAP (mean Average Precision).

TABLE 5 Ablation study on sampling strategies.

Shot Methods Novel Base

10 Random sampling 6.6 27.9

IOU-balanced

sampling

7.0 28.5

Ours 8.0 28.7

Bold values indicate mAP (mean Average Precision).

TABLE 6 Ablation study on hyper-parameters k.

Shot k Novel Base

10 4 7.5 27.8

6 7.9 28.0

8 8.0 28.7

Bold values indicate mAP (mean Average Precision).

Then, we evaluate the effectiveness of prime-sample guided

sampling with different hyper-parameters k, which denote the

number of intervals. Experiments in Table 6 show that the results

are very close to each other when the parameter k is set as 4, 6, and

8. Therefore, the number of sampling intervals is not very crucial in

our prime-guided sampling.

4.6.4 Ablation on architecture of GSL
We also study the impact of different architecture designs

for the GSL model. We compare four options, where the bias-

correction transformation is applied to (1) base group, (2) novel

group, (3) base and novel group, and (4) all the three groups.

The results are shown in Table 7. Although including base and

background class provide slightly better performance on base

classes, performance on the new few-shot classes is degraded

significantly. Thus, the bias-correction technique is more suited to

be applied to novel classes only.

TABLE 7 Ablation study on GSL model.

Shot Methods Novel Base

10 None 6.8 28.0

Base 7.4 28.4

Novel (ours) 8.0 28.7

Base+Novel 7.5 28.9

All 7.5 28.9

Bold values indicate mAP (mean Average Precision).

5 Conclusion

In this study, we propose an essentially generic learning scheme

Expandable-RCNN for incremental few-shot detection. First, the

proposed IOU-aware imprinting approach can not only effectively

assimilate a new few-shot detection task by focusing on prime

samples but also naturally solve the issue of semantic shift by

accumulating background knowledge from history. Second, the

proposed lightweight GSL module can efficiently calibrate the

biased prediction with only a few parameters, which provides

a better trade-off between efficiency and accuracy. To sum up,

our approach is simple yet effective and performs remarkably

in few-shot object detection. The effectiveness is validated by

extensive experiments, where our approach yields state-of-the-

art performance on MS-COCO and significantly outperforms the

baseline algorithm by 5.9 points.
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