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Background: This study delves into the crucial domain of sperm segmentation, 
a pivotal component of male infertility diagnosis. It explores the efficacy of 
diverse architectural configurations coupled with various encoders, leveraging 
frames from the VISEM dataset for evaluation.

Methods: The pursuit of automated sperm segmentation led to the examination 
of multiple deep learning architectures, each paired with distinct encoders. 
Extensive experimentation was conducted on the VISEM dataset to assess their 
performance.

Results: Our study evaluated various deep learning architectures with different 
encoders for sperm segmentation using the VISEM dataset. While each model 
configuration exhibited distinct strengths and weaknesses, UNet++ with 
ResNet34 emerged as a top-performing model, demonstrating exceptional 
accuracy in distinguishing sperm cells from non-sperm cells. However, 
challenges persist in accurately identifying closely adjacent sperm cells. These 
findings provide valuable insights for improving automated sperm segmentation 
in male infertility diagnosis.

Discussion: The study underscores the significance of selecting appropriate 
model combinations based on specific diagnostic requirements. It also highlights 
the challenges related to distinguishing closely adjacent sperm cells.

Conclusion: This research advances the field of automated sperm segmentation 
for male infertility diagnosis, showcasing the potential of deep learning 
techniques. Future work should aim to enhance accuracy in scenarios involving 
close proximity between sperm cells, ultimately improving clinical sperm analysis.
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1 Introduction

Infertility is a condition characterized by failing to achieve a clinical pregnancy after 
12 months of regular and unprotected intercourse. It is a global problem, and around 15% of 
couples face it. Although male infertility is not well reported in many countries, research has 
shown that males are responsible for 20–30% of infertility, but 50% of cases are due to a 
combination of male and female factors.
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The analysis of fertility factors is critical for diagnosis of male 
infertility and the treatment of patients. Commonly a specialist 
analyzes the sperms via a microscope. This method is complex and 
leans heavily on the skills of the expert, which may lead to observer 
variability (Popović and Thomas, 2017).

One of the systems used for semen analysis is Computer-aided 
sperm analysis (CASA). It was developed to add automation to the 
procedure in order to remove human factors. This system brings 
accuracy in analyzing different aspects of sperms. But there are some 
limitations to using this system.

First of all, the accuracy of the outcome can be  influenced by 
many different factors. These factors are related to frame rate, sperm 
concertation, etc. (Lu et al., 2014). So, the outcome is so sensitive to 
different indicators like differences in semen biochemistry and the low 
quality of the image (Tomlinson and Naeem, 2018). Also, implanting 
CASA systems in laboratories is costly and comes with complexity.

Recent advancements in machine learning and artificial 
intelligence (AI) have shown promise in addressing these limitations. 
Deep learning, a branch of machine learning, emulates the way 
humans acquire knowledge and has been embraced for many imaging 
applications in healthcare, such as disease classification, edge 
detection, and image segmentation. The application of deep learning 
techniques to sperm analysis aims to enhance accuracy and reliability 
while reducing the dependency on highly skilled specialists.

Our study seeks to leverage these advancements by developing a 
modified U-Net architecture specifically tailored for sperm 
segmentation in microscopic images. The U-Net architecture is 
chosen for its proven efficacy in medical image segmentation, which 
is critical in accurately identifying and analyzing sperm cells amidst 
complex backgrounds. By incorporating advanced data augmentation 
techniques and transfer learning, we  aim to improve the model’s 
performance in real-world conditions, addressing challenges such as 
closely adjacent sperm cells and varying image quality.

The primary objectives of this research are to enhance the 
accuracy of automated sperm segmentation and to provide a robust, 
reliable tool for clinical use in diagnosing male infertility. By 
improving the precision and efficiency of sperm analysis, we hope to 
contribute significantly to the field of reproductive health, ultimately 
aiding in better diagnosis and treatment outcomes for affected couples.

2 Related works

Automatic human sperm segmentation is a critical task and a 
variety of methods have been proposed in recent years. These methods 
were mostly based on thresholding, clustering, combining multiple 
color spaces, and convolutional neural networks (CNN).

Combining Otsu thresholding and wavelet transforms is one 
method for detecting sperm (Gonzalez-Castro et al., 2009; García-
Olalla et al., 2015). Discrete Wavelet Transform (DWT) is a technique 
that describes texture patterns. This approach correctly segments all 
images that reach the description phase. In fact, this strategy rejects 
all the pictures that were not segmented correctly. Although some of 
the truly segmented images might be missed by this method (García-
Olalla et  al., 2015). Otsu thresholding is a simple, unsupervised 
method that can be used for image segmentation (Otsu, 1979).

The proposed technique (Ghasemian et  al., 2015) for sperm 
region detection included different stages. The first stage of this 

algorithm contained the Sobel edge detection. In the next phase, they 
removed possible divergence in detected edges. After filling image 
holes and removing noises and small objects, only sperms remained 
in the output images.

Nissen et al. (2017) trained different deep convolutional neural 
network architectures in order to compare their capability for sperm 
cell segmentation and object detection. They used a dataset of 765 
grayscale images and developed seven different architectures. They 
were not able to use many pooling layers in their networks due to the 
limitations related to computation time.

Marín and Chang (2021) proposed and compared two well-
known CNN architectures for sperm segmentation task. They used the 
SCIAN-SpermSegG dataset to train Unet and Mask-RCNN on it. The 
size of the dataset was limited. So, they performed data augmentation. 
They also trained networks under two scenarios. No pre-trained 
weights were applied to the original architecture in the first scenario. 
However, in the second one, the influence of transfer learning was 
tested on each model.

Dewan et al. (2018) developed a method based on a blob detection 
technique (bankman 2002) for choosing potential sperm cells. By 
using Gaussian blur-based de-noising, they convert frames to 
grayscale images. In the next stage, they employ Sobel-based edge 
detection for extracting an edge image from the denoised image. The 
outcome will be a binary image by thresholding and removing noise 
in the final step.

Hicks et  al. (2019) performed a multimodal analysis for 
predicting sperm motility. For the sperm detection part, they used 
Harris and Stephens corner detection algorithm (Harris and 
Stephens, 1988).

A recent study introduces a novel approach for estimating sperm 
count through computer-aided techniques, aiming to reduce the 
subjectivity in semen analysis. Utilizing object detection methods, this 
research focuses on estimating the motility and count of active sperm, 
tested on the Visem dataset. This approach underscores the potential 
of computer-aided methods in enhancing the accuracy of semen 
analysis, reporting a not-super tuned result with a mean Average 
Precision (mAP) of 72.15 (Dobrovolny et al., 2023).

Another study assesses the performance of two deep learning 
models, U-Net and Mask-RCNN, in the segmentation of human 
sperm components, including the head, acrosome, and nucleus. By 
implementing strategies such as data augmentation, cross-validation, 
hyperparameter tuning, and particularly transfer learning, significant 
improvements were achieved in the segmentation accuracy. The 
U-Net model, enhanced with transfer learning, demonstrated up to 
95% overlap with manually segmented masks, as evaluated by the Dice 
coefficient, outperforming existing methods in sperm part 
segmentation. These findings highlight the impact of advanced deep 
learning techniques and transfer learning in pushing the boundaries 
of accuracy and reliability in sperm morphology analysis (Marín and 
Chang, 2021).

This paper is structured as follows: Section 2 reviews the current 
methodologies and their limitations, Section 3 describes the modified 
U-Net architecture and our approach to data augmentation, and 
subsequent sections discuss the implementation details, results, and 
clinical implications of our findings. Through this research, 
we contribute to the ongoing efforts to apply deep learning techniques 
in medical imaging, specifically in the enhancement of reproductive 
health diagnostics.
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3 Methods

3.1 Data augmentation

Data augmentation plays a pivotal role in the training of deep 
learning models, especially in fields where the acquisition of large and 
varied datasets is challenging, such as in the segmentation of sperm 
cells. By artificially increasing the diversity of our training set, we aim 
to improve the model’s generalizability and robustness to variations 
in new, unseen images. This is particularly crucial in sperm 
segmentation, where variations in shape, size, orientation, and 
contrast of sperm cells across different samples can significantly affect 
model performance.

3.1.1 Rotation

3.1.1.1 Purpose
Sperm cells can be  oriented in any direction in microscopic 

images. Introducing rotational variance through random rotations 
ensures our model does not learn orientation-specific features, thereby 
enhancing its ability to recognize sperm cells regardless of their 
angular position.

3.1.2 Flip (horizontal and vertical)

3.1.2.1 Purpose
Similar to rotations, horizontal and vertical flips augment the 

dataset with mirrored images, further training the model to 
be invariant to the orientation of sperm cells. This technique mimics 
the random orientation sperm cells can have on a slide, ensuring 
robust detection capabilities.

3.1.3 Brightness and contrast adjustment

3.1.3.1 Purpose
Variations in lighting and image quality are common in 

microscopic images due to differences in sample preparation and 
imaging equipment. Adjusting brightness and contrast simulates these 
variations, preparing the model to perform well under various 
imaging conditions.

3.1.4 Gaussian noise

3.1.5 Purpose
Microscopic images often contain noise introduced during the 

imaging process. By adding Gaussian noise, we  simulate these 
imperfections, training our model to distinguish between noise and 
crucial features of sperm cells, enhancing its accuracy in real-
world scenarios.

3.1.6 Color augmentation

3.1.6.1 Purpose
Although sperm cells are typically imaged in grayscale, variations 

in staining and imaging techniques can introduce subtle color 
variations. Color augmentation trains the model to be resilient to 
these variations, potentially useful in scenarios where color images are 
used or when slight color variations convey important information.

3.1.7 Impact on model performance
The application of these augmentation techniques has had a 

noticeable impact on the performance of our deep learning models. 
Specifically, models trained on the augmented dataset demonstrated 
improved accuracy and generalizability when tested on unseen 
images. This is evidenced by a reduction in overfitting, as the model 
learns to focus on invariant features of sperm cells rather than 
memorizing specific images. Furthermore, the improved robustness 
to variations in sperm cell appearance and imaging conditions directly 
addresses the challenge of accurately segmenting closely adjacent 
sperm cells—a significant hurdle in automating sperm analysis.

By documenting the specific augmentation techniques and their 
motivations, we aim to provide a clear pathway for replicating our 
results and further advancing the field of automated sperm analysis. 
The detailed parameters and their purposes underline our methodical 
approach to overcoming dataset limitations and enhancing model 
performance, crucial steps toward the development of reliable 
computer-aided sperm analysis tools.

3.2 Methodological overview

In the pursuit of advancing automated sperm analysis, our 
research employs a multifaceted methodological approach grounded 
in deep learning and image processing technologies. Central to our 
investigation is the deployment of a modified U-Net architecture, 
chosen for its proven efficacy in medical image segmentation tasks. 
This choice is predicated on the architecture’s remarkable ability to 
accurately delineate intricate structures within complex biological 
images, a capability crucial for the segmentation of sperm cells from 
diverse and often challenging backgrounds. By adapting and refining 
this architecture, our study aims to address the critical gap in accurate, 
automated sperm detection and segmentation—an essential step 
forward in diagnosing and understanding male infertility.

The methodologies section that follows is designed to detail the 
systematic steps taken to tailor the U-Net architecture to the specific 
challenges inherent in sperm segmentation. Given the variable nature 
of sperm morphology and the presence of closely adjacent sperm cells 
in microscopy images, our adaptation focuses on enhancing the 
model’s precision and reliability under these conditions. Additionally, 
we incorporate comprehensive data augmentation strategies to ensure 
robust model training, mitigating the limitations imposed by the 
scarcity of labeled data in this domain. The rationale behind these 
methodological choices is twofold: to push the boundaries of current 
sperm segmentation capabilities and to establish a framework for 
future research to build upon. By elucidating these approaches, 
we invite readers to grasp the foundational strategies that guide our 
work, setting the stage for the technical intricacies that follow.

3.3 U-Net

In this paper we use UNet architecture which was first introduced 
by Ronneberger et al. (2015). This architecture was developed for Bio 
Medical Image Segmentation. UNet has two paths called encoder 
and decoder.

The main purpose of first path that also called contraction path is 
to extract feature maps and take the image information. The 
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contraction path uses regular CNN architecture and contains of 
convolution and max pooling layers.

The decoder path which represents the uniqueness of UNet, 
combines the feature and spatial information and is used for 
localization (Sultana et  al., 2020). This path which is also called 
symmetric expanding path, needs to accept image of any size. So, it 
does not contain any dense layer and only contains convolutional layers.

3.4 Other architectures

3.4.1 LinkNet
Many architectures which are employed for segmentation, 

consist of several downsampling operations. This may lead to losing 
spatial information. Recovering this lost information is a 
challenging task due to the structure of most architectures. Because 
they mostly use only the downsampled output of encoder. 
Accordingly, LinkNet architecture proposes a way for linking each 
encoder and decoder (Chaurasia and Culurciello, 2017). This 
architecture attempts to recover spatial information by connecting 
input of each encoder to its corresponding decoder. So, the 
information would be  recovered by upsampling operations in 
decoder. This novelty, allows the decoder to reduce its parameters 
which leads to more efficiency.

3.4.2 MANet
This architecture proposed by Xu et al. (2021) for classification of 

COVID-19 positive cases from CXR images. The attention 
mechanisms can increase the abilities of a network and improve its 
functioning capabilities.

The attention block guides the model to concentrate on important 
parts of the input image. In other words, inappropriate features cannot 
affect the training process. This capability of model is essential in the 
analysis of medical pictures.

3.4.3 U-Net++
U-Net++ is an encoder decoder architecture which has some 

advantaged over common Unet (Zhou et al., 2018).
The construction of U-Net mostly leads to losing details. As a 

result, most variants consist of some skip pathways between encoder 
and decoder. Similarly, in U-Net++, the feature maps of the encoder 
go through a dense convolution block. This can fill the space between 
the feature maps of the encoder and decoder. Another aspect of the 
proposed architecture is deep supervision which enables the model to 
perform on accurate or fast mode due to the situation.

3.4.4 PSPNet
Pyramid scene parsing network was first introduced in ImageNet 

scene parsing challenge 2016 (Zhao et al., 2017). In the backbone of 
this architecture, the common convolutional layers are removed and 
dilated convolutional layers are used in order to improving the 
respective field.

The main capability of this architecture is to capturing the global 
context of the image. Conversely, fully convolutional networks are not 
able to classify pixels based on the context of the entire image. The 
pyramid pooling model is responsible for this capacity of PSPnet. The 
model is able to pool the feature map on a variety of scales. This 
approach helps the model to capture features in different resolution.

3.4.5 FPN
As mentioned before, feature pyramids own the ability to 

distinguish objects at various scales. However, they are computationally 
expensive. The feature pyramid network has some advantages over 
pyramidal feature hierarchy without a noticeable cost (Lin et  al., 
2017). This architecture consists of two parts; The bottom-up pathway 
is the feedforward computation of the backbone ConvNet and the 
top-down pathway to up sampling higher resolution features. These 
two parts are connected to each other via lateral connections.

These models are compared in Table 1.
According to the table, PSPNet and U-Net++ utilize global 

contextual information, while U-Net and LinkNet focus on local 
context. MANet combines both, and FPN leverages multi-scale 
context. There is a variety in upsampling techniques used, such as 
interpolation in PSPNet and FPN, transposed convolutions in U-Net 
and LinkNet, concatenated convolutions in U-Net++, and deformable 
convolutions in MANet.

The selection of deep learning models for this study was guided 
by a strategic evaluation of their architectural features, adaptability, 
and proven success in tasks akin to sperm segmentation. U-Net and 
its derivatives were particularly chosen for their exceptional 
performance in medical image analysis, characterized by their ability 
to capture fine-grained details and variations in complex biological 
structures. This is crucial for accurately segmenting sperm cells, which 
exhibit significant variability in shape, size, and texture. Furthermore, 
the architecture’s efficient use of convolutional networks to process 
and analyze image data makes it well-suited for handling the intricate 
patterns observed in sperm microscopy images. The decision to 
leverage these models is rooted in their potential to overcome the 
specific challenges of sperm analysis, such as distinguishing closely 
adjacent cells and dealing with the high dimensionality of image data. 
By harnessing the strengths of these architectures, we aim to push the 
boundaries of automated sperm segmentation, enhancing both the 
accuracy and reliability of infertility diagnostics.

Incorporating these models into our research framework also 
allows for an exploration of novel methodological enhancements and 
the application of transfer learning principles. This approach not only 
seeks to improve segmentation outcomes but also contributes to the 
broader scientific dialogue on refining deep learning techniques for 
biomedical imaging. The chosen models stand at the intersection of 
innovation and practicality, offering a robust foundation for 
addressing the nuanced requirements of sperm segmentation and 
setting a precedent for future advancements in the field.

3.5 Pseudocode

In our research, we  meticulously followed a well-structured 
pseudocode to ensure a systematic and reproducible approach to 
sperm segmentation. This pseudocode encapsulates the key steps in 
our methodology. Firstly, we load and preprocess the dataset, splitting 
it into training and validation sets for robust model training. Data 
augmentation techniques are then applied to enhance the dataset’s 
diversity. Following this, we meticulously annotated the augmented 
data to create a comprehensive training set. Our next step involves 
constructing a sophisticated segmentation model designed specifically 
for sperm analysis. We then train this model using the annotated data. 
Subsequently, we evaluate the model’s performance using a validation 
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dataset. For real-world applicability, we  load test images, predict 
segmentations, and visually present the results. Finally, to preserve the 
model’s capabilities, we save it for potential future applications. This 
pseudocode serves as a structured blueprint, ensuring the 
transparency and reproducibility of our methodology in the field of 
sperm segmentation. The whole process is described in Figure 1.

4 Results

4.1 Dataset

We utilized the VISEM dataset, a comprehensive resource 
comprising videos and numerical data collected from 85 
participants spanning an 18-year period. The videos exhibit a 
resolution of 640 × 480 pixels and vary in duration from 2 to 7 min. 
The dataset provides valuable insights into several critical aspects 
of sperm analysis, including sperm motility, sperm head 
concentration, total sperm headcount, ejaculate volume, sperm 
morphology, and viability.

The VISEM dataset is novel in two significant ways. Firstly, it is a 
multi-modal dataset containing diverse data sources such as videos, 
biological analysis data, and participant information. Secondly, it is 
the first dataset of its kind in the field of human reproduction, offering 
a unique and comprehensive resource for researchers. The data was 
originally collected to study the relationship between overweight, 
obesity, and male reproductive function, involving males aged 18 years 
or older. Participants were recruited between 2008 and 2013 from 
various sources, including the normal population, obesity clinics, and 
fertility clinics. The study was approved by the Regional Committee 
for Medical and Health Research Ethics, South East, Norway, and all 
participants provided written informed consent.

Each participant provided semen samples analyzed according to 
WHO recommendations, including assessments of sperm motility, 
concentration, total sperm count, ejaculate volume, morphology, and 
vitality. For video recording, a sample was placed on a heated 
microscope stage at 37°C and examined under 400x magnification 
using an Olympus CX31 microscope. Videos were captured using a 
UEye UI-2210C camera from IDS Imaging Development Systems in 
Germany and saved as AVI files. The resolution of the videos is 
640 × 480 pixels with a frame rate of 50 frames per second.

The dataset also includes sperm fatty acid profiles, fatty acid 
compositions of serum phospholipids, demographic data, and WHO 
analysis data. It comprises over 35 gigabytes of videos and six CSV files 
(five for data and one mapping videos to participant IDs), along with 
a description file. Each video file is named with an ID, capture date, 

optional description, and the code of the person who assessed the 
video using WHO standards.

In the context of this research, we  extracted a total of 100 
frames from the original video recordings. Subsequently, each 
frame underwent meticulous annotation by an expert, 
distinguishing regions as either sperm or non-sperm. These 
annotated frames, along with their corresponding masks, are now 
publicly accessible via the following link: https://github.com/
HananSaadat/Sperm-Segmentation-from-VISEM.

Researchers and scientists can leverage this dataset to advance 
their investigations in the field of sperm segmentation, object 
detection, and computer vision. We  encourage its use for various 
research purposes and welcome contributions from the scientific 
community to further enrich this resource.

4.2 Baseline models

For this experiment, we compared the original Unet with 5 other 
architectures. The reason of using U-Net is due to its performance 
in the medical image segmentation. We  also use other similar 
models in order to improve the results. These models are described 
in sec 2.

4.3 Metrics

Pixel accuracy is a simple and easy metric to evaluate segmentation 
performance. It is the percent of pixels that classified correctly. 
However, due to the class imbalance in the images, as it is shown in 
Figure 2, one class dominates the image. So, even the worst models 
may have high accuracy and this metric is not a good choice for 
evaluating performance.

One of the well-known metrics for measuring the performance of 
medical image segmentation, are F-measure based metrics. In the 
segmentation of medical images, classes are mostly imbalanced and 
false positives matters. So, by combining the sensitivity and precision, 
these measures calculate the overlap between predicted segmentation 
and ground truth.

Two of the popular F-measure based are as follows:
The Intersection over Union (IoU): This metric, also known as 

Jaccard index is calculated by dividing the overlap between the 
predicted and ground truth annotation by the union of these.

Dice similarity coefficient (DSC): This metric is the most used 
metric in the medical image segmentation evaluation and its positively 
correlated with IoU. These metrics are described in Figure 3.

TABLE 1 Comparison of six different architectures that were used in this research.

Aspect PSPNet U-Net U-Net++ MANet LinkNet FPN

Architecture type Encoder-decoder Encoder-decoder Encoder-decoder Encoder-decoder Encoder-decoder Backbone + top-down

Contextual 

information

Global Local Global Global and local Local Multi-scale

Feature reuse ✓ ✓ ✓ ✓ ✓ ✓

Skip connections ✓ ✓ ✓ ✓ ✓ ✓

Upsampling 

technique

Interpolation Transposed 

convolution

Concatenated 

convolution

Deformable 

convolution

Transposed 

convolution

Interpolation
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FIGURE 2

An example frame VISEM dataset. In all the frames most of the pixels 
are covered by non-sperms.
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The performance of all architectures in the task of sperm 
segmentation is shown in Table 2. According to the table, choosing the 
most proper model is not simple. Each model is superior to others in 
some criteria. This choice depends on the problem and its challenges. 
Recall metric indicates how well the model was able to find sperms. 
In fact, the better this criterion is, the fewer sperms have been detected 
as something other than sperm. Precision metric indicates how well 
the model was able to distinguish non-sperm cells. The higher this 
criterion is, the less non-sperm cells are detected as sperm.

As mentioned before, the main challenge in the treatment process 
is that the non-sperm cells are recognized as sperm which makes 
precision metric the critical criteria.

In our study, the ROC (Receiver Operating Characteristic) curve 
emerges as a pivotal instrument for appraising the efficacy of our 
sperm segmentation model tailored for male infertility diagnosis. In 
the realm of binary classification, where distinguishing sperm from 
non-sperm cells is paramount, the ROC curve assumes a profound 
significance. It functions as a visual representation of the delicate 
balance between sensitivity (the model’s capacity to correctly identify 
sperm or true positives) and specificity (its aptitude for correctly 
discerning non-sperm cells or true negatives). By plotting the true 
positive rate (sensitivity) against the false positive rate (1-specificity), 

the ROC curve paints a dynamic picture of the model’s performance 
as we adjust the classification threshold. This flexibility allows us to 
fine-tune the threshold to meet the specific diagnostic criteria. 
Complementing the ROC curve is the Area Under the Curve (AUC), 
a single metric that quantifies the model’s overall performance. A 
higher AUC suggests a superior equilibrium between sensitivity and 
specificity, crucial for accurate sperm analysis.

By integrating the ROC curve into our research, we exemplify a 
robust methodology for evaluating our sperm segmentation model’s 
effectiveness. This visual representation not only underscores our 
comprehension of the nuanced trade-offs between sensitivity and 
specificity in a medical context but also underscores our dedication to 
optimizing the classification threshold to align with diagnostic 
objectives. This comprehensive analysis enhances the credibility of our 
study, delivering valuable insights into our model’s performance and 
its potential to influence male infertility diagnosis positively.

An ROC curve closer to the upper-left corner signifies superior 
performance, indicating that the model excels in identifying true 
positives while minimizing false positives. This dynamic visualization 
allows us to select the optimal threshold tailored to the unique 
diagnostic needs of sperm analysis. Furthermore, the Area Under the 
ROC Curve (AUC) quantifies the overall performance, providing a 
single metric to gauge the model’s accuracy in distinguishing sperm 
from non-sperm cells. These details are presented in Figure 4.

PSPNet with ResNet18 exhibits a lower AUC of 0.81. This 
indicates that it does not performs well in distinguishing sperm from 
non-sperm cells and there is room for improvement. The model’s 
sensitivity and specificity balance are good, but it may have a slightly 
higher false positive rate or lower true positive rate compared to the 
highest-performing models.

UNet++ with ResNet18 achieves an impressive AUC of 0.96 
demonstrates its overall ability to discriminate between these classes, 
the precision score of 0.38 implies that when the model predicts a 
region as containing sperm, it is accurate only 38% of the time, leading 
to a relatively high rate of false positive identifications. Conversely, the 
recall score of 0.94 suggests that the model effectively identifies a 
substantial portion of the true sperm regions but may overlook some, 
potentially resulting in false negatives. This imbalance between 
precision and recall underscores the need for fine-tuning and 

FIGURE 1

The pseudocode which outlines comprehensive sperm 
segmentation pipeline.
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threshold adjustments to achieve a more balanced performance, 
particularly concerning the critical task of distinguishing sperm from 
non-sperm regions.

UNet++ with ResNet34 on the other hand, excels in its 
performance with the highest AUC value. This suggests that this 
model is exceptionally effective in distinguishing sperm cells 
accurately from non-sperm cells. It strikes an impressive balance 
between high sensitivity and specificity, resulting in minimal false 
positives and false negatives.

Some examples of performance of the model on sample images 
from test set, has been provided in Figure 5.

Of course, the model errors that can be seen in precision criteria 
and are related to recognizing non-sperm as sperm do not necessarily 
mean misdiagnosing non-sperm cells. Examining the output images 
of the model helps in better diagnosis. According to these images, the 
major part of the model’s error is in the part of the model where two 

sperms are located near each other. The model considers those two 
sperm as one sperm.

Considering that precision criteria is critical in the selection, 
U-Net with ResNet18 and U-Net++ with ResNet34 are proper models 
and their performance can be seen in the sample pictures. U-Net++ 
with ResNet18, despite its high accuracy, mistakenly recognized many 
pixels as sperm, and for this reason, recorded a high recall. But in the 
rest of the criteria, it performs bad.

5 Discussion

Various experimental approaches for detection and segmentation 
of sperm head are compared in this research. All the introduced 
models are the well-known methods for the segmentation of 
medical images.

FIGURE 3

Visual explanation of dice and IOU.

TABLE 2 Comparison of different architectures.

Model 
metric

Unet_
Resnet18

UnetPlusPlus_
Resnet18

FPN_
Resnet18

Linknet_
Resnet18

Manet_
Resnet18

PSPNet_
Resnet18

UnetPP_
Resnet34

UnetPP_
Efficient-b0

Jaccard 0.712617 0.372147 0.627135 0.661545 0.637536 0.452195 0.721984 0.671776

Dice 0.915384 0.767469 0.884476 0.897238 0.888411 0.809788 0.918576 0.900961

Acc 0.997167 0.985259 0.996244 0.996384 0.99637 0.993657 0.997231 0.996539

Precision 0.827058 0.380877 0.789677 0.755076 0.797224 0.621564 0.820875 0.766913

Recall 0.837399 0.941979 0.752892 0.842287 0.760926 0.623989 0.857001 0.844122
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FIGURE 4

Receiver operating characteristic (ROC) curves for sperm segmentation models. The proximity of each curve to the upper-left corner of the plot 
reflects the model’s effectiveness, with curves closer to this corner indicating superior performance.
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Name Pic1 Pic2

Original Image

Mask

FPN_ResNet18

LinkNet_ResNet18

MANet_ResNet18

PSP_ResNet18

UNet_ResNet18

UNet++_efficientNet

UNet++_ResNet18

UNet++_ResNet34

FIGURE 5

Examples of some results obtained by using the proposed method. Each column presents an image and corresponded results using the proposed 
method.
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Our study utilized the VISEM dataset, a valuable resource 
comprising videos and numerical data collected from 85 participants. 
These videos, with a resolution of 640 × 480 pixels and varying 
durations, offer a diverse and challenging dataset for sperm 
segmentation. The dataset includes information related to sperm 
motility, sperm head concentration, total sperm headcount, ejaculate 
volume, sperm morphology, and viability. These attributes provide a 
holistic view of the dataset’s potential applications in the field of 
reproductive biology and male infertility diagnosis.

To prepare the dataset for analysis, we extracted frames from the 
videos, and each frame was meticulously labeled as either sperm or 
non-sperm by an expert. This labeling process is crucial as it serves as 
the ground truth against which the performance of our segmentation 
models is evaluated.

In our experimentation, we compared the performance of the 
original U-Net architecture with five alternative models. The choice of 
U-Net as our baseline model was informed by its demonstrated 
efficacy in medical image segmentation tasks. Additionally, 
we incorporated other similar models to explore opportunities for 
performance improvement.

Our comprehensive evaluation, as presented in Table 1, revealed 
that each model exhibited strengths and weaknesses across various 
performance criteria. Selecting the most appropriate model for sperm 
segmentation is not a straightforward task, as each model excelled in 
specific aspects. The choice of model should be made with careful 
consideration of the specific problem and its associated challenges.

Our choice of evaluation metrics played a pivotal role in assessing 
the performance of the segmentation models. We acknowledge the 
limitations of using pixel accuracy, a simple yet potentially misleading 
metric, especially in the context of imbalanced datasets. The imbalance 
between sperm and non-sperm classes in the images can result in 
inflated accuracy scores, making it an unsuitable metric for 
performance evaluation.

To address this concern, we employed F-measure based metrics, 
including the Intersection over Union (IoU) and Dice similarity 
coefficient (DSC), which are well-established in the domain of medical 
image segmentation. These metrics account for both sensitivity and 
precision, offering a more balanced assessment of model performance.

Our study introduced the ROC curve as a powerful tool for 
evaluating the performance of our sperm segmentation models in the 
context of male infertility diagnosis. By illustrating the trade-offs 
between sensitivity and specificity, the ROC curve helps us fine-tune 
the classification threshold to meet specific diagnostic criteria. 
Additionally, the Area Under the ROC Curve (AUC) quantifies the 
model’s overall accuracy in distinguishing sperm from 
non-sperm cells.

Our results, as shown in Figure  4, highlight the varying 
performance of different models, with PSPNet exhibiting room for 
improvement and UNet++ with ResNet34 emerging as a 
top-performing model with a balanced sensitivity-specificity profile.

A critical challenge we  identified in our study was the 
recognition of non-sperm cells as sperm, underscoring the 
importance of the precision metric. We  conducted an in-depth 
error analysis, revealing that many errors occurred when two sperm 
cells were located in close proximity, leading the model to consider 
them as a single sperm.

To address this challenge, we recommend further investigations 
into model fine-tuning and threshold adjustments to achieve a more 

balanced performance, especially concerning the critical task of 
distinguishing sperm from non-sperm regions. Moreover, our findings 
highlight the need for domain-specific expertise in refining 
segmentation models.

6 Conclusion

In this study, we explored sperm segmentation’s critical role in 
male infertility diagnosis and reproductive biology research, utilizing 
the VISEM dataset. We aimed to advance understanding and model 
performance in this domain. The dataset’s rich attributes offered 
valuable avenues for male fertility assessment. Expertly labeled 
annotations laid the foundation for our analysis. Our evaluation of 
baseline models, including U-Net, revealed the challenge of selecting 
the optimal model. Each had distinct strengths and weaknesses, 
emphasizing the complexity of the task.

Acknowledging the limitations of pixel accuracy, we employed 
F-measure based metrics like IoU and DSC, offering a more balanced 
view of model performance. We introduced ROC analysis, showcasing 
sensitivity-specificity trade-offs. AUC quantified model accuracy, 
aiding sperm identification. Error analysis highlighted the challenge 
of non-sperm recognition, emphasizing precision’s importance.

In conclusion, our research advances sperm segmentation. By 
leveraging diverse datasets, novel metrics, and ROC analysis, 
we contribute to reproductive biology and male infertility diagnosis. 
Future work should focus on model refinement, threshold 
adjustments, and domain expertise integration to improve precision. 
This study has the potential to enhance healthcare practices and 
contribute to a broader understanding of reproductive biology.
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