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Introduction: Computational models providing accurate estimates of their

uncertainty are crucial for risk management associated with decision-making in

healthcare contexts. This is especially true since many state-of-the-art systems

are trained using the datawhich have been labeled automatically (self-supervised

mode) and tend to overfit.

Methods: In this study, we investigate the quality of uncertainty estimates from

a range of current state-of-the-art predictive models applied to the problem of

observation detection in radiology reports. This problem remains understudied

for Natural Language Processing in the healthcare domain.

Results: We demonstrate that Gaussian Processes (GPs) provide superior

performance in quantifying the risks of three uncertainty labels based on

the negative log predictive probability (NLPP) evaluation metric and mean

maximum predicted confidence levels (MMPCL), whilst retaining strong

predictive performance.

Discussion: Our conclusions highlight the utility of probabilistic models applied

to “noisy” labels and that similar methods could provide utility for Natural

Language Processing (NLP) based automated labeling tasks.

KEYWORDS

automated labeling, clinical text, Natural Language Processing, radiology, semi-

supervised learning, uncertainty, Gaussian processes

1 Introduction

Whilst current machine learning and deep learning models have shown great success

in a variety of automated classification tasks (Rajkomar et al., 2018; Yang et al., 2018),

sensitive healthcare contexts necessitate that these models quantify the risks of different

diagnosis decisions, that is, positive—the illness is highly likely, uncertain—the illness is

likely, with lower risks, negative—the illness is highly unlikely. The three uncertainty labels

(also our class labels) allow each diagnosis decision to be made, by factoring in the degrees

of uncertainty.

This is especially relevant as human annotation is very costly and model

training data are often labeled by automatic labellers that use ontologies or are

rule-based. For example, the UMLS (Unified Medical Language System) ontology

(Bodenreider, 2004) is almost predominantly used to match linguistics patterns

in clinical text to medical concepts [e.g., using the MetaMap tool (Aronson,

2006)]. The corpora annotated in this fashion are used to learn neural

detectors of medical concepts in the self-supervised setting (Zhang et al., 2021).
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Rule-based automatic labellers such as CheXpert (Irvin et al., 2019),

which builds on NegBio (Peng et al., 2018), use rules predefined

by experts to extract clinical observations from the free text of

radiology reports. Both use different rules, where CheXpert is more

conservative, with more uncertain labels.

Most clinical Natural Language Processing (NLP) models focus

on optimizing predictive classification performance on class labels

with point estimates but pay less attention to further quantify

the risks and uncertainty of these labels. Bayesian methods offer

as a solution, a principled approach to produce well-calibrated

uncertainty estimates. Popular Bayesian approximations (e.g.,

model ensembles and dropout techniques) have primarily been

studied in the general NLP domain (Ovadia et al., 2019) or for

continuous healthcare data (Combalia et al., 2020; Leibig et al.,

2017). More rarely, those studies are in Clinical Natural Language

Processing (NLP) (Yang et al., 2019; Guo et al., 2021; Popat and Ive,

2023), which has a unique asymmetric risk where underestimates

and overestimates of confidence should be evaluated differently

(e.g., pessimistic predictions may be needed for cases of early

detection of rare conditions).

In this study, we build a model using Gaussian Processes

(GPs) (Williams and Rasmussen, 2006), a Bayesian non-parametric

method to quantify the uncertainty and disagreements associated

with automatic data labels (non-parametric models investigate

how the data relate rather than imposing of some type

of relationship). Instead of learning distributions over model

parameters as in Bayesian Deep Learning (BDL), GP models

are non-parametric and learn distributions over functions (how

probable are relationships between inputs and outputs), thus

allowing for better generalization. The uncertainty estimates in a

GP model come from its covariance function (or kernel) which

determines how data points influence each other. GPs use this

matrix to leverage the relationships between known data points

and the new points to be predicted. It predicts the mean (expected

values) and variance (uncertainty) of the posterior distribution for

the new inputs.

We measure the quality of these uncertainty estimates based on

the negative log predictive probability (NLPP) evaluation metric.

It is directly related to the entropy (measure of uncertainty)

of the predicted probability distribution. Lower negative log

predictive probability indicates lower entropy, that is, more

confident predictions.

We compare GP performance to two types of Bayesian

approximations: frequentist ensembles using both Random

Forests (RFs) (Breiman, 2001) and Deep Ensembles

(ENS) (Lakshminarayanan et al., 2017), which are considered

state of the art for uncertainty estimation in predictive settings

(Lobacheva et al., 2020; Seedat and Kanan, 2019). We make use of

the three automatic uncertainty labels (considered noisy labels),

as provided by the CheXpert and Negbio labellers for diagnostics

using radiology reports and make the following contributions:

(1)We study the quality of uncertainty estimates of a new range

of uncertainty-aware models, previously understudied in clinical

NLP;

(2) We successfully apply Sparse Gaussian Processes (GPs) to

the diagnosis detection task in radiology reports. To the best of

our knowledge, this is the first application in clinical NLP, and we

demonstrate that GPs provide superior uncertainty representations

yet retain comparable predictive performance when compared to

baselines Random Forests and Deep Ensembles. We release the

code with our experiments1;

(3) We demonstrate the utility of uncertainty estimates for the

models trained with data labeled automatically (self-supervised)

with disagreements (differences of opinions from rule-based

CheXpert and Negbio labellers). GPs outperform the RF and ENS

models, providing less certainty in the predictions for the test

cases where labels assigned by different labellers disagree. Correct

identification of such cases is crucial for reliable and trustworthy

risk management, where any uncertain cases are referred for

screening or to a human expert.

2 Methodology

Gaussian Processes (GPs) offer a principled probabilistic

modeling approach and provide uncertainty estimates without

needing post-processing, hence motivating our modeling decision.

The GP is defined by GP(µ(x), K(x, x′, θ)), where x and x
′

are input and training vectors, θ are the parameters of the

covariance function, a mean function, and covariance function,

respectively. When the GP is realized on observed data, it is given

as p(y|f) =
∏n

i=1 p(yi|fi), where f is a vector of latent functions

p(f|x, θ) =
∏n

i=1 N (fi; 0,Ki), which describe possible relations

between training data and incoming samples. We refer the reader

to Williams and Rasmussen (2006) for more details. In our study,

we apply GPs to the classification task of clinical observation

detection. The challenge with using GPs for classification is that

an approximation for the posterior is required.2 GPs also have

a complexity of O(n3) (Williams and Rasmussen, 2006), due to

the matrix inversion, making it computationally intensive for NLP

tasks using large datasets and high dimensional embeddings.

Hence, in dealing with the these challenges, we follow the

standard domain practices and use Sparse GPs with Black-box

variational inference (Dezfouli and Bonilla, 2015) (minimize the

log-evidence lower bound) and use the Reparameterisation Trick

(Kingma and Welling, 2022) to approximate the GPs. This is a

more computationally feasible method, using a small set of latent

inducing points. This approach is based on Titsias (2009). We also

use automatic relevance determination (ARD) (MacKay, 1996) to

allow for more flexibility in our kernel representation.

3 Experimental settings

3.1 Data

We study free-text radiology reports in the MIMIC-CXR

database v2.0.0 (Johnson et al., 2019). The dataset is labeled by

both the CheXpert (primary label) and Negbio labellers. CheXpert

is based on Negbio, but they follow different strategies in mention

1 The code will be made available upon acceptance.

2 Since the likelihood can no longer be assumed Gaussian due to the

discrete labels, computing the posterior requires sampling as it becomes

computationally intractable and hence, requires methods such as Markov

Chain Monte Carlo and Variational Inference to approximate the posterior.
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detection: Negbio uses MetaMap, and CheXpert curates concepts

predefined by clinical experts.

We analyse the “Oedema” pathology—65,833 reports with three

uncertainty labels: positive, uncertain, and negative as explained

earlier. Oedema was chosen due to the large data size, more

inconsistent labels between the two labellers and more balanced

split between classes. We partition the “Oedema” examples into (1)

63,482 consistent labels (∼96% dataset), where both CheXpert and

Negbio labels agree (CONS: 26,455—positive, 11,781—uncertain,

25,246—negative) and (2) 2,351 inconsistent labels making up∼4%

of the total dataset, where CheXpert and Negbio labels disagree

(INCONS, 522: positive, 1,317: uncertain, 512: negative). Validation

and Test sets preserve the described class proportions and contain

10% of the dataset each.

In our setup, we use two variants of the inconsistent test

sets (i.e., labellers disagree) to quantify the generalization to

different labeling mechanisms namely, NegINCONSTest and

CheXINCONSTest, taking as the “ground truth,” the automatic

Negbio and CheXpert labels, respectively. CheXpert is considered

the primary label; hence, the Train and Validation sets only use

CheXpert labels, also containing both consistent and inconsistent

data as mentioned above.

Note that so far whilst talking about uncertainty we have

considered only predictive uncertainty, or uncertainty in the

predictions, which can be decomposed into two types: aleatoric

and epistemic (Hora, 1996; Hüllermeier and Waegeman, 2021).

Aleatoric/data uncertainty in the output arises from incomplete

information, noise, or class overlap in the dataset. We have

eliminated it in the training data by considering only the CheXpert

labels. We split the data into Train/Dev/Test two times and run our

models on each split. The results shown in the study are averages of

the two runs. Epistemic/model uncertainty is the uncertainty over

which model parameters or functions best explain the observed

data. We have addressed this uncertainty in the best way by

choosing the GP model, which is a non-parametric model. The rest

of the epistemic uncertainty lies with the hyperparameters chosen,

such as the kernel, and this was minimized by trying different

kernels at first.

Text pre-processing (tokenisation, lower-casing, white space,

and punctuation removal) is done using Texthero. The average

token length is ∼43.5 tokens. Each training example’s input data

are represented by a 200 dimensional fixed length vector averaged

over tokens. We use the biomedical Word2Vec-Pubmed word

embeddings (Chiu et al., 2016) to represent tokens.

3.2 Models

Due to constraints in computational resources, our Sparse GP

model consists of 300 inducing points and a radial basis function

(RBF) kernel making use of ARD to learn the length scales.

The expected likelihood term in Lelbo is estimated using Monte

Carlo sampling. Following the best practices in the domain (Gal

and Turner, 2015), the GP model is trained stochastically with

RMSProp (learning rate = 0.003, epochs = 2, batch size = 500).

The RF model [using Scikit-learn (Pedregosa et al.,

2011)] has the following hyperparameters based on random search

over standard parameters: 300 trees and a max depth of 40 (the

hyperparameters were chosen to match 300 inducing points of

GP). Isotonic regression is used to obtain well-calibrated predictive

distributions (again comparable to the GP).

The Deep Ensemble (ENS) model based on Lakshminarayanan

et al. (2017) has five randomly initialized models [MLP with three-

hidden layers with 200 hidden units/layer (with batch norm), Adam

(learning rate = 3e-3), epochs = 10]. Following Lakshminarayanan

et al. (2017), we use adversarial training [fast gradient sign method

(Goodfellow et al., 2015)], for better model robustness.

3.3 Evaluation metrics

The models are evaluated based on predictive performance

(accuracy), and we quantify the quality of the uncertainty

representations using the negative log predictive probability

NLPP = −log p(C = yn|xn). NLPP penalizes both overconfident

predictions that are incorrect predictions and under-confident

predictions that are correct. We optimize for higher predictive

performance and lower NLPP.

Since we do not have ground truth labels for multiple human

experts, we additionally assess the mean maximum predicted

confidence level (MMPCL) of a certain test set, MMPCL =
1
N

∑N
n=1 maxj p(yn = Cj|xn), where N is total number of data

points in the specific test set and Cj is per class label.

4 Results

We carry out two experiments: (1) We measure the

performance in uncertainty representation and predictive

performance of the model trained and validated on primary

labels (CheXpert— CheXTrain and CheXVal, both contain

consistent and inconsistent dataset) for the inconsistent Test

data (disagreement- NegINCONSTest, CheXINCONSTest)

as well as for the consistent Test data (agreement—CONSTest);

(2) We conduct a group-wise performance analysis, particularly

assessing how different models deal with the asymmetric risk of

false negatives.

4.1 Performance across labeller agreement

4.1.1 Inconsistent labels
Evaluating performance on inconsistent labels (CheXpert

and Negbio disagree) highlights the use case of evaluation

on out-of-distribution (OOD) labels (since the models are

trained on CheXpert labels but tested on Negbio labels—

NegINCONSTest). Table 1 illustrates the average predictive

accuracy and average NLPP for all the test sets (NegINCONSTest,

CheXINCONSTest, CONSTest). Overall, all models exhibit a

higher NLPP across on both inconsistent test sets compared to

CONSTest. The high NLPP highlights the models are able to

correctly represent predictive uncertainty, when there was in fact

disagreement in predictions.

For experiments, comparing NegINCONSTest and

CheXINCONSTest, we note that CheXpert hasmore conservative
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TABLE 1 Results comparing GPs, RF, and ENS based on accuracy and NLPP for both inconsistent (OOD) and consistent test sets.

NegINCONSTest CheXINCONSTest CONSTest

Acc↑ NLPP↓ Acc↑ NLPP↓ Acc↑ NLPP↓

GP 0.294 1.234 0.519 0.634 0.816 0.293

RF 0.271 1.451 0.579 0.598 0.795 0.316

ENS 0.263 1.281 0.468 0.691 0.840 0.269

Bold highlights the best results.

labels compared to Negbio: that is, CheXINCONSTest

contains 63% of uncertain labels and 13% negative, whilst

NegINCONSTest 30% uncertain and 63% negative. When

the GP is evaluated on NegINCONSTest (labels are OOD)

it outperforms the RF, yet the RF outperforms the GP on

CheXINCONSTest (labels are in-distribution to training

labels—CheXpert). In the case of ENS, it outperforms GP when

evaluated on CONSTest but performs worse on inconsistent test

sets (both CheXINCONSTest and NegINCONSTest). These

results highlight the RF can be biased/overfit the “conservative”

distribution of the training data, whereas the GP provides

more “neutral” predictions, generalizing better to OOD data

(e.g., NegINCONSTest). The poor performance of ENS on

inconsistent test data [CheXINCONSTest (in-distribution),

NegINCONSTest (OOD)], highlights that ENS does not

generalize to OOD data nor does it handle noisy labels well. The

GP generalization performance is highly desirable in medical

settings, and our results on GP generalization are corroborated

by Schulam and Saria (2017). For further analysis based on

calibration, see Appendix.

4.1.2 Consistent labels
As a control experiment and to account for the imbalanced

data, we randomly sample the CONS test set (CONSTest) such that

it has the same size as the other two inconsistent test sets. All models

show lower NLPP compared to the inconsistent experiments as the

cases within CONSTest tend to have high certainty/agreement.

4.2 Group-wise analysis for asymmetric
risk

A significant asymmetric risk in the healthcare context lies in

False Negatives (FN), that is, missing a positive diagnosis. Ideally,

models should represent FNs with low predictive confidence, whilst

True Positives (TPs) should have high predictive confidence. In

Table 2, we compare the MMPCLs of FNs and TPs for the positive

and uncertain labels for NegINCONSTest and CONSTest and

ignore the negative labels.

On CONSTest (labellers agree), the GP provides lower

MMPCL for FN predictions and higherMMPCL for TP predictions

when compared to the RF across all test sets. Whilst ENS has

good performance for FN positive and TP uncertain, this is traded

off for reduced performance for FN uncertain and TP positive. We

note that since GP has better balanced performance across both

classes (positive and uncertain), it is likely to generalize better/not

overfit, thus dealing with asymmetric risk in a more appropriate

and balanced manner.

Similar patterns are observed for NegINCONS, with the GP

better representing the asymmetric risk (for both positive and

uncertain) when compared to both ENS and RF. However, the

results are less conclusive due to the sparsity of FNs: we have

only one FN data point with positive label for GP and RF

(denoted by the *). Furthermore, the two data points are different;

hence, the result where the RF outperforms on this subset cannot

be considered as reliably representative. That said, the absence

of TP uncertain labels for RF model mirrors the disagreements

between the two labellers and highlights the inherent difficulty in

predicting uncertain cases.

Overall, the GP and ENS give similar performance for in-

distribution test data CONSTest; however, on the OOD test data

NegINCONSTest, the GP gives better performance.

5 Conclusion

Current computational models in support of clinical decision-

making are mostly unaware of uncertainty. In the modern

healthcare systems, patients are often treated according to preset

treatment pathways. This can improve outcomes as long as the

correct diagnoses are made initially. However, there is often some

degree of uncertainty in initial assessments, and this can be lost

over the patient’s journey. A prediction model that can detect

and interpret this uncertainty could be used to highlight when

alternative diagnoses and decisions need to be considered. This

is an important step toward more flexible, interpretable, and

trustworthy predictive models for clinical decision-making, which

is an important goal in AI.

In this study, we have studied the performance of a Sparse GP

model for clinical NLP that is capable of quantifying uncertainty

in predictions. This model can be particularly advantageous

in self-supervised learning scenarios with automatically labeled

datasets (a very common scenario in Clinical NLP). It predicts

lower confidence estimates for the test examples where different

labeling heuristics tend to disagree, thus representing and carrying

uncertainty throughout computational models to support clinical

decision-making for more reliable, informed decisions.

In addition, overall our sparse GP provides more conservative

predictions by showing lower confidence in incorrect predictions.

This is important in healthcare contexts where potential harms

from a model error can be very extensive as compared to singular

errors of a doctor. This also implies that our model could be used

to flag clinical notes for further review (e.g., by a human expert).
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TABLE 2 MMPCL results for GP, RF, and ENS for FNs and TPs evaluated on NegINCONSTest and CONSTest.

NegINCONSTest CONSTest

Positive Uncertain Positive Uncertain

FN GP 0.565∗ 0.800 0.647 0.638

RF 0.408∗ 0.857 0.657 0.661

ENS 0.694 0.876 0.624 0.640

TP GP 0.711 0.605 0.797 0.752

RF 0.680 – 0.774 0.730

ENS 0.670 0.318 0.780 0.834

Bold highlights the best results: lower confidence FN and higher confidence TP are desirable. RF did not produce any TP for Uncertain NegINCONSTest. ∗Denotes that we have only one FN

data point with positive label for this classifier.

Whilst this study is focussed on uncertainty in labeling for

medical tasks, we believe it highlights the utility of probabilistic

models applied to “noisy” labels and that similar methods

could provide utility for NLP based automated labeling tasks.

Furthermore, we hope that this study will spur further research

in this understudied area of automated labeling in clinical NLP—

where annotated data are limited and expensive.

6 Limitations

Whilst our study presents an advancement in applying GPs to

Natural Language Processing (NLP) problems, several limitations

should be mentioned. We have organized them in the following

sections below.

6.1 Modeling

6.1.1 Hyperparameter tuning
Due to time and computational resource limitations, this

project utilized only the RBF kernel, though other kernels such

as Matern and convolutional kernels could potentially enhance

performance, especially for high-dimensional data (van der Wilk

et al., 2017). In addition, the GP model was run using only

300 inducing points. Exploring models with higher numbers of

inducing points could yield better results. Future study should

compare the GP model with state-of-the-art deep learning models,

such as Transformer, to evaluate their effectiveness in handling

data uncertainty.

6.1.2 Decision boundary
For practical application in medical diagnosis, it is necessary to

select a decision boundary based on prediction confidence of the

model itself to filter out uncertain diagnoses effectively. This will

allow the model to filter out those diagnoses that are truly uncertain

and positive for manual revisions and also make sure the model has

an optimal False Negative rate.

6.2 Data

Another limitation of this study is that only a single diagnosis

Oedema with only less than 4% of the inconsistent data was

explored. The labels used are not the ground truth. In the future,

it would be helpful to evaluate the models against the ground truth

labels and to get a better idea of the models’ true performance. We

suspect this performance will depend on how much humans will

agree with the automatic annotation.

In general, GP models usually do not work well with large data

sizes (like over 10K), and this study uses over 60K data. We hence

believe the results could be further improved with sampling or

cross-validation.

This study used fairly standard word embeddings, which

are generally regarded as “show features”. More could be done

to improve the data representation, such as using dependency

graphs (Irvin et al., 2019), ontology-informed word embeddings

(Zhang et al., 2021), or other relevant feature extraction tools.

We believe those less shallow representations could again

improve performance.
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Appendix

Calibration

Figure A1 compares the calibration of the GP, RF, and ENS

models, which all generate probabilities close to the optimal

curve. Whilst, seemingly the calibrated RF model (using Isotonic

Regression) gives more optimal predictions than the GP and ENS

models, this result is based on the CONS test set (which is the same

as the training distribution where both CheXpert and NegBio labels

agree). However, both the GP and ENS are slightly less optimal.

ENS is a neural model, and these models are known for poor

calibration even when they exhibit very good performance (Guo

et al., 2017) like in our case (see Table 1 where ENS shows the

best performance for CONSTest). GP generalizes better across

labellers, and hence, the GP overfits less to CONS specifically, when

compared to RF.

Examples of false negatives

A data point from consistent test set labeled Positive classified

as Negative, (paraphrased)

FIGURE A1

Reliability diagram for the CONSTest set: fraction of positives (y-axis) vs. mean predicted value (x-axis).

AGAIN MILD PROMINENCE OF THE PULMONARY INTERSTITIAL

MARKINGS SUGGESTIVE OF PULMONARY OEDEMA, STABLE.

SUBSEGMENTAL ATELECTASIS AT THE LUNG BASES. THERE IS NO

DEFINITE CONSOLIDATION. NO PNEUMOTHORACES ARE SEEN.

A data point from inconsistent test set labeled Positive classified

as Negative, (paraphrased)

THE PATIENT IS STATUS POST DUAL-LEAD LEFT-SIDED AICD

WITH LEADS EXTENDING TO THE EXPECTED POSITIONS OF

THE RIGHT ATRIUM AND RIGHT VENTRICLE. PATIENT IS STATUS

POST MEDIAN STERNOTOMY. THERE IS PROMINENCE OF THE

CENTRAL PULMONARY VASCULATURE SUGGESTING MILD

OEDEMA/VASCULAR CONGESTION. THE CARDIAC SILHOUETTE

REMAINS QUITE ENLARGED. DIFFICULT TO EXCLUDE SMALL

PLEURAL EFFUSIONS. THERE IS BIBASILAR ATELECTASIS. NO

DISCRETE FOCAL CONSOLIDATION IS SEEN, ALTHOUGH OPACITY

AT THE LUNG BASES PROJECTED ON THE LATERAL VIEW WHILE

MAY BE DUE TO OVERLYING SOFT TISSUES, CONSOLIDATION IS

DIFFICULT TO EXCLUDE.
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