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Alzheimer’s disease (AD) is a gradually advancing neurodegenerative disorder

characterized by a concealed onset. Acetylcholinesterase (AChE) is an e�cient

hydrolase that catalyzes the hydrolysis of acetylcholine (ACh), which regulates

the concentration of ACh at synapses and then terminates ACh-mediated

neurotransmission. There are inhibitors to inhibit the activity of AChE currently,

but its side e�ects are inevitable. In various application fields where Al have

gained prominence, neural network-based models for molecular design have

recently emerged and demonstrate encouraging outcomes. However, in the

conditional molecular generation task, most of the current generation models

need additional optimization algorithms to generate molecules with intended

properties which make molecular generation ine�cient. Consequently, we

introduce a cognitive-conditional molecular design model, termed PED, which

leverages the variational auto-encoder. Its primary function is to adeptly produce

a molecular library tailored for specific properties. From this library, we can

then identify molecules that inhibit AChE activity without adverse e�ects. These

molecules serve as lead compounds, hastening AD treatment and concurrently

enhancing the AI’s cognitive abilities. In this study, we aim to fine-tune a

VAE model pre-trained on the ZINC database using active compounds of

AChE collected from Binding DB. Di�erent from other molecular generation

models, the PED can simultaneously perform both property prediction and

molecule generation, consequently, it can generate molecules with intended

properties without additional optimization process. Experiments of evaluation

show that proposed model performs better than other methods benchmarked

on the same data sets. The results indicated that the model learns a good

representation of potential chemical space, it can well generate molecules with

intended properties. Extensive experiments on benchmark datasets confirmed

PED’s e�ciency and e�cacy. Furthermore, we also verified the binding ability

of molecules to AChE through molecular docking. The results showed that our

molecular generation system for AD shows excellent cognitive capacities, the

molecules within the molecular library could bind well to AChE and inhibit its

activity, thus preventing the hydrolysis of ACh.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition
that progresses subtly from its onset (Cummings and Cole,
2002). Symptoms in the clinical setting encompass memory
deterioration, speech difficulties, apraxia, agnosia, deficits in visual-
spatial abilities, executive function disturbances, and shifts in
personality and behavior, etc. The etiology is unknown so far.
AD has the characteristics of long course of disease, many
causes and complicated pathology. There are other irregularities
of neurotransmitters in the center in addition to the drop-in
acetylcholine levels in the brain. Additionally, the aggregation
of A, the disturbance of metal ion metabolism, the imbalance
of calcium balance, the rise in free radicals, and the onset
of inflammation are the primary causes of AD. In view
of the above causes, the therapeutic targets of AD mainly
include acetylcholinesterase (AChE), metal ions, Beta Amyloid
Peptide (β-AP), monoamine oxidase (MAO), free radicals,
tau protein, N-methyl-D-aspartate (NMDA) receptor and other
related targets (Casal et al., 2002; Sambamurti et al., 2011).
Acetylcholine (ACh) is the first neurotransmitter discovered
by human beings, and its mediated neurotransmission is the
basis of nervous system function. Sudden interruption of ACH-
mediated neurotransmission is fatal, and its gradual loss is
associated with progressive deterioration of cognitive, autonomic
and neuromuscular functions (Klinkenberg et al., 2011). However,
AChE is an efficient hydrolase that catalyzes the hydrolysis of
ACh, which regulates the concentration of ACh at synapses
and then terminates ACh-mediated neurotransmission. There
are inhibitors to inhibit the activity of AChE, but its side
effects are inevitable (Alonso et al., 2005) Therefore, there is
an increasing demand for developing active compounds with
stronger inhibitory function and minimal side effects. Artificial
intelligence (AI) leverages acquired knowledge and insights to
formulate decisions and strategize subsequent actions. Modern
methods incorporate a variety of strategies relevant to areas such
as decision-making or cognitive-enhanced network security. Given
that modern machines often lack intuition, emotional intelligence,
common sense, and other human-centric attributes essential
for effective planning and decision-making, there’s potential to
enhance planning-focused cognitive technology through broader
artificial intelligence research (Fintz et al., 2022; Liu et al., 2022; Qiu
et al., 2022).

To efficiently generate molecule library with intended
properties, we propose a cognitive conditional molecular design
model based on VAE which can predict properties and generate
molecules concurrently, named PED, to screen molecules that
can inhibit AChE activity from the generated molecular libraries
as lead compounds and accelerate the treatment of AD. In this
study, we aim to finetune a VAE pre-trained on the ZINC database
using active compounds of AChE collected from BindingDB. On
the same data sets, PED performs better than other methods.
Meanwhile, we show that the model can well generate specified
molecular properties. Furthermore, we also verified the binding
ability of molecules to AChE through molecular docking. The
results showed that the molecules in the molecular library could
bind to AChE well.

The main contributions of this manuscript are summarized as
below.

1. We put forth a novel deep learning model based
on variational auto-encoder, namely PED, to efficiently
generate molecular library with desired properties for AChE,
simultaneously, show the cognitive capacities of AI. PED is
engineered to manage both property forecasting and molecular
generation in tandem, striving for superior outcomes relative to
advanced methods.

2. In PED, given a specific set of properties, it samples new
molecules directly from the conditionally generated distribution
without adding additional optimization processes like other
models.

3. Extensive testing was carried out on the ZINC database to
assess PED’s efficacy. The outcomes from these tests highlighted
PED’s predominant performance over other deep generative
frameworks.

4. Using active AChE compounds sourced from Binding DB,
we refine the PED initially pre-trained on the ZINC database to
produce a molecular library. Furthermore, we also verified the
binding ability of molecules to AChE through molecular docking.
The results showed that the molecules in the molecular library
could bind to AChE well.

The subsequent sections of this research are structured in the
following manner. Some previous studies in de novo molecular
design are reviewed in Section 2. Our model is introduced in
Section 3. Experimental results and conclusions are presented in
Section 4. Performance Analysis and Section 5. Conclusion and the
future work respectively.

2 Related works

In this section, we first review the development of deep learning
in molecular generation in recent years, and then introduce several
commonly used molecular generation strategies and models.

2.1 Deep learning in molecular generation

Within the realm of molecular design, virtual screening
(VS) has conventionally been employed to pinpoint molecules
potentially yielding optimal experimental outcomes (Shoichet,
2004). Contrasting de novo molecular design, the source of
molecules is distinctive: in virtual screening, the structure is known
in advance, while in molecular de novo design, it is an attempt to
generate the structure to be evaluated. Although virtual screening
libraries have become very large according to the standards of
drug discovery, the chemical space corresponding to these libraries
only occupies a small part. When considering such a compound
library, the evaluation method may inevitably sacrifice the accuracy
of prediction. By using de novo molecular design to generate
molecules in a directional way, computational workers hope to
cross the chemical space more effectively and obtain the best
chemical solution while analyzing fewer molecules than large
chemical libraries. In addition, for a given target, there may be
many acceptable regions in chemical space. Hence, the objective
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of the molecular design approach is to strike a balance between
exploring global solutions and harnessing local minima (Schneider,
2010; Müller et al., 2022).

Recently, with the advancement of artificial intelligence (AI),
new practical experience has been gained in the field of drug
discovery (Ding et al., 2017, 2022; Chu et al., 2022). In typical
data domains like computer vision (Voulodimos et al., 2018;
Borhani et al., 2022) and natural language processing (NLP)
(Chowdhary, 2020; Ferruz et al., 2022), deep generative models
have significantly advanced in representing data distributions
(Meyers et al., 2021). Such techniques are also employed to mimic
molecular distributions, understand the probabilistic distributions
of vast molecule sets, and produce novel molecules by drawing
samples from these distributions (Dauparas et al., 2022). In
the realm of molecular structure generation, a variety of deep
learning models have been suggested by scholars. These encompass
techniques such as generative adversarial networks (GANs),
variational autoencoders (VAEs), and recurrent neural systems
(RNNs) (Creswell et al., 2018; Korshunova et al., 2022). In these
methods, a molecule is represented as a simplified molecular-input
line-entry system (SMILES) (Weininger, 1988). Most of the current
molecular generation models are based on conditional molecular
design and finally generate new molecules with properties close to
the predetermined target conditions (Xu et al., 2019; Walters and
Barzilay, 2020).

2.2 Molecular generation model

The descriptors of SMILES are generally implemented by using
long-term and short-term memory networks (LSTM). Serving
as a unique temporal cycle neural network, LSTM was crafted
explicitly to tackle the pervasive issue of long-term dependencies
inherent in traditional RNNs. Due to the characteristics of this
cyclic algorithm, the cyclic structure and chiral center of molecules
expressed by SMILES are presented more perfectly. LSTM can be
used to generate molecular sets with or without filters. Grisoni
et al. suggested the use of bidirectional generative RNNs for
designing molecules based on SMILES. In pursuit of this, they
employed two proven bidirectional approaches and pioneered a
novel technique for augmenting data and generating SMILES
strings, termed as bidirectional molecule design by alternate
learning (BIMODAL) (Grisoni et al., 2020). In addition, Li et
al. studied the ability of RNN-based de novo molecular design
method to produce new molecular inhibitors in the research
field of chemical space (Li et al., 2020). In their quest to
formulate novel inhibitors for proto-oncogene serine/threonine
protein kinase 1 (PIM1) and CDK4 kinase, they evaluated four
compounds. Their efforts culminated in the identification of a
potent PIM1 inhibitor and two primary compounds that hinder
CDK4 activity.

There is also a class of deep learning algorithms for automatic
encoders, such as VAE and adversarial auto-encoder (AAE),
which use the description method of molecules in latent space
to generate molecules. On the one hand, the molecular features
of the training set are stored in latent space by encoder, and
on the other hand, these molecular features are reconstituted

into new molecules by decoder. Owing to this approach’s
utilization of continuous latent space accumulation, the newly
generated molecular set retains the physicochemical property
distribution inherent in the training set. Many models have
been proposed that employ reasonable substructures as building
blocks for generating high-quality molecules. Previous studies
introduced a model termed chemical-vae (Gómez-Bombarelli
et al., 2018), designed to produce novel molecules, enabling
effective exploration and refinement within expansive chemical
compound spaces. In order to generate effective molecular graphs,
MHG-VAE proposed molecular hypergraph grammar (MHG) to
encode chemical constraints (Kajino, 2019). The authors have
proposed a reaction model to forecast the interaction among
reactants, resulting in the creation of novel molecules. In lieu of
VAE, the objective function incorporates minimization to acquire
model parameters.

Another popular deep learning algorithm is GAN. The
algorithm uses two functions, the generator and the discriminator,
against each other to generate the desired molecules. Because
of the discontinuity of the atoms that make up the molecule,
the discriminator can’t directly feedback the information to
the generator. Referring to the method adopted in NLP, the
information feedback is realized by a reward function or policy
gradient. The reward equation serves as a filtering criterion. It
not only preserves the property distribution of the generated set
akin to the training set but also nudges the property distribution
of the created set to shift toward a different direction. This
algorithm can use various molecular description methods, such as
SMILES, Latent space, or graph, and canmeet various requirements
by combining various screening conditions, so it is a potential
algorithm. Prykhodko et al. introduced LatentGAN, a novel
deep learning framework that integrates an autoencoder with
a generative adversarial neural network, tailored for de novo
molecular design (Prykhodko et al., 2019).

To refine a sequence-based generative model specifically
for molecular de novo design, Marcus and team formulated
a technique capable of learning to construct structures with
predetermined desirable characteristics, employing enhanced
episodic likelihood (Olivecrona et al., 2017). M Popova et al.
proposed a unique computational approach for the de novo design
of molecules with targeted characteristics, named ReLeaSE, which
utilizes deep learning and reinforcement learning methodologies
(Popova et al., 2018). These methods used additional optimization
processes instead of directly generating molecules of intended
properties, which becomes inefficient.

2.2.1 Atom-based molecular generation
Numerous atom-centric generative models employ SMILES

for depicting molecules. Given that SMILES serves as a text-
centric representation, chemistry generation methodologies can
leverage sequence-appropriate deep learning structures like RNNs.
By extensively pre-training on vast molecular structure datasets,
the emergent model gains inherent knowledge, encapsulating
the effective nuances of SMILES grammar and syntax. Initial
endeavors leveraged transfer learning to skew generation toward
desired chemical spaces. The prevalent approach now integrates
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generative tasks with RL algorithms, striving to attain higher
rewards by discovering optimal molecules within the search
landscape. Beyond the realm of SMILES-centric models, there’s
a growing fascination with models directly interpreting the
topographical configurations of molecular graphs, where atoms
and connections represent nodes and edges respectively. These
graph-informed models aim to sidestep the synthetic facets
of SMILES notation, offering a more innate depiction of
molecular frameworks.GraphVAE and MolGAN are based on
the method of generating graphs (De Cao and Kipf, 2018;
Simonovsky and Komodakis, 2018), which can learn to generate
the adjacency matrix of the whole graph at one time. Others
describe the method of learning to generate molecules step by
step by iteratively modifying molecular graphs. Recently, the
RL method has shown promising results in the settings of
the diagram.

2.2.2 Fragment-based molecular generation
While atom-based generative models with prior training

exhibit a strong inherent capability toward substructures present
in their training sets, they retain the ability to adjust each
molecular atom individually. Such adaptability enhances the
model’s expressiveness, thereby broadening its reach across the
chemical space. Conversely, the fragment-based methodology
employs a more generalized molecular depiction to constrain
the exploration domain. Jin and his colleagues elucidated the
workings of JTVAE, a dual-phase generation procedure (Jin
et al., 2018). Initially, a nodal tree is developed to mirror the
assembly of molecular subcomponents (resembling a simplification
graph). Subsequently, a network transmitting graph information
deciphers the ultimate molecular form. DeepFMPO, by weighing
fragment resemblances in its optimization, attains superior efficacy
(Al Jumaily et al., 2022).

Based on the above research, we propose a conditional
molecular design model based on VAE, named PED, to efficiently
generate a molecule library with intended properties and screen
molecules that can inhibit AChE activity without negative
consequences from the library as lead compounds, aiming to
accelerate the treatment of AD. Unlike previous studies, the
PED can perform property prediction and molecule generation
simultaneously, which means that it can generate molecules with
intended properties without additional optimization processes.
This model can improve the efficiency of molecules generation
while ensuring the quality of generated molecules.

3 Materials and methods

In this section, we first introduce the proposed variational auto-
Encoder model for de novo molecular design, named PED. PED
consists of three modules, namely predictor, encoder and decoder,
by doing so, the model can predict the properties while generating
molecules without additional optimization, aiming to ensure the
efficiency of molecular generation. Finally, we introduce training
procedure and evaluation metrics.

3.1 Model overview

The model consists of three 250-dimensional gated recurrent
unit (GRU) networks: the predictor network, the encoder network
and the decoder network. The predictor and encoder are made
up of bidirectional GRUs network, while the decoder is a
unidirectional GRU.

In order to forecast the subsequent character within the
SMILES strings that depict molecular structures, the final
layer incorporates a dense output layer coupled with a
neuron unit that utilizes a softmax activation function. In
this context, the synthesis of donepezil is showcased as a case
study. Principally prescribed for Alzheimer’s management,
donepezil can be represented by the SMILES notation:
“O=C(C(C=C(OC)C(OC)=C1)=C1C2)C2CC(CC3)CCN3CC4=C
C=CC=C4”. The initial data for the system comprises a “one-
hot” delineation of a SMILES string, whereby each string
undergoes segmentation into various tokens. Here, the inaugural
token is “O”, transformed into a “one-hot” vector and fed
into the linguistic model. Subsequently, the model revises
its concealed state and forecasts the probability spread over
forthcoming viable tokens, decoded as “=” in this instance.
Supplying the one-hot representation of “=” prompts the
model to modify its concealed state during the forthcoming
cycle, leading to the revelation of the succeeding token. This
recurrent process, tackling one token at a time, persists until
the “\n” character surfaces, signifying the culmination of the
SMILES sequence, thus generating the final SMILES notation
for donepezil (Figure 1).

In the case of the previously delineated predictor
and encoder networks, we introduce distinct fixed-form
distributions. Specifically, we define qφ(y | x) and
qφ(z | y, x), each parametrized by φ. These distributions aim
to approximate the true posterior distribution, employing a
widely employed method in efficient variational inference, as
described in Equations (1, 2):

qφ(y | x) = N
(

y | µφ(x), diag
(

σ 2
φ (x)

))

(1)

qφ(z | y, x) = N
(

z | µφ(y, x), diag
(

σ 2
φ (x)

))

(2)

Where x represents a molecule and y represents its continuous
valued properties. Given a variable x, the properties y are predicted
as Equation (3):

y ∼ N
(

µφ(x), diag
(

σ 2
φ (x)

))

(3)

In the molecule generation process, we use the
decoder network pθ (x | y, z) to generate molecules by the
following equation:

x̂ = argmax
x

pθ (x | y, z) (4)

3.2 Generative model objective

The definition of loss function refers to previous
research (Kingma et al., 2014). In this study,
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FIGURE 1

The workflow of PED model. Gray and blue areas separate PED into two components: (1) Property prediction, the labeled data are used for building a

property predictor which introduces the gaussian distribution in order to address the intractability of y and (2) molecular generation, the autoencoder

are trained by the labeled data. The RNN encoder maps x and y to the latent space z, similarly introducing the gaussian distribution, and then RNN

decoder maps y and z to original x.

the variational lower bound −L(x, y) of the log-
probability of a labeled instance (x, y) is showed in
Equation (5):

log p(x, y) ≥Eqφ (z|x,y)
[

log pθ (x | y, z)+ log p(y)

+ log p(z)− log qφ(z | x, y)
]

=Eqφ (z|x,y)
[

log pθ (x | y, z)
]

+ log p(y)

−DKL
(

qφ(z | x, y)‖p(z)
)

=− L(x, y) (5)

Given the data distributions of labeled p̃l(x, y), the loss function
is defined as Equation (6):

J =
∑

(x,y)∼p̃l

L(x, y)− β ·
∑

(x,y)∼p̃l

||y− Eqφ (y|x)[y]‖
2 (6)

where the last term is mean squared error for generative
learning.

We use the decoder network pθ (x | y, z) to generate a molecule.
A molecule representation x̂ is obtained from y and z by Equation

(4). At each time step j of the decoder, the output x(j) is predicted
by conditioning on all the previous outputs (x(1), ..., x(j−1)), y, and
z, because we decompose pθ (x | y, z) as Equation (7)

pθ (x | y, z) =
∏

j

pθ (x
(j)|x(1), ..., x(j−1), y, z) (7)

3.3 Training procedure and evaluation
metrics

Themodel undergoes training for 300 cycles utilizing the Adam
optimizer. To mitigate the risk of overfitting, we employ early
stopping during the training process. This means that if the model’s
performance on the validation set deteriorates compared to the
previous cycle, we halt the training and adopt the parameters from
the prior iteration as the final outcome. The loss stabilizes after the
25th cycle, as depicted in Figure 2.

The model was implemented using TensorFlow (v2.4.0) in
Python (v3.8). We trained it on an NVIDIA 3090 GPU with the
learning rate set to 0.001. And the metrics we used are as follows:
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FIGURE 2

Loss comparison for the training data set and test data set over 30

epochs, where the blue lines indicate the training loss, the red lines

indicate the test loss.

• Validity: The model’s learning capability is evidenced by the
rating of authentic molecules among the synthesized compounds as
follows (Equation 8).

Val =
|V|

n
(8)

• Uniqueness: the percentage of molecules that were really
unique when they were generated. Low uniqueness points to
recurrent molecule production and a model with little distribution
learning as follows (Equation 9).

Uni =
| set(V)|

|V|
(9)

• Novelty: the percentage of authentically unique molecules
that were generated but were not in the training set as follows
(Equation 10).

Nov =
| set(V) ∩ X|

|V|
(10)

Where X is the list of molecules from the provided training set,
n is the number of generated samples, and V is the list of created
chemically valid molecules.

4 Results

In this section, we introduce two publicly available compounds
datasets, ZINC and BindingDB, describe the parameters and
performance metrics of the evaluation experiments, and evaluate
the performance of the proposed method.

4.1 Datasets

For the pretraining set, we collected 310,000 SMILES strings
of drug-like molecules from the ZINC database (Irwin and

Shoichet, 2005) with molecular weight (MolWt) ranging from
200 to 500 and logP ranging from 0 to 5. Figures 3, 4 show the
larger property distribution of the ZINC database, the larger the
property distribution, the stronger the fitting ability of our model.
Furthermore, in order to maintain the standardization and unity of
data, we used RDkit toolkit (Landrum et al., 2013) to canonicalize
the SMILES strings.

We collected molecules with pIC50 or pEC50 greater than 6 as
the active molecules of AChE, delete duplicate molecules, and got
the fine-tuning sets from Binding DB (Liu et al., 2007). Molecules
from SciFinder (Gabrielson, 2018) that fit the aforementioned
requirements were added to the fine-tuning set to enlarge it. Finally,
4,996 molecules were obtained and canonicalized using the RDKit
toolkit.

In order to show the diversity of molecules in the data set,
we screened molecules with QED (quantitative estimate of drug-
likeness) values greater than 8 and logP values between 0 and
3, then randomly selected 10 molecules to calculate molecular
similarity. The results are shown in Figure 5.

Some properties of the molecules used in the training process
of the model are the following:

• logP: The logarithmic value of a substance’s partition
coefficient in water and n-octane (gasoline). The chemical
is more lipophilic the higher the logP value. On the other
hand, the more hydrophilic something is, the better its water
solubility, and the smaller the logP value.

• QED: QED is not based on the properties of chemical
structure, but a combination of several molecular properties,
which is used to evaluate the drug similarity of molecules.
QED quantifies the drug similarity to [0, 1], and the
higher the QED score, the higher the drug similarity
of molecules.

• MolWt: The relative mass of molecules, which refers to the
sum of the relative atomic masses of all atoms constituting a
molecule. By observing the MW distribution of two groups
of molecules, we can check whether the properties of the
molecules generated by the model are unbiased or shift toward
a certain distribution.

• SAScore: Synthesizability score of drug-like
molecules based on fragment contribution and
complexity penalty.

4.2 Performance evaluation

4.2.1 Nonconditioned molecular generation
In this section, we evaluate the PED’s unconditional molecular

generation capability and compare it with other molecular
generation models. Figure 6 shows the property distribution
of unconditionally generated molecules and ZINC dataset,
demonstrating how well our model has absorbed the properties of
the training set. Moreover, we contrast PED’s performance with
that of RNN, VAE, and GAN on the ZINC data set. All models
use SMILES as input. Table 1 reports the model’s performance on
the ZINC data set, we show the SMILES and its 2D structure
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FIGURE 3

The property distribution of ZINC dataset.

FIGURE 4

The property distribution of ZINC dataset.

randomly selected from which were generated by the different
models simultaneously.

From the Table 1, PED generates the most reliable and
distinctive compounds. However, in the case of novelty, GAN
is more likely to generate new molecules. In a nutshell, our
model shows the best results in terms of uniqueness and validity,
and its novelty is only 0.015 less than the GAN. Therefore, in
comparison to other models, PED is the preferable method. Table 2
displays the randomly selected SMILES generated by the PED and
other models.

4.2.2 Generation-based on single properties
In this part, we assessed PED’s ability to generate molecules

with the desired property. We defined the values of LogP,
MolWt, and QED accordingly, and created 5,000 molecules under
each scenario to evaluate the ability of the model to produce
molecules possessing the targeted characteristics. Table 3 illustrates
the validity, distinctiveness, and originality scores for each specific
condition. PED can still efficiently generate high-quality molecules
during the conditional molecular generation process. The property
distribution of the generated molecules is shown in Figure 7.
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FIGURE 5

The similarity of randomly selected 10 molecules.

FIGURE 6

The property distribution of unconditionally generated molecules and ZINC dataset.

TABLE 1 Comparison of the Di�erent Metrics Corresponding to

Nonconditioned Generation of Molecules Using Di�erent Approaches

Trained on ZINC Data Set.

Models Val. Uni. Nov.

RNN (Grisoni et al., 2020) 0.970 0.999 0.786

VAE (Gómez-Bombarelli et al., 2018) 0.963 0.999 0.532

GAN (Prykhodko et al., 2019) 0.926 0.999 0.921

PED 0.991 1 0.906

The bold values indicates the metric scores of our proposed model.

Table 3 reveals that when the density of the target value in
the training set’s distribution was diminished, there was a slight
increase in the percentage of inaccurate molecules. Moreover, the
model yielded a greater number of replicated molecules when the
property forecast for a given condition was notably precise. In
particular, the molecules generated by the model did not appear in
the training set. In Figure 7, distributions of generated molecules’
attributes are shown while optimizing single property, and the
distribution is centered around the desired value. The results show
that the model can still generate molecules with desired properties
without additional optimization steps.

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2024.1374148
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Liu et al. 10.3389/frai.2024.1374148

TABLE 2 Randomly selected SMILES generated by the di�erent models.

Models Sampled SMILES Structure

RNN (Grisoni et al., 2020) CN(Cc1ccccc1)C(=O)C1CCCN(S(=O)(=O)c2ccccc2)C1

CCc1ccc(C(=O)NC)nn1

VAE (Gómez-Bombarelli et al., 2018) O=C(c1ccccc1)N1CCN(c2ccc([N+](=O)[O-])cn2)CC1

CCN(CC)S(=O)(=O)c1cccc(C(=O)Nc2ccc(OC(C)C)cc2)c1

GAN (Prykhodko et al., 2019) CC1CCCCC12NC(=O)N(CC(=O)Nc1ccccc1C(=O)O)C2=O

CCCCCCCCCCCCCCCCCCCCCC1CCC(O)C1(CCC)CCCCCCCCCCCCCCC

PED COc1ccccc1NC(=O)CSc1nc(=O)n2ccccc2n1

Cc1ccc(NC(=O)C2CCCN(c3ncnc4onc(C)c34)C2)cc1C

TABLE 3 Comparison of di�erent metrics while generating molecules

conditioned on single property based on training on ZINC data set.

Condition Val. Uni. Nov.

MolWt 0.985 0.913 1

LogP 0.966 0.951 1

QAE 0.975 0.920 1

4.3 Generating the molecular library for
AChE

Acetylcholine (ACh) is the first neurotransmitter discovered
by human beings, and its mediated neurotransmission is the basis
of nervous system function. Nevertheless, AChE is an efficient
hydrolase that catalyzes the hydrolysis of ACh, which regulates
the concentration of ACh at synapses and then terminates ACh-
mediated neurotransmission. Thus, in this segment, our goal was
to create a compound library targeting the AChE receptor. This
would aid in the synthesis of newer inhibitors that are not only
more potent but also exhibit reduced side effects.

We gathered molecules from Binding DB that displayed
activity toward AChE receptors to formulate the training dataset.
In the end, 4,996 molecules were utilized to constitute the
fine-tuning dataset. As depicted in Figure 8, we chose 500
molecules synthesized by the fine-tuned model, which exhibit
physicochemical attributes and occupy the chemical space
analogous to the fine-tuning set. Additionally, the distributions

of QED in the generated molecules are similar to those in
the fine-tuning set of compounds. Furthermore, the distribution
of SAScore is concentrated between 1 and 5, as shown in
Figure 9, indicating that most of the molecules generated are easy
to synthesize.

Figure 10 shows examples of the generated molecules.
Simultaneously, we compared the molecules with donepezil (Birks
and Harvey, 2018) (ID: E20) by ECFP4 (Rogers and Hahn, 2010)
similarity method (Figure 11). As shown in the Figure 11, the
model can effectively generate molecules similar to the training
set. This indicates that our model can generate molecules that are
effective for ACHE to a great extent. In order to further verify
this conclusion, we conducted molecular docking experiments
with Autodock Vina (Trott and Olson, 2010). The ligand in the
crystal structure of human acetylcholinesterase in complex with
donepezil (Dileep et al., 2022) (PDB ID:7E3H) was removed, then
recorded the pocket position simultaneously. Molecules in the
molecular library are docked with receptors at the pocket position
using Autodock Vina. The docking scores are shown in Table 4,
and the results showed that the molecules in the molecular library
had high affinity with the target receptor (Figure 12). Based on
the molecular docking results, as depicted in Figure 12A, the
interaction between the small molecule and the protein primarily
involves hydrogen bonding and hydrophobic interactions.
Specifically, the N atom of the small molecule forms hydrogen
bonds with the hydroxyl O atom of the Tyr124 amino acid residue
(Tyr124=O... H- N, 2.3Å), as well as with the hydroxyl O atom
of the Tyr337 residue (Tyr337=O... H- N, 2.5Å). Additionally,
Figure 12B illustrates that the heteroatoms in the small molecule
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FIGURE 7

Distributions of properties of generated molecules while controlling a single property.

FIGURE 8

Comparison of property distribution of fine-tuning data set and molecules generated by fine-tuning model.

can engage in hydrogen bonding interactions with the active
pocket of the protein, with the distribution of hydrogen bond
donors and acceptors shown in Figure 12B. Furthermore, the 2D
interaction analysis (Figure 12C) revealed that the hydrophobic
carbon chain of the small molecule interacts with the hydrophobic
amino acids Thr83, sn87, Trp286, Phe338, and Ile451 of the
protein. Moreover, the small molecule forms π − π stacking
interactions with the amino acid residues Trp86, Trp286, and
Trp341, enhancing its binding affinity to the protein. Given the
close proximity between the small molecule and other amino acid
residues, it is hypothesized that van der Waals interactions may
occur between them.

5 Discussion

In this work, in order to improve the cognitive technology
of AI, we propose a cognitive conditional molecular design
model based on VAE to efficiently generate a molecule library
with intended properties and screen molecules that can inhibit

FIGURE 9

The distribution of SAScore.
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FIGURE 10

Examples of generated molecules using PED fine-tuning model.

FIGURE 11

The most similar molecules to Donepezil among the generated molecules.

AChE activity from the library as lead compounds to accelerate
the treatment of AD. The model can simultaneously perform
both property prediction and molecule generation. We see
through our benchmarking experiments that our model shows
very high validity, novelty and uniqueness scores for the data
sets. Furthermore, the statistics indicate our model’s strong
control over intended properties for molecular generation under
conditional molecular generation. In addition, the statistical
data show that our model has a strong ability to control the
expected properties of molecular generation under conditional
generation. We used AChE active molecule data set to fine-tune
the model, generated a molecular library for the target receptor,
and ultimately verified the binding ability of molecules to AChE
through molecular docking. PED has shown to be promising
from a practical and theoretical point of view. It can generate

new drug-like molecules for AChE and provide guidance for
AD to develop new drugs, which means our model has strong
cognitive capacities.

However, there are still some limitations of this work.
In this study, we used the traditional strategy to verify the
molecular activity, And it is aimed at a single target for
molecular generation. Because the occurrence and development
of AD involves various complex regulatory networks and
changes of regulatory factors, multi-target compounds are
the trend of AD drug research and development at present.
In the future, we will study a new generation model for
multi-target molecular generation and introduce a new deep
learning model to predict the activity of generated molecular
against target, aiming to automatically generating active
molecule library.
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TABLE 4 Results of the molecular docking.

Protein Generated SMILES A�nity(kcal/mol)

Acetylcholinesterase (Uniprot
ID:P22303)

O=C(NCCCCCCNc1c2c(nc3ccccc13)CCCC2)c1ccc2nc(-c3ccc(Cl)cc3)c3c(c2c1)NCCC3 -12.9

O=C(Cc1cc(=O)oc2cc(O)ccc12)NCCCNc1c2c(nc3cc(Cl)ccc13)CCCC2 -12.7

COc1cc2c(cc1OC)C(=O)C(=Cc1ccc(N3CC[N+](C)(Cc4ccccc4)CC3)cc1)C2 -12.7

COc1ccc(Cn2cc(C(=O)NCCCNc3c4c(nc5ccccc35)CCCC4)c(=O)c3ccccc32)cc1 -12.6

COc1ccc(Cn2cc(C(=O)NCCCNc3c4c(nc5cc(Cl)ccc35)CCCC4)c(=O)c3ccccc32)cc1 -12.5

FIGURE 12

The interaction diagram between the generated molecular and the Acetylcholinesterase (Uniprot ID: P22303). (A) Molecular docking and 3D display

of the interaction diagram between the generated molecular and the Acetylcholinesterase (Uniprot ID: P22303). (B) Hydrogen bond coloring display

of the interaction diagram between the generated molecular and the Acetylcholinesterase (Uniprot ID: P22303). (C) Local 2D display of the

interaction diagram between the generated molecular and the Acetylcholinesterase (Uniprot ID: P22303).
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