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Purpose: Computed Tomography Angiography (CTA) is the first line of imaging in 
the diagnosis of Large Vessel Occlusion (LVO) strokes. We trained and independently 
validated end-to-end automated deep learning pipelines to predict 3-month 
outcomes after anterior circulation LVO thrombectomy based on admission CTAs.

Methods: We split a dataset of 591 patients into training/cross-validation (n = 496) 
and independent test set (n = 95). We  trained separate models for outcome 
prediction based on admission “CTA” images alone, “CTA + Treatment” (including 
time to thrombectomy and reperfusion success information), and “CTA + Treatment  
+ Clinical” (including admission age, sex, and NIH stroke scale). A binary (favorable) 
outcome was defined based on a 3-month modified Rankin Scale ≤ 2. The model 
was trained on our dataset based on the pre-trained ResNet-50 3D Convolutional 
Neural Network (“MedicalNet”) and included CTA preprocessing steps.

Results: We generated an ensemble model from the 5-fold cross-validation, and 
tested it in the independent test cohort, with receiver operating characteristic area 
under the curve (AUC, 95% confidence interval) of 70 (0.59–0.81) for “CTA,” 0.79 
(0.70–0.89) for “CTA + Treatment,” and 0.86 (0.79–0.94) for “CTA + Treatment + 
Clinical” input models. A “Treatment + Clinical” logistic regression model achieved an 
AUC of 0.86 (0.79–0.93).

Conclusion: Our results show the feasibility of an end-to-end automated model to 
predict outcomes from admission and post-thrombectomy reperfusion success. 
Such a model can facilitate prognostication in telehealth transfer and when a thorough 
neurological exam is not feasible due to language barrier or pre-existing morbidities.

KEYWORDS

deep learning, stroke, thrombectomy, CT angiography, outcome

OPEN ACCESS

EDITED BY

Tuan D. Pham,  
Queen Mary University of London, 
United Kingdom

REVIEWED BY

Vivek Yedavalli,  
Johns Hopkins Medicine, United States
Jose Jaramillo-Villegas,  
Technological University of Pereira, Colombia

*CORRESPONDENCE

Seyedmehdi Payabvash  
 sam.payabvash@yale.edu

RECEIVED 12 January 2024
ACCEPTED 17 July 2024
PUBLISHED 01 August 2024

CITATION

Sommer J, Dierksen F, Zeevi T, Tran AT, 
Avery EW, Mak A, Malhotra A, Matouk CC, 
Falcone GJ, Torres-Lopez V, Aneja S, 
Duncan J, Sansing LH, Sheth KN and 
Payabvash S (2024) Deep learning for 
prediction of post-thrombectomy outcomes 
based on admission CT angiography in large 
vessel occlusion stroke.
Front. Artif. Intell. 7:1369702.
doi: 10.3389/frai.2024.1369702

COPYRIGHT

© 2024 Sommer, Dierksen, Zeevi, Tran, Avery, 
Mak, Malhotra, Matouk, Falcone, 
Torres-Lopez, Aneja, Duncan, Sansing, Sheth 
and Payabvash. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 01 August 2024
DOI 10.3389/frai.2024.1369702

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1369702&domain=pdf&date_stamp=2024-08-01
https://www.frontiersin.org/articles/10.3389/frai.2024.1369702/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1369702/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1369702/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1369702/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1369702/full
mailto:sam.payabvash@yale.edu
https://doi.org/10.3389/frai.2024.1369702
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1369702


Sommer et al. 10.3389/frai.2024.1369702

Frontiers in Artificial Intelligence 02 frontiersin.org

1 Introduction

In current stroke guidelines, advanced imaging techniques hold a 
crucial role in the decision-making process for treatment triage of Large 
Vessel Occlusion (LVO). Among these advanced imaging modalities, 
Computed Tomography Angiography (CTA) is a pivotal tool. It serves not 
only for evaluating treatment eligibility but also for assessment of arterial 
collateral supply and predicting functional stroke outcome prognosis. It 
has also been proven that CTA is more sensitive in detecting early 
infarction signs compared to non-contrast Computed Tomography (CT) 
(Camargo et al., 2007). Infarct cores determined on CTA images are 
strongly correlated with lesions defined on diffusion-weighted MRI 
(DWI) scans (Schramm et al., 2004). Recent studies have also revealed 
CTA’s potential to provide valuable information for long-term 
prognostication (van Seeters et al., 2015; Sallustio et al., 2017).

Recently, the emergence of artificial intelligence (AI) models has 
opened new possibilities for the prediction of long-term outcome from 
baseline stroke imaging information. These models enable the extraction 
of prognostic information directly from admission CTA scans, offering 
the potential to forecast patients’ outcomes. Unlike previous approaches 
that relied on manually engineered imaging biomarkers or complex 
preprocessing steps (Avery et al., 2022; Zhang et al., 2023), our approach 
streamlines the prediction process by taking the 3D images as input with 
minimal preprocessing in the end-to-end automated pipeline that uses 
raw unprocessed CTA scan to generate long-term outcome predictions. 
The disadvantage of complex preprocessing is the risk of information loss 
and the risk of introducing unknown biases. Deep learning makes it 
possible to keep the preprocessing steps small and at the same time 
preserve biomarkers that are currently unknown and not easily 
visually discernible.

In this study, we trained and tested separate deep learning models 
to predict 3-month outcomes after LVO thrombectomy from 
admission CTA scans with and without additional treatment and 
clinical variables. We compared models’ performance in independent 
test cohort and analyzed model biases. Such tools can facilitate 
objective prognostication of LVO stroke patients in acute setting. The 
prognostication of stroke outcomes by the presented models is 
especially useful for situations with the absence of reliable neurological 
exams and provides support for informed discussion regarding 
outcomes with patients and family members as well as establishing 
long-term goals of stroke management.

2 Methods

2.1 Study design

The clinical and imaging information for this study were retrieved 
from the stroke registry of Yale New Haven Hospital – from January 
1, 2014, to October 31, 2020. Inclusion criteria were baseline CTA 
scan with at least 1-mm thickness axial slice available, anterior 
circulation LVO, attempted mechanical thrombectomy, and clinical 
outcome metrics. The 3-month follow-up modified Rankin Scale 
(mRS), or the closest interval to three months from stroke onset 
available was used to assess clinical outcome, and binarized to 
favorable (mRS ≤ 2) versus poor (mRS > 2). Exclusion criteria were 
suboptimal CTA scan quality due to motion degradation, metal 
artifacts, or scanner-related complications. We obtained the approvals 

from the institutional review board for the process of retrospective 
data collection. Informed consent was not sought from participants, 
as it was waived by the respective IRB. All procedures conducted 
during this study were adhered to current institutional and 
national guidelines.

2.2 Image preprocessing and training 
parameters

All head CTAs were resized to a common image dimension 
of 128x128x128 voxel using a template and resampled to a 
common voxel space of 1.5×1.5×1.5 mm using trilinear 
co-registration. The original images had a median (interquartile) 
voxel spacing of 0.47 (0.43–0.50) mm, 0.47 (0.43–0.50) mm, and 
0.64 (0.63–0.63) mm, for the x-, y-, and z-axis, respectively. The 
template, resizing, and resampling was performed by applying the 
methodology described by (Sharrock et al., 2021) and (Rorden 
et al., 2012) using the Python implementation of the open-source 
medical package Advanced Neuroimaging Tools (Avants et al., 
2011). No intensity scaling, image cropping or limit values of 
voxels have been used.

We leveraged a pretrained ResNet-50 3D Convolutional Neural 
Network (CNN) model named “MedicalNet” (Chen et al., 2019), 
initially trained on CT and MRI images for segmentation of multiple 
organs in the 3DSeg-8 dataset of the MedicalNet developers. 
We applied the “MedicalNet” weights to the Medical Open Network 
for AI (MONAI) ResNet-50 configuration (Cardoso et al., 2022) and 
performed a training process to fine-tune the pre-trained weights for 
binary classification in this study. For the training process, 
we partitioned the dataset with stratified splitting into a 5-folded 
training/cross-validation cohort (n = 496) and independent test 
(n = 95) and used a batch size of 6, maximum of 300 epochs, learning 
rate of 1×10−6, and a weight-decay regularization of 0 using 
Adam optimization.

To enhance the training process, we  incorporated data 
augmentation techniques, encompassing rotations (with a 30% 
probability for each axis, within the range of −0.2 to 0.2 radians), 
zooms (with a 30% probability between 0.8 and 1.2 times zoom), flips 
(with a 20% probability), shear, and translations (with a 30% 
probability at 0.3). These augmented images were input into the 
ResNet model for each of the five cross-validation folds.

2.3 Training pipeline and model inputs – 
CTA images, “treatment,” and “clinical” 
variables

We trained, validated, and tested three separate joint models 
with inputs from (1) “CTA,” with only admission CTA scans as 
input; (2) “CTA + Treatment,” with input including admission CTA 
scans and “treatment” variables – i.e. admission-to-scan and scan-
to-puncture time gaps and post-thrombectomy reperfusion efficacy. 
The post-thrombectomy reperfusion efficacy was determined based 
on a modified Thrombolysis in Cerebral Infarction (mTICI) system 
(Zaidat et  al., 2013) as documented by neurointerventionalists. 
These values were converted into 0-to-4 ordinal variables. (3) 
“CTA + Treatment + Clinical,” with input including CTA, 
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“Treatment,” and “Clinical” variables – i.e. admission NIH stroke 
scale (NIHSS), patient’s age, and sex.

For the training of our CTA-based model, we processed patient 
CTA images through a CNN using established preprocessing and 
training parameters. We  selected the model with the lowest 
validation loss from each of the 5-fold cross-validation iterations, 
creating five distinct sub-models. These sub-models collectively 
determine the likelihood of a negative outcome by averaging their 
probability outputs. This approach mitigates the risk of 
overestimating the model’s performance on the test set. We then 
converted the final probability into a class prediction using a 
threshold optimized for accuracy on the validation set.

Subsequently, the five sub-models collectively predicted the 
probability of poor outcomes for each patient within the test set. The 
Area Under the Curve (AUC) of the Receiver Operating Characteristic 
(ROC) was then generated based on the mean probabilities per patient 
to assess the model performance. The whole process of the training 
and testing are depicted in Figure 1.

For the training of the ensemble model with multimodal input 
options, we used the probabilities for individual patients by passing 
the CTA images through the same models. Secondly, the probabilities 
are used alongside the other numerical input variables to train a 
logistic regression model using the validation set. The process is 

repeated for each cross-validation iteration, thereby creating 5 
sub-models. The testing process is similar to the testing process of 
the “CTA” input pipeline, as the sub-models collectively predict the 
probability of poor outcomes for each patient within the test set. The 
optimal threshold to convert the probabilities into a class prediction 
is determined by the validation set in a similar manner as 
previously described.

In addition to deep learning models, we trained separate logistic 
regression models for prediction of outcome based on “Treatment” 
and “Treatment + Clinical” inputs on training/cross-validation 
cohort and test their performance in the independent test cohort. 
Since hyperparameter optimization was not needed when using a 
logistic regression model, we  used the whole training/cross-
validation cohort as input. Therefore, only one model instead was 
created based on “Treatment” or “Treatment + Clinical” inputs. 
We  compared the performance of different models ROC AUC, 
using the DeLong et al. (1988) method.

2.4 Visual verifications of model attention

We applied the M3d-CAM (Gotkowski et al., 2020) to generate 
attention maps to visualize the regions in the input CTA scans that 

FIGURE 1

Visual description of the training, validation and testing process depending on the model input.
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influenced the model prediction the most, deduced from the 4th layer 
of the model based on the first cross-validation set. These attention 
maps improve the interpretability of model predictions for human 
eyes and highlight head CTA regions with the highest impact on 
classification decisions by the deep learning model.

2.5 Model bias analysis

We organized the patients within the test set based on the 
predictions made by each model in comparison to the ground truth. 
Specifically, we grouped patients who were incorrectly predicted to 
have either a favorable or unfavorable outcome versus those who 
were accurately predicted to have either a favorable or 
unfavorable outcome.

2.6 Code and libraries

The analyses were conducted with Python 3.10.8, Visual Studio 
Code 1.72, R 4.3.1 and RStudio Server 2023.06.2. Some of the 
important Python modules being used are ANTs 0.3.8, Monai 1.1.0, 
PyTorch and PyTorch-Lightning 2.0.0, Scikit-learn 1.2.2 and 
M3d-CAM.

3 Results

3.1 Patients characteristics

A total of 591 patients were included in our analysis. The average 
age of patients was 70.2 ± 15.0 years, 322 (54%) were male, with 

median (interquartile) admission NIHSS of 14 (10–19), an average 
onset to CTA scan of 5.4 ± 5.5 h, and an average onset to catheterization 
of 7.1 ± 5.0 h. Table  1 summarizes the patients’ characteristics in 
training/cross (n = 496) and independent test (n = 95) cohorts. There 
was no significant difference between the clinical characteristics of 
these two cohorts.

3.2 Model performance

Figure  2 depicts the AUC and loss function through 5-fold 
training and cross-validation. The final ensemble models with 
“CTA,” “CTA + Treatment,” “CTA + Treatment + Clinical,” 
“Treatment” and “Treatment + Clinical” achieved AUC (95% 
confidence interval) of 0.70 (0.59–0.81), 0.79 (0.70–0.89), 0.86 
(0.79–0.94), 0.73 (0.61–0.85) and 0.86 (0.79–0.93) in independent 
test cohort, respectively. The AUC curves of the “CTA,” 
“CTA + Treatment” and “CTA + Treatment + Clinical” models are 
depicted in Figure 3. There was no significant difference between 
“CTA + Treatment” versus “Treatment” model AUC (p = 0.32), 
“CTA + Treatment” versus “Treatment + Clinical” model (p = 0.23), 
or “CTA + Treatment + Clinical” versus “treatment + clinical” 
model (p = 0.86). The attention maps projected over 15 mm 
thickness Maximum Intensity Projection slices of CTA scans reveal 
the area of brain with the highest attention across the input image 
(Figure 4).

3.3 Model bias analysis

Comparison of 74 patients with correct prediction versus 21 
with incorrect prediction of outcome is summarized in Table 2. 

TABLE 1 Patients’ characteristics in training/cross-validation versus independent test cohorts.

Training/cross-validation 
(n  =  496)

Independent test (n =  95) p value

Age (years) 70.29 ± 15.02 69.85 ± 16.01 0.80

Male sex 269 (54%) 53 (56%) 0.14

Admission NIHSS (median, interquartile) 14 (9–19) 16 (11–20) 0.09

Onset-to-catheterization time (hours) 7.12 ± 5.04 7.20 ± 5.58 0.89

Onset-to-CTA scan (hours) 5.35 ± 5.35 5.36 ± 5.79 0.98

Occlusion side (left) 224 (55%) 40 (42%) 0.65

Internal carotid occlusion 110 (22%) 27 (28%) 0.25

Middle cerebral artery - M1 occlusion 299 (60%) 62 (65%) 0.66

Middle cerebral artery – proximal M2 occlusion 169 (34%) 22 (23%) 1.00

Received intravenous rt-PA 189 (38%) 36 (38%) 0.81

Post-thrombectomy reperfusion * 3 (3–3) 3 (1.50–3) 0.44

Post-thrombectomy hemorrhagic transformation 221 (45%) 51 (54%) 0.10

Missing 3-months mRS 124 (25%) 25 (26%) 0.79

Confirmed thrombolic events 131 (26%) 20 (21%) 0.33

Hypertension 270 (54%) 57 (60%) 0.38

Diabetes Mellitus 256 (52%) 50 (53%) 0.94

Ordinal values have been tested with the Chi2-Test, means have been compared with the Student’s t-test and median and interquartile ranges have been compared with the Mann–Whitney-U 
test. * A 0-to-4 ordinal variable was applied to represent post-thrombectomy reperfusion based on modified Thrombolysis in Cerebral Infarction (0, 1, 2a, 2b, and 3).
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Overall, patients with incorrect prediction had better outcome 
(lower mRS), less severe baseline neurological symptoms (lower 
NIHSS), younger age, and higher post-thrombectomy reperfusion 
scores compared to those with correct prediction. This shows that 
the prediction model is biased toward overestimation of 
poor outcomes.

4 Discussion

Our study demonstrates that by utilizing admission CTA scans, 
an automated model can accurately predict 3-month outcomes after 
thrombectomy in patients with LVO stroke. The end-to-end pipeline, 
which involves the preprocessing of admission CTAs, can be smoothly 
integrated into the clinical workflow. Furthermore, although not 
achieving statistical significance, we  showed that the addition of 

post-thrombectomy reperfusion can increase the AUC of model 
predictions in the independent test cohort. The inclusion of clinical 
predictors such as age, sex, and neurological severity alongside CTA 
data did not significantly enhance model performance. Hence, 
CTA-based models can be especially useful in situations where clinical 
information is unreliable, such as in tele-stroke settings, language 
barriers, or when pre-existing morbidities make neurological exams 
challenging. It is worth noting that CTA scans are the de facto first line 
of imaging used to screen and diagnose LVO stroke, meaning that 
images are likely available before a complete clinical exam. Thus, a 
model that incorporates CTA data and accounts for reperfusion 
success can provide valuable prognostic information prior to the 
initial neurological exam.

Recent clinical trials (RESCUE–Japan LIMIT, SELECT-2, 
ANGEL-ASPECT, and TENSION) have demonstrated improved 
functional outcomes after thrombectomy, even among patients with a 

FIGURE 2

Training and validation AUC and losses throughout the steps in the five-fold cross-validation process.
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large infarct core and anterior circulation LVO (Yoshimura et al., 2022; 
Bendszus et al., 2023; Huo et al., 2023; Sarraj et al., 2023). In this 
context, the focus of stroke imaging workflow should shift toward 
identifying patients with LVO and thus eligible for thrombectomy 
(regardless of infarct core estimates). Subsequently, it should also 
identify patients at higher risk of poor outcomes despite thrombectomy 
– or clinically ineffective reperfusion. These patients are potential 
candidates for post-thrombectomy treatments, such as neuroprotective 
or neuroregenerative therapies. Deep learning models, such as the one 
developed and validated in this study, can provide this 
critical information.

However, other groups have also applied deep learning models 
for the prognostication of stroke. One research group applied a 
“Structured Receptive Field Neural Network” (RFNN), a variant of 
the ResNet model, with emphasis on the advantages of RFNN 
models in the context of smaller training datasets (Hilbert et al., 
2019). They reported an average AUC of 0.71 for their best-
performing model. Despite the complexity of their model and the 
presumable advantage in training with small datasets, their results 
did not exceed ours. Notably, their model generated a single 2D 
image from CTA scans for the prediction task. Their group also 
provided no comparison with models containing admission clinical 
information (Hilbert et al., 2019).

FIGURE 3

Graphical depiction of the AUC curve of mean probabilities of the 
“CTA”, “CTA  +  Treatment” and “CTA  +  Treatment + Clinical” model 
across all folds for the test set including their respective confidence 
interval.

FIGURE 4

Maximum intensity projection (MIP) on a class activation map of three example patient in our cohort and a 3D visualization of each patient’s cerebral 
vessels. From each MIP only the upper half of the activation between the max and min activation are displayed. The area of occlusion is marked with a 
red arrow in the 3D visualization. Patient 1: probability for poor outcome  =  0.67, label  =  1; Patient 2: probability for poor outcome  =  0.35, label  =  0; 
Patient 3: probability for poor outcome  =  0.78, label  =  1.

https://doi.org/10.3389/frai.2024.1369702
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Sommer et al. 10.3389/frai.2024.1369702

Frontiers in Artificial Intelligence 07 frontiersin.org

Another study employs a specialized model architecture called 
a “Siamese network” to focus on hemispheric asymmetries 
(Oliveira et  al., 2023). This approach utilizes a more complex 
model structure, but it has the advantage that images of varying 
qualities could be  assessed more uniformly. This model type 
utilizes Non-Contrast CT (NCCT) images as the main input. The 
CTA images were only used to predict the presence or absence of 
stroke to use as one of the clinical inputs. For this, they were 
compressed to a 2D image using MIP (Maximum Intensity 
Projection). In the highest-performing version of this model, the 
research group achieved an AUC of 0.74 in a test set size of 60 
patients. Notably, the group included patients both with and 
without LVO, whereas patients with LVO are far more likely to 
have worse outcomes (Smith et  al., 2006), and thus the model 
could have differentiated between those with and without LVO; in 
contrast, we only included patients with LVO, therefore a more 
clinically homogenous patient cohort.

Furthermore, in another study the researchers extracted radiomics 
features from middle cerebral artery (MCA) regions of CTA scans. 
These were utilized for the prediction of 3-month outcomes in patients 
with LVO stroke (Avery et al., 2022). Comparing models with different 
inputs, “Radiomics + Treatment,” and “Radiomics + Treatment + 
Clinical,” achieved AUCs of 0.68, 0.74, and 0.82 in independent test 
cohort, respectively (Avery et al., 2022).

Yet, one of the strengths of our research is that we created a 
fully end-to-end automated preprocessing and prediction pipeline 
for anterior LVO strokes. Compared to the previously mentioned 
works, our preprocessing pipeline includes fewer steps and yet 
achieves the same or better results. For example, we avoided skull 
removal techniques for CTA images due to artifact risk, we utilized 
a pre-trained network to improve classification, and we refrained 
from using MIP preprocessed images as input to minimize data 
loss. The advantage of this is that we can reduce the error potential 
and bias of our algorithm. The ensemble model structure, in 
which several individually trained versions come to a joint 
decision, has not yet been reported for this task. Not only it 
minimizes the risk of overfitting, but it also allows the flexible 

addition of other clinical variables, without any negative impact 
on the performance of the image analysis. In our analysis, 
we compared how the model with clinical variables performed in 
contrast to the model without clinical variables. Another novelty 
of our method is the inclusion of thrombectomy success as a 
prognostic input. This variable can provide the best versus worst-
case scenario prediction for complete reperfusion versus 
thrombectomy failure. The “CTA + Treatment” model holds great 
potential for prognostication in acute stroke settings, as it can 
provide a wide range of outcome predictions, from the least to the 
most favorable treatment results based on the presumed lowest to 
highest mTICI reperfusion. This approach enables the model to 
estimate the probabilities of 3-month outcomes based on potential 
thrombectomy success.

It’s worth noting that the model can solely rely on CTA scans, too, 
which is almost always available at the time of LVO diagnosis. 
Therefore, a model based on imaging information can provide rapid 
and objective predictions regardless of local expertise and inter-
examiner variabilities.

In our work, we also compared ensemble models using different 
variables with each other and were able to do a comprehensive 
assessment of different input strategies. For example, we wanted to 
simulate situations in which the determination of NIHSS is not 
possible for various reasons (e.g., tele-stroke setting, pre-existing 
motor deficit due to musculoskeletal degenerative disease, or language 
barrier). Although the combination of age, NIHSS, sex, and treatment 
results emerge as a strong prognostic model (Cummock et al., 2023; 
Oliveira et al., 2023), a fully automated model based on imaging input 
alone can be useful for immediate risk stratification as soon as CTA 
scan is completed.

The use of an ensemble model as described by us also has the 
advantage of increasing generalizability. Since multiple versions of 
a model make a decision together by averaging each one’s 
probability, it results in less fluctuation between each patient and 
is less prone to overfit. Since it is widely known that deep learning 
models trained on a specific set of imaging characteristics may 
struggle to generalize to external datasets with different imaging 

TABLE 2 Model bias analysis comparing the characteristics of patients with correct versus incorrect prediction by “CTA  +  Treatment” input model.

“CTA” model True prediction
(n  =  73)

False prediction (n  =  22) p-value

3-month modified Rankin Scale 4 (4–6) 1.5 (1–2) < 0.01

Sex (male) 41 (56%) 12 (55%) 1.00

Admission NIH Stroke Scale 17 (13–21) 11 (8–16) < 0.01

Age (years) 71.97 ± 15.60 62.82 ± 15.67 0.02

Post-thrombectomy reperfusion * 0.25 (0–3) 3 (3–4) < 0.01

“CTA  +  Treatment” model True prediction (n =  74) False prediction (n =  21) p-value

3-month modified Rankin Scale 4 (4–6) 2 (1–2) < 0.01

Sex (male) 43 (58%) 10 (47%) 0.90

Admission NIH Stroke Scale 17 (13.25–21.75) 11 (8–16) < 0.01

Age (years) 72.03 ± 15.71 62.19 ± 14.99 < 0.01

Post-thrombectomy reperfusion * 3 (1–3) 3 (3–4) 0.03

*A 0-to-4 ordinal variable was applied to represent post-thrombectomy reperfusion based on modified Thrombolysis in Cerebral Infarction (0, 1, 2a, 2b, and 3).
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properties (Li et al., 2023), we also took additional measures to 
avoid overfitting in the training process. For example, we applied 
data augmentation techniques as well as L2-regularization, as they 
are known to increase the generalizability of a trained model 
(Sanford et al., 2020; Li et al., 2023). Notably, prognostic models 
based on automated analysis of admission CTA can offer 
generalizable treatment guidance information given the 
widespread availability of CTA scans, even in rural areas. This 
additional information is provided regardless of the presence 
expert reviewers, and without need for additional advanced 
imaging (such as perfusion), extra radiation or contrast 
administration. Risk-stratification of patients can identify potential 
candidates for additional post-thrombectomy neuroprotective or 
neuroregenerative therapies.

Attention maps help visually illustrate the deep learning model’s 
perception and provide insight into the decision-making process of 
machine learning models. As depicted in Figure  4, cerebral areas 
within the MCA supply territory had the highest impact on the 
decisions of our models. These findings confirm that model 
predictions were based on attention to at-risk cerebral tissue on CTA 
scans of LVO stroke patients (Waqas et al., 2020).

Our study has limitations. In model bias analysis, we found that 
false predictions of our model more commonly involved patients with 
favorable clinical characteristics (Table 2). The class imbalance within 
the dataset, particularly within the lower mRS categories, may have 
exerted an influence on the model’s performance during both the 
training and testing phases. In theory, there are some strategies that can 
be applied in the future to mitigate the issue of overestimating classes. 
For example, generative adversarial networks (GANs) are increasingly 
applied to generate synthetic images that oversample minority classes 
(Islam and Zhang, 2020), therefore increasing the ability of the model 
to reliably detect minority classes. Other approaches are aimed at 
optimizing the analysis of the generated probabilities like prediction 
uncertainty (Zou et al., 2023) or using a conditional probability for bias 
correction in prediction (Alexandari et al., 2020).

Also, retrospective datasets may suffer from biases inherent in 
the data collection process. These biases could be related to patient 
selection, imaging protocols, or institutional practices. Moreover, 
the mTICI score included in the dataset were not from core 
laboratory and therefore subject to inter-examiner variability. In 
addition, stroke management and outcomes can evolve due to 
advancements in medical treatments, changes in clinical guidelines, 
or improvements in healthcare practices. Retrospective studies 
without external validation might not account for these temporal 
changes, affecting the model’s applicability to more recent 
patient cohorts.

5 Conclusion

We showed the feasibility of an end-to-end fully automated to 
predict post-thrombectomy outcomes from readily available 
admission CTA images and treatment data. The model can 
be practically useful in the absence of a reliable neurological exam 
which can also provide robust prognostication. The comparison of our 
work to existing literature suggests that a simple deep learning 
approach, as implemented in our model, strikes a pragmatic balance 
between performance, architectural simplicity, and preprocessing ease.
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