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Background: Major Depressive Disorder (MDD) is a prevalent mental health

condition characterized by persistent low mood, cognitive and physical

symptoms, anhedonia (loss of interest in activities), and suicidal ideation. The

World Health Organization (WHO) predicts depression will become the leading

cause of disability by 2030. While biological markers remain essential for

understanding MDD’s pathophysiology, recent advancements in social signal

processing and environmental monitoring hold promise. Wearable technologies,

including smartwatches and air purifiers with environmental sensors, can

generate valuable digital biomarkers for depression assessment in real-world

settings. Integrating these with existing physical, psychopathological, and other

indices (autoimmune, inflammatory, neuroradiological) has the potential to

improve MDD recurrence prevention strategies.

Methods: This prospective, randomized, interventional, and non-

pharmacological integrated study aims to evaluate digital and environmental

biomarkers in adolescents and young adults diagnosed with MDD who

are currently taking medication. The study implements a sensor-integrated

platform built around an open-source “Pothos” air purifier system. This

platform is designed for scalability and integration with third-party devices. It

accomplishes this through software interfaces, a dedicated app, sensor signal
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pre-processing, and an embedded deep learning AI system. The study will enroll

two experimental groups (10 adolescents and 30 young adults each). Within

each group, participants will be randomly allocated to Group A or Group B.

Only Group B will receive the technological equipment (Pothos system and

smartwatch) for collecting digital biomarkers. Blood and saliva samples will be

collected at baseline (T0) and endpoint (T1) to assess inflammatory markers and

cortisol levels.

Results: Following initial age-based stratification, the sample will undergo

detailed classification at the 6-month follow-up based on remission status.

Digital and environmental biomarker data will be analyzed to explore

intricate relationships between these markers, depression symptoms, disease

progression, and early signs of illness.

Conclusion: This study seeks to validate an AI tool for enhancing early

MDD clinical management, implement an AI solution for continuous data

processing, and establish an AI infrastructure for managing healthcare Big Data.

Integrating innovative psychophysical assessment tools into clinical practice

holds significant promise for improving diagnostic accuracy and developing

more specific digital devices for comprehensive mental health evaluation.

KEYWORDS

Major Depressive Disorder, air pollution, digital biomarkers, wearable technology,

artificial intelligence

1 Background

1.1 Epidemiology of Major Depressive
Disorders

Close to one billion individuals globally grapple with mental
health conditions, Major Depressive Disorders (MDD) is one of
the most widespread among them (Institute of Health Metrics
and Evaluation, 2022). MDDs are primarily distinguished by a
reduction in energy and interest in daily activities, feelings of
sadness, impaired concentration, sleep disturbances, emptiness,
irritability, and the presence of suicidal ideation, planning, and
attempts. With over 700,000 suicides reported annually, MDD
stands as the fourth leading cause of death among individuals aged
15–29 years old (Malhi et al., 2018; World Health Organization,
2022). The onset of the disease occurs during adolescence in nearly
50% of cases, and a high risk of recurrence and chronicity across
the lifespan in 5% of cases. Depression is about 50%more common
among women than men (Lam et al., 2016).

After experiencing a first depressive episode, the recurrence rate
within 3 years is more than 30%, and some patients have recurrent
episodes; thus, the course of the disease can be chronic, placing a
heavy burden on both patients and society (Kuehner, 2017). Despite
its high prevalence, depression remains undiagnosed and untreated
in half of all cases (Kohn et al., 2004).

1.2 Biomarkers of MDD

The causes of MDD are complex and include multiple
converging factors, such as genetic, immune system, endocrine

factors, and stress-related psychosocial conditions (Ruiz et al.,
2022). The specific pathways contributing to MDD onset
and progression remain unclear (McIntyre et al., 2014; Lai
et al., 2019; Wölfer et al., 2019), partly due to its clinical
heterogeneity. MDD might have biomarkers from various sources,
including inflammation, immune responses, neurotrophins,
neurotransmitters, metabolic processes, and neuroendocrine
systems (Belzeaux et al., 2018; Mora et al., 2018). Consequently, the
use of any potential objective biomarker for accurately diagnosing
depression warrants in-depth investigation.

The inflammatory immune-mediated hypothesis supported
that immune dysfunction may contribute to both comorbid
depression (associated with clinical inflammation) and primary
depression in some individuals with low-grade inflammation
indices (Averna et al., 2020). Literature data show that
inflammatory biomarkers are altered in individuals with MDD
(Soskin et al., 2012; Beurel et al., 2020; Osimo et al., 2020).
The literature revealed significantly elevated levels of various
inflammatory biomarkers, including CRP, IL-3, IL-6, IL-12, IL-18,
sIL-2R, and TNFα, in individuals with MDD. Additionally, Osimo
et al., observed a decreased mean-scaled variability (CVR) in
patients with MDD for CRP, IL-12, and sIL-2R, indicating a more
consistent inflammatory phenotype. The overall findings support
the association between MDD and a pro-inflammatory state,
underscoring the importance of understanding inflammation’s role
in shaping the clinical phenotype and affecting treatment response
(Soskin et al., 2012; Beurel et al., 2020; Osimo et al., 2020).

Several studies support an important correlation between air
pollution and depression. Exposure to air pollution has been found
to lead to depression-like behaviors in animal studies, and exposure
to environmental pollutants such as PM, PM 2.5 (Outdoor and
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Indoor), PM 10, CO, CO2, CH4 (Methane), NO2 (Nitrogen
Dioxide), even for extended periods, which can lead to an increase
or worsening of depressive symptoms (Szyszkowicz et al., 2016;
Kioumourtzoglou et al., 2017; Lin et al., 2017). Air pollution has
consistently been associated with increases in pro-inflammatory
biomarkers in the blood and systemic oxidative stress, both
involved in the pathogenesis of psychiatric disorders such as MDD
(Jones et al., 2013; Buoli et al., 2018). Based on current scientific
evidence (Ventriglio et al., 2021; Cuijpers et al., 2023), cumulative
exposure to pollution can be measured with environmental devices
essential for monitoring air quality and pollutant concentrations
in the home environment. Also the prolonged exposure to air
pollution may adversely affect mental health, underscoring its
associations with MDD (Nobile et al., 2023). Comparing short-
term and long-term exposure to environmental pollutants with
the development of MDD can provide interesting data from
a prognostic perspective regarding integrating technology into
mental health prevention and treatment processes.

1.3 Digital biomarkers and MDD

Although biological biomarkers remain central in determining
pathology, significant progress has been made in processing social
signals as a diagnostic tool (Scherer et al., 2012; Joshi et al., 2013;
Williamson et al., 2013). As a supplement to these methodologies,
digital indicators of depression have the potential to contribute
valuable insights to clinician evaluations. This is particularly
advantageous when these indicators can be effortlessly and
inconspicuously gathered outside of traditional clinical settings.

Digital biomarkers, collected through digital devices, offer
objective and quantifiable physiological and behavioral data. They
enable remote data collection, potentially reducing the burden
of in-clinic visits and providing insights into clinically relevant
changes (McIntyre et al., 2023). Wearable technologies and
smartphone apps contribute to digital phenotyping, allowing for
moment-by-moment assessment of individual characteristics in
real-world environments. These tools have been investigated for
their utility in characterizing and diagnosing MDD, including
analyzing patterns of physical activity, voice samples, light
exposure, and smartphone usage data (Lee S. et al., 2021; Ahmed
A. et al., 2023).

The integration of digital biomarkers for depression holds the
promise of improving clinical interventions (Mohr et al., 2017).
This improvement can manifest through prompt identification for
early intervention, continuous assessment during treatment, and
the mitigation of disparities in assessment accessibility (Kumar and
Phookun, 2016; Naslund et al., 2017).

Voice analytics has shown promise for detecting symptoms of
depression (Soskin et al., 2012; Beurel et al., 2020).

The idea of using vocal acoustic features as potential
biomarkers for identifying or diagnosing depression is an emerging
area of research within the field of computational psychiatry
and affective computing. The premise behind this approach is
that changes in vocal characteristics, such as pitch, tone, rhythm,
and intensity, may reflect underlying emotional states, including
depression (Schwoebel et al., 2021; Sverdlov et al., 2021).

Several studies have explored the relationship between vocal
features and depression (Mundt et al., 2012; Huang et al., 2021).
These studies typically involve collecting speech samples from
individuals diagnosed with depression and comparing their vocal
characteristics with those of non-depressed individuals. Some
common findings include:

1. Pitch: Depressed individuals may exhibit alterations in pitch,
such as reduced pitch variability or overall lower pitch compared
to non-depressed individuals.

2. Tone: Changes in tone, including flatter or more monotone
speech, have been observed in individuals with depression.

3. Speech rate and rhythm: Depressed individuals may speak at
a slower rate or exhibit disrupted speech rhythm compared to
non-depressed individuals.

4. Intensity: Variations in speech intensity, including reduced
loudness or energy in speech, have been linked to depression.

5. Prosody: Depressed individuals may demonstrate abnormalities
in prosody, which refers to the patterns of stress and intonation
in speech.

Researchers have developed computational algorithms to
analyze these vocal features automatically, allowing for objective
and quantitative assessment of depressive symptoms. Machine
learning (ML) techniques, such as support vector machines, neural
networks, and Gaussian mixture models, have been employed to
classify individuals as depressed or non-depressed based on their
vocal characteristics (Zhao et al., 2022).

While the potential of vocal acoustic features as biomarkers for
depression is promising, several challenges remain. These include
the need for large-scale validation studies, addressing confounding
factors such as age, gender, and cultural differences, and ensuring
the privacy and ethical use of speech data in clinical settings.

1.4 The role of AI in MDD

Integrating computer technologies and AI is a cutting-edge
approach in mental health research (Graham et al., 2019),
addressing the growing challenges faced by healthcare systems.
AI, especially ML, aids in the precise and rapid diagnosis of
mental health disorders by analyzing biomarkers related to patients’
biological, physiological, and behavioral aspects (Iyortsuun et al.,
2023). AI holds promise in understanding the complex interplay
of biological, psychological, and social factors in mental health.
The use of AI and wearable devices allows for continuous,
objective patient monitoring, offering insights into mood changes
and treatment effects, thereby enhancing mental health care and
research (Nahavandi et al., 2022). Integrating AI algorithms with
real-time data from wearables and sensors marks a substantial
stride forward, enabling the creation of personalized and responsive
mental health systems (Boucher et al., 2021; Omarov et al., 2023).
Personal wearable devices like smartwatches and fitness trackers
offer real-time data collection for healthcare. They are valuable in
monitoring and assessing patients with depression, as they capture
data related to physical activity and smartphone usage, among
others. Advancements in smartphone-based speech analysis and
wearable technologies like smartwatches offer new opportunities
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for real-life depression screening and the generation of digital
biomarkers (Sequeira and Perrotta, 2020; Lee Y. et al., 2021).
Research on digital biomarkers addresses four fundamental aspects:
forecasting diagnostic status, evaluating symptom severity and
progression, discerning treatment response, and monitoring real-
world and ecological (Ahmed A. A. M. et al., 2023; Vignapiano
et al., 2023). Various wearable technologies have been employed to
gather physiological, activity/sleep, or subjective data in order to
investigate their correlations with depression.

The next step to apply these findings clinically is to integrate
relevant measures into non-invasive and cost-effective tools for
use in clinical settings. This integration, including physical,
psychopathological, and environmental indicators, could enhance
clinical assessments by reducing inter-rater subjectivity relative
to diagnosis and symptom evaluation and treatment response
(McGuire et al., 2015).

Digital psychiatry integrates various healthcare aspects such as
delivery, illness surveillance, disease management, and treatment,
with advancements in AI and ML facilitating the translation
of new data into clinically relevant digital biomarkers (Orsolini
et al., 2024). Wearable devices are expected to play a crucial
role in personalized telemedicine, with ongoing research aiming
to enhance digital phenotyping precision and efficacy in mental
healthcare, ultimately improving the quality of life for individuals
with MDD (Courtet et al., 2023).

1.5 Aim of the study

This study focuses on evaluating specific digital and
environmental biomarkers in adolescents and young adults
diagnosed with MDD. The study, conducted through a prospective
investigation on the MDD population (i.e., MDD), aims to:

1. Evaluate digital, environmental, and blood biomarkers
as predictive indices of recurrence or remission of
depressive pathology.

2. Enhance digital technologies useful for predicting the severity of
psychopathology and assessing treatment effectiveness.

3. Apply technologies to distinguish individuals with depression
and determine a personalized approach.

4. Predict the severity of psychopathology among subjects using
biomarkers derived from digital tools.

2 Methods

This project, a prospective, randomized, interventional, and
non-pharmacological integrated study (Figure 1), proposes a novel
technological platform designed to collect, evaluate, and analyze
a comprehensive range of digital and environmental biomarkers
in adolescents and young adults diagnosed with MDD, through a
prospective 24 months study. The platform adheres to principles
of openness, integrability, and scalability to facilitate future
advancements and its main components are described in Figure 2.

• Sensor integration: The platform utilizes a core hub capable
of integrating various sensors and smart devices (wearables,

smartphones, “Pothos” air purifier) to collect physiological
(e.g., heart rate, oxygen saturation), behavioral (e.g., activity,
sleep, voice), and environmental data (e.g., CO2, fine dust,
environmental brightness). The platform specifically uses
Android-based smartwatches and smartphones because this
software allows for easier integration with experimental
programs like this one.

• Mobile app: An individualized mobile application will be
developed by IT.Svil. s.r.l. with the purpose of enhancing
patient engagement and simplifying communication with
healthcare providers. This app will facilitate the collection
of self-reported data from patients, thereby streamlining the
healthcare process.

• Data management: To encourage collaboration among
various components, a hub-and-spoke topology will
be adopted. This approach ensures efficient interaction
between different entities. The utilization of commercial
cloud platforms is anticipated to optimize performance,
cost-effectiveness, and security. Moreover, in line
with privacy by design principles, the platform will
prioritize data security through measures such as secure
communication channels, VPN, MFA, and data encryption
and anonymization techniques.

• Deep learning analysis: The platform utilizes advanced DL
algorithms to analyze the collected data. These algorithms,
based on neural networks, are adept at handling complex
and diverse datasets. This is crucial because the platform will
gather a wide range of information such as data types (e.g.,
digital, environmental, and biological) and data formats both
discrete and continuous. By analyzing this data, the platform
aims to uncover hidden patterns that can help to: improve
diagnosis and tailor treatment plans to the individual’s specific
needs. The focus on DL underlines the platform’s aim to
become amodern and innovative decision support system that
goes beyond simple data analysis.

• Data standardization and applications: Data will be
structured according to international healthcare standards
(e.g., International Patient Summary, IPS) for clear
communication and analysis. Additionally, value-added
applications for data visualization beyond basic time series
dashboards are envisioned. IT.Svil. s.r.l.’s IT technicians,
in collaboration with the research team, will undertake
the development of the data visualization dashboard. This
collaborative effort will ensure comprehensive input from
various team members, resulting in an efficient and effective
dashboard design.

The experimental sample included 80 subjects aged 14 to 50
diagnosed with MDD (after administration of SCID-5 CV) who
have been on stable medication for at least 16 weeks.

To achieve a 95% confidence level with a 5% margin of error
in statistical sampling, considering a population proportion of
approximately 50% and a known population size constituting
80% of the total, a minimum of 67 patients will be required.
This calculation incorporates factors like the Z-score, standard
deviation, and a finite population correction for larger populations.
The meticulous consideration of these elements ensures the
reliability and precision of the sample size, thus enhancing
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FIGURE 1

Study design.

FIGURE 2

Master data platform.

the credibility of the statistical findings in representing the
broader population.

Participants will be excluded if they presented: intellectual
disability; current or previously diagnosed psychotic disorder;
mood disorder with psychotic features; bipolar disorder; alcohol
and drug use with psychotropic effects according to DSM-
5; pathologies of a chronic inflammatory nature; history of
gastrointestinal disorders in the previous week; pregnancy.

The sample will be divided into two age groups (14–17 years
and 18–49 years) and distributed in a randomized manner by

random allocation in two different groups (group A and group B),
each consisting of 40 subjects (10 adolescents and 30 adults).

Based on data from the Italian Statistical Institute (ISTAT)
regarding the incidence of depression among italian adolescents,
20 teenager were included in the total sample.

Only the subjects assigned to group B will receive the
technological equipment (Pothos system and smartwatch) for the
collection of digital biomarkers; group A will be followed according
to clinical standards of care. Specialized medical personnel will
follow both groups from a pharmacological point of view.

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1366055
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Monaco et al. 10.3389/frai.2024.1366055

The assessment will include socio-demographic information,
clinical history, medication details, and various clinical scales for
evaluating depression severity (HAM-D, MADRS, CDI-2) and
overall functioning (GAF, C-GAS, CBCL 6–18). Clinical parameters
that will be monitored daily include: heart rate, and respiratory
rate, oxygen saturation, light intensity, sleep/wake rhythm, and
daily step count. The daily mood will be detected by using specific
emoticons by the study participants. Additionally, vocal analysis
will be conducted weekly using an “ad hoc” app to evaluate
global articulation rate, fundamental frequency, and energy during
specific tasks. Specific characteristics to be analyzed include F0
range (Hz), Energy per second (mV2), Average pause duration (s),
Total pause time (s), and Variability of pauses (s).

The study will also include the collection of blood and saliva
samples to assess inflammatory biomarkers (IL-1β, IL-2, IL-4, IL-
5, IL-6, IL-10, IL-12, and IFNγ) and cortisol levels at the beginning
(T0) and the end of the study (T1). Samples of peripheral blood and
saliva will be taken in the group of patients withMDD and controls.

Blood withdrawal is necessary to recover the plasma and dose
cytokines of pro- and anti-inflammatory cascade; the salivary
sample allows the dosage of cortisol instead. Blood (7ml) will be
collected in K2-EDTA tubes, and plasma will be obtained through a
density gradient centrifugation using SepMateTM Tubes. According
to the manufacturer’s instruction, blood will be diluted with PBS
and then stratified on a gradient density medium (LymphoSepTM,
Biowest) that will allow the separation of plasma and other
components after centrifugation at 1,200 × g for 10min at a room
temperature, brake on. Plasma will be recovered and stored at
−80◦C until it is used.

Saliva (>1ml) will be collected in the morning, before brushing
teeth and consuming food, through the use of a Salivette R©

(Sarstedt), a test tube containing a swab to be chewed slowly for
2min. Salivette R© will be centrifuged at 1,500× g for 10min at 4◦C
and then saliva will be recovered and stored at−20◦C until the use.

IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, and IFNγ

inflammatory biomarkers will be dosed in plasma through the
Elisa test using ELISA Pro:Human Kits (Mabtech). IL-1α will be
measured by using Interleukin-1α (human) ELISA kit (Cayman);
cortisol will be quantified in saliva through a competitive assay
(Cortisol ELISA Kit, Cayman). All the Elisa tests will be performed
according to the manufacturer’s instructions.

The study protocol and informed consent form were
approved by the Campania Sud Review Board (application
protocol: 48_r.p.s.o.).

3 Results

The study’s sample will first undergo initial age-based
stratification. Subsequently, a more detailed categorization will
be conducted based on outcomes observed during a 6-month
follow-up period. This classification relies on remission, a crucial
parameter indicating intervention effectiveness, determined by
a HAM-D score ≤7. This stratification acknowledges age’s
impact on MDD manifestation and allows refined analysis of
treatment outcomes in distinct age groups. Remission or clinical
improvement presence will be confirmed using data from digital
and environmental biomarkers, exploring connections between

biomarkers, depression expression, disease course, and early
illness signs.

4 Conclusions

The study endeavors to assess biomarkers as predictive
indicators for the relapse or remission of MDD, with the
overarching goals of advancing digital technologies in predicting
psychopathological severity, evaluating treatment efficacy,
distinguishing individuals with MDD, and forecasting
psychopathology severity through digital biomarkers.
Simultaneously, this study seeks to validate an AI tool
for early MDD diagnosis, implement an AI solution for
continuous data processing, and establish an AI infrastructure
for healthcare Big Data management. The integration of
innovative psychophysical assessment tools in clinical practice is
pivotal, aiming to enhance diagnostic efficiency and develop
more specific digital devices for comprehensive mental
health evaluation.
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