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Introduction: Machine learning (ML) techniques have gained increasing

attention in the field of healthcare, including predicting outcomes in patients

with lung cancer. ML has the potential to enhance prognostication in lung cancer

patients and improve clinical decision-making. In this systematic review and

meta-analysis, we aimed to evaluate the performance of ML models compared

to logistic regression (LR) models in predicting overall survival in patients with

lung cancer.

Methods: We followed the Preferred Reporting Items for Systematic Reviews

and Meta-Analysis (PRISMA) statement. A comprehensive search was conducted

in Medline, Embase, and Cochrane databases using a predefined search query.

Two independent reviewers screened abstracts and conflicts were resolved by

a third reviewer. Inclusion and exclusion criteria were applied to select eligible

studies. Risk of bias assessment was performed using predefined criteria. Data

extraction was conducted using the Critical Appraisal and Data Extraction for

Systematic Reviews of Prediction Modeling Studies (CHARMS) checklist. Meta-

analytic analysis was performed to compare the discriminative ability of ML and

LR models.

Results: The literature search resulted in 3,635 studies, and 12 studies with a total

of 211,068 patients were included in the analysis. Six studies reported confidence

intervals and were included in themeta-analysis. The performance of MLmodels

varied across studies, with C-statistics ranging from 0.60 to 0.85. The pooled

analysis showed that ML models had higher discriminative ability compared to

LR models, with a weighted average C-statistic of 0.78 for ML models compared

to 0.70 for LR models.

Conclusion: Machine learning models show promise in predicting overall

survival in patientswith lung cancer, with superior discriminative ability compared

to logistic regression models. However, further validation and standardization

of ML models are needed before their widespread implementation in clinical

practice. Future research should focus on addressing the limitations of the

current literature, such as potential bias and heterogeneity among studies,

to improve the accuracy and generalizability of ML models for predicting
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outcomes in patients with lung cancer. Further research and development of ML

models in this field may lead to improved patient outcomes and personalized

treatment strategies.
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artificial intelligence, machine learning, lung cancer, prediction model, algorithm

Introduction

Lung cancer: a significant health challenge

Lung cancer is the leading cause of cancer-related mortality in

the United States, with an estimated 225,000 new cases diagnosed

annually and 160,000 deaths (Miller et al., 2016). While advances in

treatment have led to decreasing trends in mortality and improved

survival over the past decade, the median survival remains a

dismal 14 months (Howlader et al., 2020; Hu et al., 2021). Lung

cancer is broadly classified into two subtypes: non-small cell lung

cancer (NSCLC) and small-cell lung cancer (SCLC). NSCLC, the

most common subtype, has a 5-year relative survival rate of

just 22.9% (National Cancer Institute: Surveillance, Epidemiology,

End Results Program, 2022). This is largely due to the fact that

most patients are diagnosed at advanced stages, rendering curative

treatment options such as surgery ineffective. For these patients, the

development of a system to accurately predict survival could aid in

treatment and management decisions.

Current state of lung cancer survival
prediction models

The majority of models developed for survival prediction are

based on logistic regression (LR), which models the probability of

an event occurring based on a linear combination of one or more

independent variables. Logistic regression relies on the operator’s

input, meaning that the programmer must recognize the potential

interactions occurring between datapoints in order to develop an

accurate model. To overcome this limitation, focus has shifted

toward machine learning (ML). Machine learning, a subset of

artificial intelligence, is a rapidly growing field that may begin to

serve an important function in assisting physicians and patients

(Rajkomar et al., 2019). ML algorithms develop a model based

on a sample of data (training data) in order to make predictions

using mathematical and statistical approaches. Deep learning (DL),

a further subset of machine learning, is based on artificial neural

networks that mimic neurons in the human brain. These neurons

can interact with one another and detect patterns in large datasets

without relying on human interaction, allowing them to make

accurate predictions. Interest in these techniques has grown as

they continue to demonstrate promise in different applications,

including survival prediction, treatment recommendations, and

image classification. Similarly, a number of image classification

methods have been developed for detection of diseases such as

COVID-19 and pneumonia using chest radiographs, with strong

results that may be applicable to lung cancer survival models

(Zumpano et al., 2021; Rani et al., 2022a). Contributions focused

on chest radiograph preprocessing techniques and techniques

enabling 3D visualization have allowed for denoising of images,

leading to heightened prediction accuracy (Rani et al., 2022b;

Pradhan et al., 2023). Advancements in technology have allowed

for the development of survival prediction models that may assist

clinicians to make personalized decisions for their patients on

aspects such as follow-up timeline or supportive care roles. The

downstream effects of these models could significantly reduce

physician burnout and improve the efficiency of our healthcare

system. However, recent analyses have challenged the notion that

machine learning models may be superior to those developed

using logistic regression (Christodoulou et al., 2019; Sufriyana

et al., 2020). ML models hold significant potential to improve

healthcare spending and decision making for physicians and

patients, however, their performance in predicting lung cancer

outcomes has been largely underexplored in the current literature.

Rationale

In this study, we systematically review the current state of

the literature surrounding the development and use of machine

learning models in predicting survival in patients with lung

cancer. Further, we employ meta-analytic estimates to compare the

accuracy of machine learning algorithms with those of traditional

logistic regression models in predicting survival of patients with

lung cancer.

Materials and methods

We followed the Preferred Reporting Items for Systematic

Reviews and Meta Analysis (PRISMA) statement (Moher et al.,

2009). The PRISMA steps that were followed include developing

eligibility criteria, then selecting information sources, creating

a search strategy, selecting studies that meet eligibility criteria,

defining variables and data extracted from each study, then

assessing risk of bias in individual studies.

Search strategy

A search query was designed based on a previously published

study evaluating machine learning in cardiac surgery (Benedetto

et al., 2022). We modified the original query by adapting the

keywords to select relevant studies for lung cancer, as opposed
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to cardiac surgery. Keywords were selected to capture results

from lung cancer, artificial intelligence, and outcomes data. These

keywords were strung together using Boolean operators to develop

the following novel query: “lung cancer” AND (outcomes OR risk

OR prediction OR mortality OR prognosis OR survival) AND

(machine learning OR artificial intelligence OR deep learning OR

neural network OR random forest OR decision tree OR support

vector machine). These machine learning algorithms were included

in the search query due to their use in studies evaluating the

accuracy of machine learning for survival prediction (Kourou et al.,

2015). This search query was inputted into the Medline (2,940),

Embase (6,593), and Cochrane (2) databases on 06/01/2023. All

abstracts were independently screened by two reviewers (AD and

AN). Disagreements in study selection were resolved by a third,

experienced reviewer.

Inclusion and exclusion criteria

Studies were eligible for inclusion if they met the following

criteria: (1) originally written in the English language; (2) article

described the development of an ML model to predict overall

survival in patients aged ≥18 with lung cancer and compared

the performance of the ML model with an LR model using the

same dataset. Studies were excluded if they were not written in

English, did not use an ML model, did not study patients aged

≥18 with lung cancer, did not predict overall survival, or did not

compare an ML model with LR using the same dataset. Review

articles, case reports, conference proceedings, editorials, abstract-

only articles or articles without full text were excluded. Papers

from conference proceedings were excluded due to the potential for

preliminary findings that have not undergone extensive validation

or peer review, in addition to a potential for limited details on

methods, results, and conclusions.

Risk of bias assessment

We followed the methods described by Christodoulou et al.

(2019) to evaluate risk of bias in studies of ML algorithms. We

defined five signaling items to indicate potential bias: (1) unclear or

biased validation of model performance; (2) difference in whether

data-driven variable selection was performed before applying LR

and ML algorithms; (3) different predictors considered for LR and

ML algorithms; (4) whether corrections for imbalanced outcomes

were used only for LR or only for ML algorithms; and (5) difference

in handling of continuous variables before applying LR or ML

algorithm. Each bias item was scored as no (not present), unclear,

or yes (present). We considered a comparison at low risk of bias if

the answer was “no” for all five signaling items. If the answer was

“unclear” or “yes” for at least one item, we assumed high risk of bias.

Data extraction

Two reviewers (AD and AN) extracted data from each study.

The extracted items were based on the Critical Appraisal and Data

Extraction for Systematic Reviews of Prediction Modeling Studies

(CHARMS) checklist and the Quality Assessment for Diagnostic

Accuracy Studies-Comparative (QUADAS) risk of bias tool

(Whiting et al., 2011; Moons et al., 2014). The CHARMS checklist

was developed using methodological recommendations for data

extraction, risk-of-bias tools, and data extraction protocols from

previously published systematic reviews of prediction modeling

studies to guide collection of data for systematic reviews. This

checklist represents an unbiased method of data extraction for

systematic reviews. Items included in the checklist include source

of data, predicted outcomes, sample sizes, handling of missing data,

model development, model performance, model evaluation, and

results. Additionally, we extracted the year the study and the first

author’s affiliated country to assess for potential geographic bias.

Meta-analytic analysis

Our primary objective was to compare the discriminative

ability for overall survival of ML models with that of LR models.

Discriminative ability refers to the capacity of a model to accurately

predict whether an event will or will not happen, as measured by

the concordance index (C-statistic). The C-statistic corresponds

with the area under the receiver operating characteristic curve

(AUC), which plots sensitivity (true positive) against 1 – specificity

(false positive), to demonstrate the relationship between these two

variables and represents a measure of clinical utility. A C-statistic

of 0.5 corresponds with random, or a 50% chance, of an event

occurring, whereas a C-statistic of 1.0 indicates a model has 100%

discriminative ability.

After extraction, the C-statistics for the highest performing

models in both groups were summarized into a weighted average.

Pooled C-statistics were compared using a previously described

method. Sensitivity analysis was conducted using the one-removal

function (Lee, 2018). In this analysis, each study included in the

meta-analysis is systematically excluded one at a time, and the

meta-analysis is rerun to determine how the exclusion of each

study affects the pooled effect size or outcome. We elected not to

utilize a funnel plot due to a small sample size of studies included

in the meta-analytic estimates. Models must have reported a 95%

confidence interval to be included in the pooled analysis. All tests

were two-tailed and p-values ≤ 0.05 were considered statistically

significant. A random effects model was used to determine the

meta-analytic estimates. All statistical analysis was performed using

RStudio version 2022.02.3.

Results

Literature search

The search and screening of studies are demonstrated in

Figure 1. Our search resulted in 3,635 studies published between

2006 and 2022. We included 259 studies based on title and

abstract. After full-text screening, we excluded 247 studies and

12 studies met inclusion criteria and qualitative and quantitative

data was extracted. Of these 12, we included six which reported
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FIGURE 1

PRISMA flow diagram of screening process.

confidence intervals in our meta-analysis. None of the studies had

an overlapping population.

Study characteristics

Twelve studies were analyzed, with 23 datasets and 211,068

patients eligible for inclusion in the systematic review, including six

studies in the meta-analysis (Bartfay et al., 2006; Elfiky et al., 2018;

Jochems et al., 2018; Siah et al., 2019; Afshar et al., 2020; Huang

et al., 2020; Wang et al., 2020; Loureiro et al., 2021; Chan et al.,

2022; Hindocha et al., 2022; Yang et al., 2022; Zhang et al., 2022)

(Tables 1, 2). All of the studies were retrospective analyses. Most

of the studies were published in 2018 or beyond (n = 11, 92%). 5

of the studies were published in China (42%) and 3 (25%) in the

United States. All but one of the studies included clinical predictors

in their model, with one study using only radiological data to

predict survival outcomes. The median number of predictors used

to build the machine learning model was 17, which ranged from

6 to 5,390. The most common model deployed was random forest

(n= 4, 33%) followed by artificial neural network (n= 3, 25%). Six

studies demonstrated random forest as their best performingmodel

(50%), while the following 5 (42%) listed XGboost as their best

performing model and one study listed an ensemble model as their

best performing. Nine studies described machine learning models

which outperformed logistic regression by a mean difference of 9%.

85.8% (n = 181,035) of the patients included had NSCLC,

13.9% were unreported, and 0.2% (n = 608) had SCLC. 71.9% (n

= 151,798) patients had advanced stage (Stage IV) lung cancer at

diagnosis, while 13.4% (n = 28,241) patients had early stage (I–III)

lung cancer and 14.4% (n= 30,421) were unknown.

Methodological quality

The risk of bias assessments for each analyzed study are

shown in Table 3. Of the 12 studies included in the systematic

review, nine had low risk of bias. The three studies which

were identified as high risk of bias all had differences in the

variables selected as predictors between the machine learning
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TABLE 1 Characteristics of the studies included in the systematic review.

References Country Patient Pop. Predictors Sample (n) ML AUC LR AUC

Afshar et al. (2020) Canada Early-stage lung cancer Radiomics Clinical 132 0.68 0.51

Hindocha et al. (2022) UK Stage I–III NSCLC Clinical Radiomic 657 0.717 0.665

Jochems et al. (2018) and Huang et al.

(2020)

China All NSCLC with bone mets Clinical 6,087 0.786 0.751

Yang et al. (2022) China Stage III NSCLC Clinical Histological 16,781 0.665 0.629

Jochems et al. (2018) Netherlands All NSCLC Clinical 1,005 0.66 0.55

Loureiro et al. (2021) Germany Advanced NSCLC Clinical 137,906 0.665 0.671

Chan et al. (2022) China All NSCLC Radiomics 123 0.675 0.765

Bartfay et al. (2006) Canada SCLC Clinical 608 0.654 0.645

Elfiky et al. (2018) USA All lung cancer Clinical 28,873 0.771 0.537

Zhang et al. (2022) China All lung cancer Clinical Radiomic 420 0.66 0.57

Siah et al. (2019) USA Advanced NSCLC Clinical 7,805 0.725 0.726

Wang et al. (2020) China IB-IIA stage NSCLC. Clinical 10,671 0.6367 0.5612

TABLE 2 Selected contributions of the studies examined.

References Source of data Type of model Best performing model

Afshar et al. (2020) Institutional registry CNN (DL) ANN (CNN)

Hindocha et al. (2022) 3 UK NHS Registries Ensemble of MDA

XGB

NNET

Ensemble

Huang et al. (2020) SEER database

Institutional registry

RF

SVM

RF (XGB)

Yang et al. (2022) SEER database

Institutional registry

ANN ANN

Jochems et al. (2018) 4 Institutional registries

Maastro database

RF RF

Loureiro et al. (2021) Flatiron Health Database

OAK clinical trial database

Regularized Cox, RSF, Gradient Boosting (GB), DeepSurv (DS),

Autoencoder (AE), Super Learner (SL)

RF (RSF)

Chan et al. (2022) Institutional registry RF RF (XGB)

Bartfay et al. (2006) National cancer registry ANN ANN

Elfiky et al. (2018) Institutional registry RF RF (XGB)

Zhang et al. (2022) Institutional registry ANN ANN (CNN)

Siah et al. (2019) 17 randomized clinical trials RF RF (RSF)

Wang et al. (2020) West China Hospital ANN ANN

and logistic regression models, which led to a high risk of bias.

Additionally, the study by Jochems et al. included an unclear

validation cohort.

Meta-analytic estimates

Six studies included 95% confidence intervals in their estimates

and were included in our pooled analysis measuring the AUC of

survival prediction models (Figure 2) (Elfiky et al., 2018; Jochems

et al., 2018; Siah et al., 2019; Loureiro et al., 2021; Hindocha

et al., 2022; Zhang et al., 2022). The AUC ranged from 0.66

to 0.77. The random effects estimate was 0.70 (95% CI 0.66–

0.75) for machine learning models and 0.62 (95% CI 0.56–

0.69) for logistic regression models. Machine learning models

outperformed traditional (or without use of ML) logistic regression

models; however, this was not statistically significant (Table 2).

There was significant heterogeneity (I2 = 94%, p < 0.01). We

assessed heterogeneity using the One-study removed function,

which did not reveal any decrease in heterogeneity after removal

of studies.
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TABLE 3 Assessment of bias of the studies included in the systematic review.

Study
information

Bias assessment Risk of bias

References Unclear or
biased
validation of
performance

Di�erence in
use of
data-driven
variable
selection

Di�erence in
handling of
continuous
variables

Di�erence in
considered
predictors

Di�erence in
methods for
class
imbalance

Afshar et al. (2020) Low Low Low Low Low Low

Hindocha et al. (2022) Low Low Low High Low High

Huang et al. (2022) Low Low Low Low Low Low

Yang et al. (2022) Low Low Low Low Low Low

Jochems et al. (2018) Unclear Low Low High Low High

Loureiro et al. (2021) Low Low Low Low Low Low

Wang et al. (2020) Low Low Low Low Low Low

Bartfay et al. (2006) Low Low Low Low Low Low

Elfiky et al. (2018) Low Low Low Low Low Low

Zhang et al. (2022) Unclear Low Low High Low High

Siah et al. (2019) Low Low Low Low Low Low

Wang et al. (2020) Low Low Low Low Low Low

Discussion

To the authors’ best knowledge, this is the first study to perform

both a systematic review and a meta-analysis of the accuracy of

machine-learning based models at predicting survival outcomes of

patients with lung cancer. Our meta-analytic results demonstrate

that machine-learning based models have modest proficiency at

predicting survival in this patient population. These capabilities are

strong but did not outperform their logistic regression counterparts

in our analysis.

Model performance in our study

The best performing model in our sample was the XGBoost

algorithm developed by Huang et al. (2020). They used clinical

datapoints, including race, age, sex, marital status, tumor site

and size, TNM staging (a cancer staging system using tumor

characteristics such as size, number of lymph nodes positive for

malignancy, and presence of metastasis), treatment modalities

received, and histological type and grade to predict the 1-year

overall survival of patients with NSCLC who had bone metastases.

Using the SEER database for training and an institutional dataset

for validation, their model achieved an AUC of 0.786. The

XGBoost model is a decision tree system that represents complex

relationships between variables. These algorithms are interpretable

and transparent, addressing the black-box concerns that surround

machine learning models (Holzinger et al., 2017). Additionally,

they do not require the sizeable computational resources that other

machine learning models require, rendering themmore deployable

at the individual patient level. For these reasons, the XGboost

models have been suggested for larger use within the healthcare

system to predict clinical outcomes (Zabihi et al., 2019; Bolourani

et al., 2021). This is further reinforced by our study results−42% of

studies included in our systematic review demonstrated XGboost

models as their highest performing.

Variables used in development of lung
cancer survival models

At the present time, a number of lung cancer prediction models

have been developed with the potential to be deployed for use in

the healthcare setting. Most of these models incorporate the TNM

staging system, which is especially important given the significant

prognostic power that factors such as metastasis weigh into survival

(She et al., 2020). She et al. (2020). used the SEER dataset to

access the listings of 12,912 patients with NSCLC, which served as

their training set. They developed a deep learning neural network

model for survival prediction using 127 clinical variables, which

outperformed their regression-based algorithm that used only

TNM staging (C-statistic 0.74 vs. 0.69). However, their results may

have been limited by the use of only clinical variables to train the

model. Hsu et al. (2022) used an institutional dataset and variables,

including demographics, comorbidities, medications, laboratory

values, and genetic test results, to develop nine models to predict

NSCLC survival. Their best performing model, an artificial neural

network, achieved an AUC of 0.89. Notably, of the nine models

developed, the traditional LR model exhibited the lowest AUC (and

thus, the lowest predictive ability). Lai et al. (2020) developed a

deep neural network using integrated microarray data with clinical

variables, obtaining a strong predictive performance (AUC= 0.82).
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FIGURE 2

Forest plot of ML and LR AUC.

Combing the results of multiple dimensions of variables (laboratory

testing, genomic testing, imaging, clinical variables, etc) may yield

the greatest predictive power due the incorporation of multiple

aspects of the clinical picture into the survival prediction.

Advantages and disadvantages of ML
models over traditional survival prediction
models

Machine learning models have a number of advantages over

traditional logistic regression models. Healthcare is beginning to

move toward large sets of data, and the widespread use of the

electronic health record enables the creation of large databases

such as the National Cancer Database or SEER Database. However,

health record data is notably complicated and voluminous.

Machine learning models are aptly suited for detecting complex

patterns in population-level databases, since they don’t necessarily

require an operator’s manual input and oversight (LeCun et al.,

2015). Thus, although the developer may be unable to recognize

and specify each interaction between variables used to train the

model, the model can recognize and learn from the nonlinear

relationships within the data to arrive at a prediction. Further,

with new data, the model may be continuously improved (Silver,

2011). This is termed incremental learning and confers a unique

advantage to machine learning algorithms when compared with

logistic regression.

Despite their advantages, machine learning models also have a

number of drawbacks. Although we discussed previously that they

can detect patterns in large datasets, this data must be meticulously

processed and readable for the machine. This requires accurate

labeling of the data used to train the model—any inaccuracy

will affect the prognostic impact of the machine. This data can

take many forms, from typed physician’s notes in the electronic

health record to clinical images to histological slides from the

pathologist. In light of this heterogeneity, errors in labeling are a

consistent source of struggle and require substantial investment

of time and effort (van Grinsven et al., 2016). Additionally, the

potential bias in the outputs of machine learning models has been

a topic of recent discussion (Huang et al., 2022). Racial biases

in these models may be especially prevalent (Obermeyer et al.,

2019). One study developing clinical models to detect arrythmias
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was 31% less accurate for Black patients when compared with

Asian patients (Alday et al., 2022). These biases are a reflection

of the data used to train the models—datapoints demonstrate the

systemic inequities present in our healthcare system today, which

is physically exhibited by the algorithms. Moving forward, caution

must be emphasized in the pipeline of model development so as

not to further exacerbate discrepancies in care and outcomes (Chen

et al., 2021).

Use of DL models in lung cancer survival
prediction

DL-based approaches such as neural networks are often

regarded as “black box” approach due to difficulties investigators

may experience in interpreting the data points and variables are

deemed (by the model) to be significant predictors of patient

outcomes. This is one of the perceived weaknesses in their adoption

in medicine despite their better performance with respect to other

modeling approaches like LR.ML-based approaches have the ability

to capture the relationship between hundreds to thousands of

predictors on a specific outcome or output variable of interest.

The black-box nature of DL has led to the increasing adoption of

hybrid systems that combine ML and DL approaches. These hybrid

systems aim to leverage the strengths of deep learning for feature

learning while incorporating more interpretable ML models for

decision-making. By integrating both approaches, researchers and

practitioners can achieve better transparency and understandability

while maintaining high predictive performance. Moreover, there

is a growing interest in solutions based on argumentation

frameworks. Argumentation approaches provide a structured

framework for reasoning and decision-making, allowing for the

explicit representation of different perspectives, uncertainties, and

reasoning paths involved in AI systems (Caroprese et al., 2022).

There is a concern that if adopted, healthcare providers may

become reliant on the use of such platforms which would result

in induction of “automation bias” which may result in unintended

incidence of medical error when clinical judgement and expertise

is not prioritized. Given that machine learning and AI-based

models often lack transparency in both their internal logic and

output, it is necessary to develop technologies which promote better

transparency in their output and recommendations (Gretton,

2018). While not trivial, improving transparency in machine

learning-based technologies maybe feasible via certain methods.

Techniques can be implemented to evaluate model weights as they

relate to the ultimate model-generated output (Luo et al., 2022).

Expanding upon this approach, when the most impactful model

input features are identified it is possible to provide a mechanism

for users of machine learning-based systems to “simulate” the

output of models given user-specified changes in predictors

(specified into a software application or decision support platform).

Being able to “simulate” the output of a model given some

intervention (e.g., medication dosage) or patient characteristic (e.g.,

weight) defined by a model input or set of model inputs to provide

some indication of their relative contribution to a model output of

interest. Furthermore, this would improve transparency of model-

generated predictions and allude to the potential importance

of certain model inputs and their contribution to the ultimate

model output. This makes machine learning-based approaches

less of a “black box” and provides insight into the input output

relationship. As machine learning-based approaches become more

commonplace, simulating the impact of differentmodel inputs such

as treatment interventions, comorbidities, demographics, etc. and

how they influence model predictions is going to be a necessity in

the space to improve adoption of machine learning and AI-based

systems and technologies.

Limitations

Our study is not without limitations. We were limited by

the small number of studies eligible for inclusion, all of which

were retrospective in nature. Three studies in our sample were at

high risk for bias, which limits the generalizability of our results.

There was no standardized method of feature selection, leading to

studies with differing numbers of predictors used and heterogeneity

across model development. Regarding our meta-analysis, we were

limited by the significant heterogeneity. This heterogeneity may

be due to differences in study populations or timing of outcome

measurements, as different studies assessed survival at differing

time periods. To address this heterogeneity, we used a random-

effects model. Further, including various stages of lung cancer may

have limited our generalizability. Patients in different stages of

their disease may demonstrate different predictors of survival. For

example, the location and number and number of metastases in

a late-stage patient may represent a sensitive predictor that would

not be applicable to a patient with early-stage lung cancer. Due to

our small sample size, subgroup analysis across different stages was

not possible.

Conclusion

Machine learning models show promise in predicting overall

survival in patients with lung cancer, with superior discriminative

ability compared to logistic regression models. However, further

validation and standardization of ML models are needed before

their widespread implementation in clinical practice. One key

challenge is the lack of standardized data collection and integration

across different healthcare institutions. Future research should

focus on developing robust methods for integrating diverse

datasets, including clinical, genomic, and imaging data, to improve

the accuracy and generalizability of ML models. Additionally,

researchers should focus on addressing the limitations of the

current literature, such as potential bias and heterogeneity among

studies, to improve the accuracy and generalizability of ML models

for predicting outcomes in patients with lung cancer. Additionally,

future trends may involve the development of interpretable ML

models and techniques for generating transparent explanations of

predictions, enhancing trust and acceptance among clinicians and

patients. Overall, ML has the potential to enhance prognostication

in lung cancer patients and improve clinical decision-making. By

addressing these open challenges and embracing potential future

trends, the development and implementation of ML models for

predicting overall survival in patients with lung cancer can be
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further advanced, ultimately leading to improved patient outcomes

and personalized treatment strategies in clinical practice.
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