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In this transformative era of organ transplantation, integrating Smart

Match and artificial intelligence (AI) emerges as a pivotal advancement,

revolutionizing organ allocation processes. Smart Match employs AI algorithms,

enhancing organ matching precision and optimizing transplantation outcomes.

Leveraging machine learning addresses complexities in donor-recipient pairing,

immunosuppression management, and post-operative care, promising to

minimize waitlist mortality and improve patient wellbeing. The multifaceted

potential of Smart Match lies in its ability to not only streamline current practices

but also pave the way for future innovations in solid organ transplantation.

As technology continues to evolve, the collaboration between Smart Match

and AI exemplifies a beacon of progress, promising increased e�ciency,

equitable organ distribution, and improved patient care. This article delves

into the paradigm shift facilitated by Smart Match and AI, emphasizing

their transformative impact on the landscape of organ allocation and

patient outcomes.
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1 Introduction

Organ transplantation has a rich history, starting with the first human kidney

transplant in 1954. Subsequent decades saw milestones in liver, pancreas, heart,

lung, and intestine transplants (Terry Sharrer, 2022). Early successes resulted from

advances in research, methodologies, and surgical techniques, with immunological

challenges being initial setbacks. Evolving with immunosuppressive medications and

surgical innovations, organ transplantation is now standard care for end-stage organ

diseases (Nordham and Ninokawa, 2022). Ongoing research, such as face transplants

and lab-grown organs, pushes boundaries (Bezinover and Saner, 2019). Commitments

to organ transplantation aim to extend life expectancy, enhance clinical conditions,

and improve overall quality of life (Grinyo, 2013). The challenges in kidney organ

allocation include increasing marginal deceased donors (MDD), rising cold ischemia

times (CIT), inadequate planning and resources, and the need for flexible allocation

and transportation systems. The surge in deceased donors poses challenges in kidney

transplantation, causing extended cold ischemia times and increased discard rates. The

allocation system’s uniform treatment of MDD kidneys overlooks a recognized “hard-to-

place” phenotype. A flexible allocation system is crucial for optimizing organ utilization.
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Early identification and a “fast-track” policy for MDD kidneys

can significantly enhance utilization rates. Balancing efficiency

and fair access involves factors like Human Leucocyte Antigen

(HLA) mismatch, CIT, dialysis duration, donor-recipient age,

and comorbidity (Wu et al., 2017; Stratta, 2022). The evolving

allocation landscape prioritizes factors beyond HLA mismatch,

enhancing equity and transparency in transplantation (Ross

et al., 2012). Innovative strategies, like survival prediction scores

and matching based on predicted graft and recipient survival,

contribute to optimal outcomes and equitable distribution. Patient

preferences, favoring younger recipients and well-matched donors,

shape ongoing discussions on kidney allocation. This multifaceted

approach underscores the complexity and continuous evolution

of organ allocation strategies for optimal outcomes and equitable

distribution (Stratta, 2022). Artificial Intelligence (AI), powered by

classifiers like neural networks, decision trees, random forests, and

naive Bayes, transforms organ allocation by predicting outcomes

and optimizing donor selection (Ivanics et al., 2020). With

demonstrated superiority in immunosuppressionmanagement and

graft survival assessment, integrating AI into electronic medical

records is crucial for widespread adoption, paving the way for its

pivotal role in revolutionizing organ allocation (Schwantes and

Axelrod, 2021).

2 Methodology

In this minireview, the author acknowledges that an exhaustive

review of all databases and articles on AI in organ transplantation

was not undertaken due to its focused nature. It systematically

gathers information on integrating artificial intelligence (AI) into

organ transplantation. Keyword searches, including “AI in organ

transplantation,” “organ allocation,” and “transplant outcomes,”

were conducted across reputable databases like PubMed and

ScienceDirect. Additionally, data from Eurotransplant and the

United Network for Organ Sharing (UNOS) were included to

ensure a comprehensive overview. A content analysis of peer-

reviewed articles from 2013 to 2023 was done. This synthesis

formed the foundation for the article, presenting an overview of

historical contexts, transplantation challenges, and AI’s role in

addressing these issues.

3 Artificial intelligence and optimizing
organ utilization

Artificial intelligence (AI) and machine learning (ML) rest

on fundamental principles, aiming to create intelligent machines

capable of learning and adapting. AI seeks to build smart systems,

while ML, a subset of AI, involves training models to learn and

improve over time. Core principles encompass learning, reasoning,

problem-solving, perception, and language comprehension. ML

utilizes methods like supervised (learning from labeled data),

unsupervised (finding patterns without predefined labels), and

reinforcement learning (agents making decisions through trial and

error) (Delgado De Molina Rius, 2023). These principles form the

basis of AI and ML, offering powerful problem-solving tools across

different fields.

3.1 State of the art algorithms

Artificial Intelligence (AI) revolutionizes organ transplantation

through machine learning for improved donor-recipient matching.

The process involves aligning characteristics for successful

outcomes. Eurotransplant and the United Network for Organ

Sharing (UNOS) utilize allocation systems based on expected

outcomes and emergencies, considering the limited viability

timeframe of harvested organs. Existing systems like Child-Pugh,

Model of End Stage Liver Disease (MELD), Kidney Allocation

System (KAS), and Lung Allocation System (LAS) lack real-time

prioritization and require continuous modifications. AI integration

ensures optimal decision-making, maintaining equal access amid

organ scarcity and growing waiting lists (Peloso et al., 2022).

Bertsimas et al. (2019) proposed OPOM (Optimal Prediction

of Mortality), a machine learning model derived from the OCT

algorithm for liver allocation, outperforming MELD in predicting

3-month mortality or waitlist removal. It included parameters

such as sex, race, cause of liver failure, demographics, cumulative

wait time, blood type, average age, and BMI. The outcome was a

classification tree predicting the probability of a patient’s death or

unsuitability for transplant within 3 months (dependent variable)

based on specific patient characteristics (independent variables).

With a dataset of 1,618,966 observations, OPOM reduced mortality

by 417.96 deaths in 6,139 liver transplantations. External validation

is pending.

Cruz-Ramírez et al. (2013) conducted a study that aims

to optimize organ allocation in liver transplantation using a

machine-learning approach. The memetic Pareto evolutionary

non-dominated sorting genetic algorithm 2 (MPENSGA2)

was employed to train radial basis function neural networks,

considering donor, recipient, and organ characteristics to predict

graft survival for 3 months after the transplant. Results showed

competitive performance across various metrics, with the multi-

objective algorithm outperforming the mono-objective one.

The rule-based system, developed from neural network models,

complemented the allocation system (MELD) in 55% of cases,

emphasizing efficiency and equity.

A Large Spanish multicentre study [Model for Allocation

of Donor and Recipient in España (MADR-E)] by Briceño

et al. (2014) proposed using artificial neural networks (ANNs)

for donor-recipient (D-R) matching in liver transplantation to

address the shortage of available organs. Analyzing 1,003 liver

transplants from 11 Spanish centers, the study employs 64

donor and recipient variables, developing two ANN models,

NN-CCR (Neural Network for Correct Classification Rate) and

NN-MS (Neural Network for Minimum Sensitivity), using the

Neural Net Evolutionary Programming algorithm. Results show

superior performance in predicting graft survival (90.79%) with

AUC 0.81 and graft loss (71.42%) with AUC 0.82 compared

to traditional models and established scores. Receiver-operating

curves highlight the heightened accuracy of ANNs in predicting

3-month graft outcomes. The study suggests that ANNs serve as
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a powerful decision-making tool, optimizing principles of justice,

efficiency, and equity, with potential applications in predicting

short-term outcomes and as a research avenue for future D-R

matching models.

Rana et al. (2008) developed Survival Outcome Following

Liver Transplant (SOFT) score, integrating recipient and donor

characteristics based on Organ Procurement and Transplantation

Network (OPTN)/Scientific Registry of Transplant Recipients

(SRTR) data. Unlike MELD, SOFT accurately predicts 3-month

recipient survival after liver transplantation. The analysis identified

18 risk factors, excluding warm ischemia, with key predictors

being previous transplantation and pretransplant life support.

Combined with MELD, SOFT enables real-time decision-making

for transplant candidates, offering improved quantification of

survival benefits for individual procedures. The accuracy of SOFT

score in predicting outcomes is comparable to other models, as

indicated by its C-statistic of 0.70 (Jacob et al., 2005; Ioannou,

2006).

Yasodhara et al. (2021) utilized machine learning algorithms

like GBS (Gradient Boosting Survival) to assess liver transplant

outcomes. Their study identified diabetes mellitus (DM), not

obesity, as a superior predictor for transplant outcomes. Analyzing

data from the Scientific Registry of Transplant Recipients (SRTR)

and a University Health Network (UHN) cohort of 18,058 liver

transplant recipients, the study revealed increased serum creatinine

and hypertension significantly impacted mortality in patients

with pre-existing DM. Despite limitations like retrospective

design, incomplete comorbidity data, unclear immunosuppression

information, and a low number of patients with steatohepatitis,

this study, among the largest in its field, emphasizes diabetes as a

more reliable indicator than obesity in donor-recipient matching

outcomes, contributing valuable insights into liver transplantation

risk factors.

Bae et al. (2019) introduced an online tool (https://www.

transplantmodels.com/kdpi-epts/) utilizing AI-ANNs algorithms

for optimizing kidney donor-recipientmatching. The tool estimates

5-year patient survival by employing a random survival forest

(RSF) and combining the expected post-transplant survival (EPTS)

score and Kidney Donor Profile Index (KDPI). The RSF algorithm

achieved a C-statistic of 0.637, slightly surpassing the KidneyDonor

Risk Index (KDRI) model’s 0.6. This predictive model can enhance

personalized decision-making for kidney offers in clinical practice.

Artificial intelligence (AI) automates evaluations, ensuring

faster and more accurate assessments (Alamgir et al., 2022). It

aids in predicting graft survival based on diverse parameters

like donor’s eGFR, recipient and donor BMI, recipient-donor

weight difference, and additional factors like donor’s age, gender,

kidney donor profile index (KDPI), estimated post-transplant

survival (EPTS), and kidney donor risk profile (KDRI). AI

accurately predicts delayed-graft function (DGF), offering valuable

risk assessment insights (Konieczny et al., 2021). It identifies

patterns, optimizes donor-recipient matching, and predicts waiting

list mortality and graft survival. Integrating AI into electronic

medical records and organ offer systems is crucial for adoption.

AI models outperform traditional metrics like the Model for End-

Stage Liver Disease (MELD) score in donor allocation success

rates. However, full AI integration in liver transplantation needs

validation through multicentre randomized controlled trials to

ensure efficacy and address clinician resistance (Bhat et al., 2023).

AI systems use preference modeling and social choice techniques

aligned with human values. These systems learn and aggregate

people’s preferences to guide AI behavior, ensuring that the learned

preferences are accurate. However, people are often indecisive,

especially when decisions have moral implications (McElfresh

et al., 2021). To address indecision, mathematical models based on

philosophy, psychology, and economics have been formalized to

describe agent decisions (Peloso et al., 2022).

3.2 AI addressing unmet needs

In 2021, kidney transplant recipients constituted the largest

group, with over 24,000 individuals receiving kidney transplants

out of a total of 41,354 organ transplants. Despite this, a

substantial challenge persists as approximately 66,000 eligible

kidney transplant patients remained on the extensive 106,000-

patient waitlist, and 24.5% of donated kidneys (6,427) were not

transplanted, presenting a considerable challenge in meeting

this demand (Dageforde et al., 2023). The discard rate increases

exponentially with organ quality, notably higher Kidney Donor

Profile Index (KDPI) scores (Alhamad et al., 2019). This

emphasizes a significant opportunity for improved kidney

utilization, particularly from older donors with more comorbidity

(Aubert et al., 2019). Transplantation has been demonstrated to

be a cost-effective and often cost-saving procedure for suitable

candidates, even with lower-quality organs, which can improve

quality and quality of life. AI decision support enhances kidney

utilization by aiding clinician decision-making and providing

real-time access to data-driven predictions, promising to alleviate

the unmet need for kidney transplants, especially for higher

Kidney Donor Profile Index (KDPI) scores (Axelrod et al.,

2018). AI optimizes donor-recipient matching in transplantation,

ensuring more precise matches beyond traditional metrics.

Predictive algorithms enhance accuracy in forecasting post-

transplant outcomes, allowing dynamic organ allocation based

on individual patient profiles. AI also supports risk assessment,

predicting factors like delayed graft function, contributing to

improved patient outcomes. Ultimately, AI has the potential to

enhance efficiency and equity in organ allocation, maintaining

principles of justice, efficiency, and equity in transplantation

(Gotlieb et al., 2022).

3.3 Smart match system

The Smart Match system in AI for organ transplantation

integrates various components and architecture to revolutionize

the transplantation process. A key element is the Intelligent Match

Making Assistant (IMMA), employing Case-Based Reasoning

(CBR) techniques, including Case Retrieval Nets and the

Spreading Activation Algorithm. IMMA’s role is crucial in

searching the patient waiting list and investigatingDonor-Recipient

Compatibility, ultimately enhancing the efficiency of the Human

Organ Transplantation Management (HOTM) system (Schwantes
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and Axelrod, 2021). The Internet of Things (IoT) is another pivotal

component. In the organ procurement system, wireless sensors

monitor organ status, transmitting real-time data to cloud-based

servers via microcontrollers and healthcare-specific gateways. For

instance, a sensor on a donated kidney tracks its temperature,

ensuring preservation. This IoT-driven system optimizes organ

procurement, offering accurate information and addressing ethical,

legal, and clinical considerations. Integrated with the National

Organ Donation/Transplantation Registry System (NODTRS),

it adopts information technology and security methodologies,

ensuring the secure and dependable functioning of the registry.

Collectively, these components contribute to improving patient

outcomes and increasing the utilization of healthy organs for

transplantation (Schwantes and Axelrod, 2021).

4 Discussion

Integrating artificial intelligence (AI) in organ allocation

presents numerous benefits, notably enhancing accuracy in

donor-recipient matching, reducing waiting times, and elevating

overall transplant success rates. AI’s analytical prowess enables

more precise compatibility assessments, streamlining the

allocation process. Furthermore, its potential extends to mitigating

disparities in organ access related to geographic location or

socioeconomic factors.

Eurotransplant and the United Network for Organ Sharing

(UNOS) utilize allocation systems based on expected outcomes and

emergencies. When a transplant hospital identifies a candidate, it

inputs medical data, including blood type and urgency, into the

UNOS system. Simultaneously, organ procurement organizations

provide donor data. Based on this information, UNOS generates

a unique rank-ordered list, prioritizing candidates in urgent need

or with higher chances of survival (US Organ Donation System,

2024). Eurotransplant’s centralized database enables member

state transplant centers to enter patient and donor information,

initiating an international waiting list. When a donor becomes

available, a complex algorithm factors in medical and ethical

criteria to generate a match list, facilitating efficient organ

allocation within the Eurotransplant network (Eurotransplant,

2024). Although these systems are integral to clinical practice,

they do not provide real-time prioritization, and their effectiveness

requires ongoing modifications. The disparity between transplant

candidates and available grafts is exacerbated by varying organ

allocation policies, which range from prioritizing urgency (“sickest-

first”) to favoring candidates with better clinical conditions

based on “individual transplant benefit” and “population-based

transplant benefit” principles. Consideration of risk factors, such as

high-risk donors and recipients, may lead to avoidance in clinical

practice, impacting high-risk, waitlisted transplant candidates

negatively (Calleja Lozano et al., 2022). Traditional scoring systems,

like logistic regression, have limitations in organ transplantation,

assuming linear relationships, overlooking key variables, and

struggling with unbalanced problems. Modern biostatistics,

relying on large cohorts, may lack accuracy in non-linear

health sciences relationships. Incorporating AI enhances decision-

making, ensuring optimal use and equal access despite organ

scarcity challenges. AI-optimized allocation algorithms foster

fair distribution, transcending geographical and socioeconomic

barriers, contributing to more equitable and efficient organ

transplantation systems (Briceño, 2020).

The use of AI in organ transplantation brings risks, including

the accuracy-interpretability trade-off, methodological challenges,

and a potential loss of explainability (Rana et al., 2008;

Lisboa et al., 2022). Concerns extend to biases, accuracy, and

acceptability of AI-driven decisions in clinical settings. Though

accurate, AI models in organ transplantation often need more

interpretability, making it challenging for clinicians and patients

to understand. Methodological challenges in obtaining suitable

transplant data for AI analysis need attention. Ensuring responsible

AI integration in organ transplantation requires addressing these

challenges. Collaboration and establishing criteria are essential to

ensure responsible AI use in transplantation. Moreover, although

promising, AI integration in organ transplantation introduces risks

like algorithmic biases affecting organ allocation, compromising

human-centric decision-making, and raising concerns about data

privacy and security (Castillo-Astorga and Sotomayor, 2021).

Ensuring transparency and accountability is crucial for the ethical

implementation of AI in organ transplantation.

The potential risks of AI in organ utilization for transplantation

encompass concerns about bias and accuracy, challenges in the

clinical decision process, and criteria for AI acceptability. These

factors currently hinder widespread AI adoption in transplantation.

Extensive data integration poses risks of bias and inaccuracies,

with AI potentially making predictions beyond existing literature.

The lack of explainability in AI decision-making processes

adds complexity, requiring efforts to enhance understanding.

Establishing clinical and ethical acceptability criteria, forming

a Transplant AI Team, and integrating AI into the Shared

Decision-Making Model can address these challenges (Clement

and Maldonado, 2021). Ensuring equity and avoiding biases

in organ allocation is vital for fostering fairness and patient-

centered care. Biases in allocation may lead to disparities,

disadvantaging certain groups based on race or socio-economic

status. Prioritizing equity helps guarantee equal access to life-

saving organs, aligning with ethical principles of justice and

beneficence. Fair allocation practices enhance public trust in the

healthcare system and promote a more inclusive and ethical

organ transplantation framework. By implementing transparent,

unbiased protocols, healthcare providers can uphold the principle

of justice, ensuring that organ allocation prioritizes medical needs

rather than demographic factors.

4.1 AI in modern transportation

AI plays a pivotal role in modern transportation, with

applications ranging from optimizing public transportation to

enhancing traffic management. By leveraging AI algorithms,

public transportation processes are automated, utilizing data

from positioning devices, ticketing, and video surveillance to

analyze network load and efficiency. AI contributes to traffic

data collection, mitigating congestion, improving scheduling,

and monitoring road conditions. AI extends to automated

Mobility-as-a-Service (MaaS), optimizing individual transport
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through intelligent systems across vehicles, infrastructure, and

management. These diverse applications showcase AI’s capacity to

address transportation challenges and enhance overall efficiency

(Kamçi et al., 2019). The use of Internet of things (IoT) where a

sensor attached to a donated kidney tracks its temperature and

could ensure its preservation. This IoT-driven system optimizes the

timely procurement of organs, providing accurate information like

its exact location, estimated time of arrival to recipient hospital,

kidney temperature, and its quality.

4.2 AI in transplant pathology

AI is poised to transform transplant pathology. Models

like ChatGPT optimize pathologist’s time for more meaningful

tasks. AI tools enhance digital pathology, reducing errors

and boosting efficiency. In transplant nephropathology, AI

algorithms with whole-slide imaging (WSI) improve precision

in identifying tissue components in pre-implantation kidney

biopsies. Integrating AI enhances accuracy and workflow

efficiency and eases pathologist workloads. AI models are

trained to recognize rejection-related histopathological

features and predict allograft survival by analyzing

genetic factors like the APOL1 genotype (Rahman et al.,

2023).

4.3 Future developments and
transformative potential

Ongoing AI research in organ transplantation explores

applications in organ allocation, donor-recipient pairing, and

personalized immunosuppression, aiming to enhance overall

transplant outcomes. The revolutionary potential of AI is evident

in efforts to assess the quality of donated organs, potentially

transforming the transplant system and saving lives. Furthermore,

AI advancements in transplant pathology, using deep learning

for various organs, indicate a growing focus on precision and

efficiency in diagnostic processes. Integrating Smart Match and AI

promises to reshape allocation dynamics, overcoming limitations

for more precise matches and improved success rates. As AI

transforms healthcare, Smart Match signifies progress toward

efficiency, equitable distribution, and enhanced patient care,

echoing AI expert Andrew Ng’s view that “Artificial Intelligence is

the new electricity”.
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