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Deep learning models have achieved state-of-the-art performance for text

classification in the last two decades. However, this has come at the expense

of models becoming less understandable, limiting their application scope

in high-stakes domains. The increased interest in explainability has resulted

in many proposed forms of explanation. Nevertheless, recent studies have

shown that rationales, or language explanations, are more intuitive and

human-understandable, especially for non-technical stakeholders. This survey

provides an overview of the progress the community has achieved thus far in

rationalization approaches for text classification. We first describe and compare

techniques for producing extractive and abstractive rationales. Next, we present

various rationale-annotated data sets that facilitate the training and evaluation

of rationalization models. Then, we detail proxy-based and human-grounded

metrics to evaluate machine-generated rationales. Finally, we outline current

challenges and encourage directions for future work.
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1 Introduction

Text classification is one of the fundamental tasks in Natural Language Processing

(NLP) with broad applications such as sentiment analysis and topic labeling, among

many others (Aggarwal and Zhai, 2012; Vijayan et al., 2017). Over the past two decades,

researchers have leveraged the power of deep neural networks to improve model accuracy

for text classification (Kowsari et al., 2019; Otter et al., 2020). Nonetheless, the performance

improvement has come at the cost of models becoming less understandable for developers,

end-users, and other relevant stakeholders (Danilevsky et al., 2020). The opaqueness of

these models has become a significant obstacle to their development and deployment in

high-stake sectors such as the medical (Tjoa and Guan, 2020), legal (Bibal et al., 2021), and

humanitarian domains (Mendez et al., 2022).

As a result, Explainable Artificial Intelligence (XAI) has emerged as a relevant research

field aiming to develop methods and techniques that allow stakeholders to understand the

inner workings and outcome of deep learning-based systems (Gunning et al., 2019; Arrieta

et al., 2020). Several lines of evidence suggest that providing insights into text classifiers’

inner workings might help to foster trust and confidence in these systems, detect potential

biases or facilitate their debugging (Arrieta et al., 2020; Belle and Papantonis, 2021; Jacovi

and Goldberg, 2021).
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One of the most well-known methods for explaining the

outcome of a text classifier is to build reliable associations

between the input text and output labels and determine how

much each element (e.g., word or token) contributes toward

the final prediction (Hartmann and Sonntag, 2022; Atanasova

et al., 2024). Under this approach, methods can be divided

into feature importance score-based explanations (Simonyan

et al., 2014; Sundararajan et al., 2017), perturbation-based

explanations (Zeiler and Fergus, 2014; Chen et al., 2020),

explanations by simplification (Ribeiro et al., 2016b) or language

explanations (Lei et al., 2016; Liu et al., 2019a). It is important

to note that the categories cited above are not mutually

exclusive, and explainability methods can combine several. This is

exemplified in the work undertaken by Ribeiro et al. (2016a), who

developed the Local Interpretable Model-Agnostic Explanations

method (LIME) combining perturbation-based and explanations

by simplification.

Rationalization methods attempt to explain the outcome of a

model by providing a natural language explanation (rationale; Lei

et al., 2016). It has previously been observed that rationales are

more straightforward to understand and easier to use since they are

verbalized in human-comprehensible natural language (DeYoung

et al., 2020; Wang and Dou, 2022). It has been shown that for

text classification, annotators look for language cues within a

text to support their labeling decisions at a class level (human

rationales; Chang et al., 2019; Strout et al., 2019; Jain et al.,

2020).

Rationales for explainable text classification can be categorized

into extractive and abstractive rationales (Figure 1). On the one

hand, extractive rationales are a subset of the input text that support

a model’s prediction (Lei et al., 2016; DeYoung et al., 2020). On the

other hand, abstractive rationales are texts in natural language that

are not constrained to be grounded in the input text. Like extractive

rationales, they contain information about why an instance is

assigned a specific label (Camburu et al., 2018; Liu et al., 2019a).

This survey refers to approaches where human rationales

are not provided during training, as unsupervised rationalization

methods (Lei et al., 2016; Yu et al., 2019). In contrast, we refer to

those for producing rationales where human rationales are available

as additional supervision signal during training, as supervised

rationalization methods (Bao et al., 2018; DeYoung et al., 2020;

Arous et al., 2021).

Even though XAI is a relatively new research field, several

studies have begun to survey explainability methods for NLP.

Drawing on an extensive range of sources, Danilevsky et al. (2020)

and Zini and Awad (2022) provided a comprehensive review

of terminology and fundamental concepts relevant to XAI for

different NLP tasks without going into the technical details of

any existing method or taking into account peculiarities associated

with text classification. As noted by Atanasova et al. (2024),

many explainability techniques are available for text classification.

Their survey contributed to the literature by delineating a list of

explainability methods used for text classification. Nonetheless,

the study did not include rationalization methods and language

explanations.

More recently, attention has been focussed on rationalization

as a more accessible explainability technique in NLP. Wang and

Dou (2022) and Gurrapu et al. (2023) discussed literature around

rationalization across various NLP tasks, including challenges and

research opportunities in the field. Their work, provides a high-

level analysis suitable for a non-technical audience. Similarly,

Hartmann and Sonntag (2022) provided a brief overview of

methods for learning from human rationales beyond supervised

rationalization architectures aiming to inform decision-making

for specific use cases. Finally, Wiegreffe and Marasović (2021)

identified a list of human-annotated data sets with textual

explanations and compared the strengths and shortcomings of

existing data collection methodologies. However, it is beyond the

scope of this study to examine how these data sets can be used in

different rationalization approaches. To the best of our knowledge,

no research has been undertaken to survey rationalization methods

for text classification.

This survey paper does not attempt to survey all available

explainability techniques for text classification comprehensively.

Instead, we will compare and contrast state-of-the-art

rationalization techniques and their evaluation metrics,

providing an easy-to-digest entry point for new researchers

in the field. In summary, the objectives of this survey

are to:

1. Study and compare different rationalization methods;

2. Compile a list of rationale-annotated data sets for text

classification;

3. Describe evaluationmetrics for assessing the quality of machine-

generated rationales; and

4. Identify knowledge gaps that exist in generating and evaluating

rationales.

From January 2007 to December 2023, our survey paper’s

articles were retrieved from Google Scholar using the keywords

“rationales,” “natural language explanations,” and “rationalization.”

We have included 88 peer-reviewed publications on NLP and text

classification from journals, books, and conference proceedings

from venues such as ACL, EMNLP, LREC, COLING, NAACL,

AAAI, and NeurIPS.

Figure 2 reveals that there has been a shared increase in the

number of research articles on rationalization for explainable

text classification since the publication of the first rationalization

approach by Lei et al. (2016). Similarly, the number of research

articles on XAI has doubled yearly since 2016. While the

number of articles on rationalization peaked in 2021 and has

slightly dropped since then to reach 13 articles in 2023, the

number of publications on XAI has kept growing steadily. It is

important to note that articles published before 2016 focus on

presenting rationale-annotated datasets linked to learning with

rationales research instead of rationalization approaches within the

XAI field.

This survey article is organized as follows: Section 2

describes extractive and abstractive rationalization approaches.

Section 3 compiles a list of rationale-annotated data sets

for text classification. Section 4 outlines evaluation metrics

proposed to evaluate and compare rationalizationmethods. Finally,

Section 5 discusses challenges, points out gaps and presents

recommendations for future research on rationalization for

explainable text classification.
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FIGURE 1

Example of an extractive and abstractive rationale supporting the sentiment classification for a movie review.

FIGURE 2

Evolution of the number of peer-reviewed publications on rationalization for text classification (bar chart, left y-axis) and XAI (line chart, right y-axis)

from 2007 to 2023.

2 Rationalization methods for text
classification

We now formalize extractive and abstractive rationalization

approaches and compare them in the context of text classification.

We define a standard text classification in which we are given an

input sequence x = [x1, x2, x3, ..., xl], where xi is the i-th word of the

sequence, and l is the sequence length. The learning problem is to

assign the input sequence x to one or multiple labels in y ∈ {1, ..., c},

where c is the number of classes.

Figure 3 presents an overview of rationalization methods for

producing extractive and abstractive rationales. While extractive

rationalization models can be categorized into extractive or

attention-based methods, abstractive rationalization models can

be classified into generative and text-to-text methods. Finally,

the component of both extractive and abstractive methods can

be trained either using multi-task learning or independently as

pipelined architecture.

2.1 Extractive rationalization

In extractive rationalization, the goal is to make a text classifier

explainable by uncovering parts of the input sequence that the

prediction relies on the most (Lei et al., 2016). To date, researchers

have proposed two approaches for extractive rationalization for

explainable text classification: (i) extractive methods, which first

extract evidence from the original text and then make a prediction

solely based on the extracted evidence (Lei et al., 2016; Jain et al.,

2020; Arous et al., 2021), and (ii) attention-based methods, which

leverage the self-attention mechanism to show the importance of

words through their attention weights (Bao et al., 2018; Vashishth

et al., 2019; Wiegreffe and Pinter, 2019).

Table 1 presents an overview of the current techniques for

extractive rationalization, where we specify methods, learning

approaches taken and their most influential references.

2.1.1 Extractive methods
Most research on extractive methods has been carried out using

an encoder-decoder framework (Lei et al., 2016; DeYoung et al.,

2020; Arous et al., 2021). The encoder enc(x) works as a tagging

model, where each word in the input sequence receives a binary tag

indicating whether it is included in the rationales r (Zaidan et al.,

2007). The decoder dec(x, r) then accepts only the input highlighted

as rationales and maps them to one or more target categories (Bao

et al., 2018).

The selection of words is performed by an encoder, which is a

parameterized mapping enc(x) that extracts rationales from input
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FIGURE 3

Overview of extractive and abstractive rationalization approaches in explainable text classification.

TABLE 1 Overview of common approaches for extractive rationalization.

Approach Method Supervised Representative paper(s)

Extractive Multi-Task
✗ Lei et al., 2016; Lei, 2017; Bastings et al., 2019; Yu et al., 2019; Paranjape

et al., 2020; Guerreiro and Martins, 2021; Chan A. et al., 2022

X DeYoung et al., 2020; Hase et al., 2020; Arous et al., 2021; Bhat et al.,

2021; Jang and Lukasiewicz, 2021; Mathew et al., 2021

Pipelined ✗ Zhang et al., 2016; Jiang et al., 2018; Bashier et al., 2020; Jain et al., 2020;

Kumar and Talukdar, 2020; Chrysostomou and Aletras, 2022

Attention
Soft-Scores

✗ Vashishth et al., 2019; Wiegreffe and Pinter, 2019

X Bao et al., 2018; Strout et al., 2019; Kanchinadam et al., 2020; Zhang

et al., 2021a

sequences as r = {xi|zi = 1, xi ∈ x}, where zi ∈ {0, 1} is a binary tag

that indicates whether the word xi is selected or not. In an extractive

setting, the rationale r must include only a few words or sentences,

and dec(enc(x, r)) should result in nearly the same target vector as

the original input when passed through the decoder dec(x) (Otter

et al., 2020; Wang and Dou, 2022).

2.1.1.1 Multi-task models

Lei et al. (2016) pioneered the idea of extracting rationales

using the encoder-decoder architecture. They proposed utilizing

two models and training them jointly to minimize a cost

function composed of a classification loss and sparsity-inducing

regularization, responsible for keeping the rationales short and

coherent. They identified rationales within the input text by

assigning a binary Bernoulli variable to each word. Unfortunately,

minimizing the expected cost was challenging since it involved

summing over all possible choices of rationales in the input

sequence. Consequently, they suggested training these models

jointly via REINFORCE-based optimization (Williams, 1992).

REINFORCE involves sampling rationales from the encoder and

training the model to generate explanations using reinforcement

learning. As a result, themodel is rewarded for producing rationales

that align with desiderata defined in its cost function (Zhang et al.,

2021b).

The key components of the solution proposed by Lei

et al. (2016) are binary latent variables and sparsity-inducing

regularization. As a result, their solution is marked by non-

differentiability. Bastings et al. (2019) proposed to replace

the Bernoulli variables with rectified continuous random

variables, amenable for reparameterization and for which gradient

estimation is possible without REINFORCE. Along the same

lines, Madani and Minervini (2023) used Adaptive Implicit

Maximum Likelihood (Minervini et al., 2023), a recently proposed

low-variance and low-bias gradient estimation method for discrete

distribution to back-propagate through the rationale extraction

process. Paranjape et al. (2020) emphasized the challenges around

the sparsity-accuracy trade-off in norm-minimization methods

such as the ones proposed by Lei et al. (2016) and Bastings et al.

(2019). In contrast, they showed that it is possible to better manage

this trade-off by optimizing a bound on the Information Bottleneck

objective (Mukherjee, 2019) using the divergence between the

encoder and a prior distribution with controllable sparsity levels.

Over the last 15 years, research on learning with rationales has

established that incorporating human explanations during model

training can improve performance and robustness against spurious
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correlations (Zaidan et al., 2007; Strout et al., 2019). Nonetheless,

studies on explainability started addressing how human rationales

can also help to enhance the quality of explanations for different

NLP tasks (Strout et al., 2019; Arous et al., 2021) only in the past 4

years.

To determine the impact of a supervised approach for extractive

rationalization, DeYoung et al. (2020) adapted the implementation

of Lei et al. (2016), incorporating human rationales during training

by modifying the model’s cost function. Similarly, Bhat et al.

(2021) developed a multi-task teacher-student framework based

on self-training language models with limited task-specific labels

and rationales. It is important to note that in the variants of the

encoder-decoder architecture using human rationales, the final

cost function is usually a composite of the classification loss,

regularizers on rationale desiderata, and the loss over rationale

predictions (DeYoung et al., 2020; Gurrapu et al., 2023).

One of the main drawbacks of multi-task learning architectures

for extractive rationales is that it is challenging to train the encoder

and decoder jointly under instance-level supervision (Zhang et al.,

2016; Jiang et al., 2018). As described before, these methods

sample rationales using regularization to encourage sparsity and

contiguity and make it necessary to estimate gradients using either

the REINFORCE method (Lei et al., 2016) or reparameterized

gradients (Bastings et al., 2019). Both techniques complicate

training and require careful hyperparameter tuning, leading to

unstable solutions (Jain et al., 2020; Kumar and Talukdar, 2020).

Furthermore, recent evidence suggests that multi-task

rationalization models may also incur what is called the

degeneration problem, where they produce nonsensical rationales

due to the encoder overfitting to the noise generated by the

decoder (Madsen et al., 2022; Wang and Dou, 2022; Liu et al.,

2023). To tackle this challenge, Liu et al. (2022) introduced a

Folded Rationalization approach that folds the two stages of

extractive rationalization models into one using a unified text

representation mechanism for the encoder and decoder. Using

a different approach, Jiang et al. (2023) proposed the YOFO

(You Only Forward Once), a simplified single-phase framework

with a pre-trained language model to perform prediction and

rationalization. It is essential to highlight that rationales extracted

using the YOFO framework aim only to support predictions and

are not used directly to make model predictions.

2.1.1.2 Pipelined models

Pipelined models are a simplified version of the encoder-

decoder architecture in which, first, the encoder is configured to

extract the rationales. Then, the decoder is trained separately to

perform prediction using only rationales (Zhang et al., 2016; Jain

et al., 2020). It is important to note that no parameters are shared

between the two models and that rationales extracted based on this

approach have been learned in an unsupervised manner since the

encoder does not have access to human rationales during training.

To avoid the complexity of training a multi-task learning

architecture, Jain et al. (2020) introduced FRESH (Faithful

Rationale Extraction from Saliency tHresholding). Their scheme

proposed using arbitrary feature importance scores to identify the

rationales within the input sequence. An independent classifier

is then trained exclusively on snippets the encoder provides

to predict target labels. Similarly, Chrysostomou and Aletras

(2022) proposed a method that also uses gradient-based scores

as the encoder. However, their method incorporated additional

constraints regarding length and contiguity for selecting rationales.

Their work shows that adding these additional constraints can

enhance the coherence and relevance of the extracted rationales,

ensuring they are concise and contextually connected, thus

improving the understanding and usability of the model in real-

world applications.

Going beyond feature importance scores, Jiang et al. (2018)

suggested using a reinforcement learning method to extract

rationales using a reward function based on latent variables to

define the extraction of phrases and classification labels. Their work

indicates that reinforcement can optimize the rationale selection

process, potentially leading to more accurate explanations by

adjusting strategies based on feedback to maximize the reward

function. Along the same lines, Guerreiro and Martins (2021)

developed SPECTRA (SparsE StruCtured Text Rationalization), a

framework based on LP-SparseMAP (Niculae and Martins, 2020).

Their method provided a flexible, deterministic and modular

rationale extraction process based on a constrained structured

prediction algorithm. It is important to note that incorporating a

deterministic component can eventually boost the consistency and

predictability of the extracted rationales, improving the reliability

and reproducibility of explanations across different datasets and

applications.

Simplifying the encoder-decoder architecture in extractive

rationalization models might enhance its use in explainable NLP

systems (Jain et al., 2020; Wang and Dou, 2022). This simplification

can lead to more computationally efficient models, broadening

their applicability and accessibility in various real-world scenarios.

Recently, there has been increasing interest in leveraging Large

Language Models (LLMs) for extractive rationalization, owing to

their ability to efficiently process and distill critical information

from large text corpora (Wang and Dou, 2022; Gurrapu et al.,

2023). The evidence reviewed here suggests that rationalization

models might improve performance by prompting language

models in a few-shot manner, with rationale-augmented examples.

Using this approach, Chen et al. (2023) introduced ZARA, an

approach for data augmentation and extractive rationalization

using transformer-based models (Vaswani et al., 2017) such as

RoBERTa (Liu et al., 2019b), DeBERTa (He et al., 2020), and

BART (Lewis et al., 2020). Along the same lines, Zhou et al. (2023)

presented a two-stage few-shot learning method that first generates

rationales using GPT-3 (Brown et al., 2020), and then fine-

tunes a smaller rationalization model, RoBERTa, with generated

explanations. It is important to consider a few challenges of using

LLMs for rationalization models, including high computational

demands and the potential for ingrained biases that can skew

language explanations (Zhao et al., 2023).

Even though extractive rationalization may be a crucial

component of NLP systems as it enhances trust by providing

human-understandable explanations, far too little attention has

been paid to its use in real-world applications (Wang and Dou,

2022; Kandul et al., 2023). ExClaim is a good illustration of

using extractive rationalization in a high-stake domain. Gurrapu

et al. (2022) introduced ExClaim to provide an explainable
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claim verification tool for use in the legal sector based on

extractive rationales that justify verdicts through natural language

explanations. Similarly, Mahoney et al. (2022) presented an

explainable architecture based on extractive rationales that

explain the results of a machine learning model for classifying

legal documents. Finally, Tornqvist et al. (2023) proposed a

pipelined approach for extractive rationalization to provide

explanations for an automatic grading system based on a

transformer-based classifier and post-hoc explanability methods

such as SHAP (Lundberg and Lee, 2017) and Integrated

Gradients (Sundararajan et al., 2017).

2.1.2 Attention-based methods
Attention models have not only resulted in impressive

performance for text classification (Vaswani et al., 2017), but are

also suitable as a potential explainability technique (Vashishth

et al., 2019; Wiegreffe and Pinter, 2019). In particular, the attention

mechanism has been previously used to identify influential tokens

for the prediction task by providing a soft score over the input

units (Bahdanau et al., 2015).

Researchers have drawn inspiration from the model

architecture from Jain and Wallace (2019) for text classification.

For a given input sequence x, each token is represented by

its D-dimensional embedding to obtain xe ∈ R
D×d. Next, a

bidirectional recurrent neural network (Bi-RNN) encoder is used

to obtain an m-dimensional contextualized representation of

tokens: h = Enc(xe) ∈ R
D×m. Finally, the additive formulation

of attention proposed by Bahdanau et al. (2015) (W ∈ R
D×D,

b, c ∈ R
D are parameters of the model) is used for computing

weights αi for all tokens defined as in Equation 1:

ui = tanh(Whi + b) ; αi =
exp(uTi c)

∑

j(exp(u
T
j c)

(1)

The weighted instance representation hα =
∑T

i=1 αihi is fed

to a dense layer and followed by a softmax function to obtain

prediction ỹ = σ (Dec(hα)) ∈ R
|c| where |c| denotes the label set

size. Finally, a heuristic strategy must be applied to map attention

scores to discrete rationales. Examples include selecting spans

within a document based on their total score (sum of their tokens’

importance scores) or picking the top-k tokens with the highest

attention scores (Jain et al., 2020).

2.1.2.1 Soft-scores models

Some studies have proposed using variants of

attention (Bahdanau et al., 2015) to extract rationales in

an unsupervised manner. For explainable text classification,

Wiegreffe and Pinter (2019) investigated a model that passes

tokens through a BERT model (Devlin et al., 2019) to induce

contextualized token representations that are then passed to a

bidirectional LSTM (Hochreiter and Schmidhuber, 1997). For

soft-score features, they focused attention on the contextualized

representation. Similarly, Vashishth et al. (2019) analyzed the

attention mechanism on a more diverse set of NLP tasks and

assessed how attention enables interpretability through manual

evaluation.

Bao et al. (2018) extended the unsupervised approach

described above by learning a mapping from human rationales to

continuous attention. Like the supervised approach for extractive

methods, they developed a model to map human rationales onto

attention scores to provide richer supervision for low-resource

models. Similarly, Strout et al. (2019) showed that supervising

attention with human-annotated rationales can improve both the

performance and explainability of results of a classifier based

on Convolutional Neural Networks (CNNs; Lai et al., 2015). In

the same vein, Kanchinadam et al. (2020) suggested adding a

lightweight attention mechanism to a feed-forward neural network

classifier and training them using human-annotated rationales as

additional feedback.

Even though these are promising methods for extracting

rationales, they require access to a significant number of

rationale-annotated instances, which might be impractical for

domain-specific applications where expert annotators are rare

and constrained for time (Vashishth et al., 2019; Kandul et al.,

2023). Consequently, Zhang et al. (2021a) proposed HELAS

(Human-like Explanation with Limited Attention Supervision).

This approach requires a small proportion of documents to train

a model that simultaneously solves the text classification task

while predicting human-like attention weights. Similarly, Arous

et al. (2021) introduced MARTA, a Bayesian framework based on

variational inference that jointly learns an attention-based model

while injecting human rationales during training. It is important

to note that both approaches achieve state-of-the-art results while

having access to human rationales for less than 10% of the input

documents.

While attention mechanisms have been used for extractive

rationalization, their effectiveness as a stand alone explainability

method is debated (Burkart and Huber, 2021; Niu et al., 2021).

Data from several studies suggest that attention weights might

misidentify relevant tokens in their explanations, or they are

often uncorrelated with the importance score measured by other

explainability methods (Jain and Wallace, 2019; Bastings and

Filippova, 2020). This uncertainty has significantly undermined the

use of attention-based methods, as they can provide a false sense of

understanding of the model’s decision-making process, potentially

leading to a misguided trust in the NLP system’s capabilities and an

underestimation of its limitations (Kandul et al., 2023; Lyu et al.,

2024).

2.2 Abstractive rationale generation

In abstractive rationalization, the aim is to generate natural

language explanations to articulate the model’s reasoning process

describing why an input sequence was mapped to a particular

target vector. Abstractive rationales may involve synthesizing or

paraphrasing information rather than directly extracting snippets

from the input text (Liu et al., 2019a; Narang et al., 2020).

Although extractive rationales are very useful to understand

the inner workings of a text classifier, there is a limitation when

employing them in tasks that should link commonsense knowledge

information to decisions, such as natural language inference (NLI),

question-answering, and text classification (Camburu et al., 2018;
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TABLE 2 Overview of common approaches for abstractive rationale generation.

Approach Method Supervised Representative paper(s)

Text-to-text Multi-task X Narang et al., 2020; Jang and Lukasiewicz, 2021

Generative Pipelined X Kumar and Talukdar, 2020; Zhao and Vydiswaran, 2021

Multi-task X
Liu et al., 2019a; Atanasova et al., 2020; Camburu et al., 2020; Zhou

et al., 2020; Li et al., 2021

Rajani et al., 2019). In such cases, rather than extracting relevant

words from the input sequence, it is more desirable to provide a

more synthesized and potentially insightful overview of the model’s

decision-making, often resembling human-like reasoning (Liu

et al., 2019a; Narang et al., 2020).

There are two main approaches currently being adopted in

research into abstractive rationalization: (i) text-to-text methods,

which rely on sequence-to-sequence translation models such as

the Text-to-Text Transfer Transformer (T5) framework proposed

by Raffel et al. (2020) including both the label and the explanation

at the same time, and (ii) generative methods, which first generate

a free-form explanation and then makes a prediction based on the

produced abstractive rationale (Zhou et al., 2020). Table 2 presents

an overview of the methods used to produce abstractive rationales

and their representative references.

It is important to note that a relatively small body of literature

is concerned with abstractive rationalization for explainable text

classification. Abstractive rationales are used less frequently than

extractive rationales primarily due to the higher complexity

and technical challenges in generating coherent, accurate, and

relevant synthesized explanations (Madsen et al., 2022; Ji

et al., 2023). Consequently, most of the studies on abstractive

rationalization have been based on supervised methods, where

human explanations are provided during the model’s training (Liu

et al., 2019a; Zhou et al., 2020).

2.2.1 Text-to-text methods
A text-to-text model follows the sequence-to-sequence

(seq2seq) framework (Sutskever et al., 2014), where it is fed

a sequence of discrete tokens as input and produces a new

sequence of tokens as output. Using this approach, researchers

have leveraged the T5 framework to train a joint model designed

to generate explanations and labels simultaneously (Raffel et al.,

2020). Consequently, a model is fit to maximize the following

conditional likelihood of the target label y and explanations e given

the input text x as defined in Equation 2:

L =

n
∏

i=1

p(yi, ei|xi) (2)

2.2.1.1 Multi-task models

Text-to-text methods for generating abstractive rationales

leverage the text-to-text framework proposed by Raffel et al. (2020)

to train language models to output natural text explanations

alongside their predictions. A study by Narang et al. (2020)

showed that their WT5 model (T5 models using “base” and

“11B” configurations; Raffel et al., 2020) achieved state-of-the-art

results with respect to the quality of explanations and classification

performance, when having access to a relatively large set of labeled

examples. Finally, they also claimed that their WT5 model could

help transfer a model’s explanation capabilities across different data

sets.

Similarly, Jang and Lukasiewicz (2021) conducted experiments

evaluating abstractive rationales generated by a T5-base model for

text classification and NLI. Nevertheless, their work emphasized

the need to reduce the volume of rationale-annotated data and

the computational requirements required to train these models to

produce comprehensive and contextually appropriate rationales.

Text-to-text models have shown promising results for

improving the understanding of classification models and

increasing the prediction performance using explanations as

additional features (Gilpin et al., 2018; Danilevsky et al., 2020).

However, their training requires a large number of human-

annotated rationales. This property precludes the development

of free-text explainable models for high-stake domains where

rationale-annotated data sets are scarcely available (Jang and

Lukasiewicz, 2021).

2.2.2 Generative methods
Researchers investigating generative methods have utilized

a generator-decoder framework (Camburu et al., 2018; Rajani

et al., 2019), which is similar to the encoder-decoder used for

extractive rationalization. The generator gen(x) works as a seq2seq

model where each input sequence is mapped onto a free-form

explanation (Zhou et al., 2020). The decoder dec(x) then takes

the abstractive rationale to predict the target vector (Jang and

Lukasiewicz, 2021).

By using the multiplication law of conditional probability,

we can decompose Equation (3) and formulate the training of

generative methods as Zhou et al. (2020):

L =

n
∏

i=1

p(ei|xi)
︸ ︷︷ ︸

Generator

p(yi|xi, ei)
︸ ︷︷ ︸

Decoder

(3)

An explanation generator model gen(x) that parameterizes

p(ei|xi) takes an input sequence x and generates a corresponding

natural language explanation e. As mentioned, the abstractive

rationale might not be found in the input sequence x (Zhou et al.,

2020). The decoder dec(x, e) is an augmented prediction model,

which parameterizes p(yi|xi, ei) and takes an input sequence x and

an explanation e to assign a target vector y (Rajani et al., 2019;

Atanasova et al., 2020).
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A significant advantage of generative methods for abstractive

rationalization is that they require significantly fewer human-

annotated examples for training an explainable text classification

model than text-to-text methods. Due to their flexibility in creating

new content, generative methods allow for a broader range of

expressive and contextually relevant rationales that can closely

mimic human-like explanations (Liu et al., 2019a; Zhou et al.,

2020).

2.2.2.1 Pipelined models

As with extractive methods, pipelined models for abstractive

rationalization simplify the generator-decoder architecture. Both

modules are trained independently, with no parameters shared

between the two models. Kumar and Talukdar (2020) proposed

a framework where a pre-trained language model based on the

GPT-2 architecture (Radford et al., 2019) is trained using a

causal language modeling loss (CLM). An independent RoBERTa-

based (Liu et al., 2019b) classifier is then fit on the abstractive

rationales to predict target labels. Similarly, Zhao and Vydiswaran

(2021) introduced LiREX, a framework also based on a GPT-2-

based generator and a decoder leveraging RoBERTa. However,

this framework included an additional component at the start of

the pipeline that first extracts a label-aware token-level extractive

rationale and employs it to generate abstractive explanations. Due

to the possibility of generating label-aware explanations, LiREX is

especially suitable for multi-label classification problems.

2.2.2.2 Multi-task models

Drawing inspiration from the work of Camburu et al. (2018)

on abstractive rationalization for explainable NLI, Zhou et al.

(2020) developed the ELV (Explanations as Latent Variables)

framework. They used a variational expectation-maximization

algorithm (Palmer et al., 2005) for optimization where an

explanation generation module and an explanation-augmented

BERT module are trained jointly. They considered natural

language explanations as latent variables that model the underlying

reasoning process of neural classifiers. Since training a seq2seq

model to generate explanations from scratch is challenging, they

used UniLM (Dong et al., 2019), a pre-trained language generation

model, as the generation model in their framework. Similarly, Li

et al. (2021) proposed a joint neural predictive approach to predict

and generate abstractive rationales and applied it to English and

Chinese medical documents. As generators, they used the large

version of T5 (T5 large; Raffel et al., 2020) and its multilingual

version, mT5 (Xue et al., 2021). For classification, they applied

ALBERT (Lan et al., 2019) and RoBERTa (Liu et al., 2019b)

on the English and Chinese data sets, respectively. Even though

they found that the multi-task learning approach boosted model

explainability, the improvement in their experiments was not

statistically significant.

A few studies have shown that generative methods sometimes

fail to build reliable connections between abstractive rationales and

predicted outcomes (Carton et al., 2020; Wiegreffe et al., 2021).

Therefore, there is no guarantee that the generated explanations

reflect the decision-making process of the prediction model (Tan,

2022). To generate faithful explanations, Liu et al. (2019a) suggested

using an explanation factor to help build stronger connections

between explanations and predictions. Their Explanation Factor

(EF) considers the distance between the generated and the gold

standard rationales and the relevance between the abstractive

rationales and the original input sequence. Finally, they included

EF in the objective function and jointly trained the generator

and decoder to achieve state-of-the-art results for predicting and

explaining product reviews.

New findings amongst abstractive rationalization provide

further evidence that models are prone to hallucination (Kunz

et al., 2022; Ji et al., 2023). In explainable text classification,

hallucination refers to cases where a model produces factually

incorrect or irrelevant rationales, thus impacting the reliability and

trustworthiness of these explanations (Zhao et al., 2023). Even

though most evaluation metrics punish hallucination and try to

mitigate it during training, the irrelevant rationales included might

add helpful information for the classification step and, therefore,

be used regardless. This phenomenon can mislead users about the

model’s decision-making process, undermining the credibility of

NLP systems and posing challenges for its practical application in

scenarios requiring high accuracy and dependability (Wang and

Dou, 2022; Ji et al., 2023).

Zero-shot approaches are increasingly relevant in NLP as they

allowmodels to process language tasks they have not been explicitly

trained on, enhancing their adaptability as part of real-world

solutions where training data is not necessarily available (Meng

et al., 2022). Even though there is a relatively small body of literature

that is concerned with zero-shot rationalization approaches for

explainable text classification, studies such as that conducted by

Kung et al. (2020) and Lakhotia et al. (2021) have shown that

zero-shot rationalization models achieve comparable performance

without any supervised signal. Nevertheless, a significant challenge

is the model’s ability to produce relevant rationales for unseen

classes, as it must extrapolate from learned concepts without

direct prior knowledge (Lyu et al., 2021). This capability requires

understanding abstract and transferable features across different

contexts, difficulting the training and deployment of these

rationalization models (Wei et al., 2021; Meng et al., 2022). It is

important to note that, if successful, they can enhance the scalability

of NLP systems by making them capable of analyzing data from

various domains without needing extensive retraining (Kung et al.,

2020; Yuan et al., 2024).

3 Rationale-annotated datasets

During the last 15 years, there has been an increase in

the volume of rationale-annotated data available, boosting

progress on designing more explainable classifiers and

facilitating the evaluation and benchmarking of rationalization

approaches (DeYoung et al., 2020; Wang and Dou, 2022).

Table 3 describes each rationale-annotated dataset for text

classification in terms of their domain, the annotation procedure

used to collect the human explanations (indicated as “author” or

“crowd” for crowd-annotated), their number of instances (input-

label pairs), their publication year and the original paper where

they were presented. Moreover, it includes links to each dataset

(when available), providing direct access for further exploration

and detailed analysis.
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TABLE 3 Comparison of rationale-annotated datasets for text classification.

Dataset name Domain Collection Instances Year References

MovieReviews (v.1.0) Product reviews Author 2,000 2007 Zaidan et al., 2007

AmazonReviews Product reviews Crowd 6,000 2007 Blitzer et al., 2007

HotelReviews Product reviews Crowd 109,000 2010 Wang et al., 2010

Nova Social media Crowd 12,000 2011 Guyon et al., 2011

IMDB Product reviews Crowd 25,000 2011 Maas et al., 2011

BeerAdvocate Product reviews Crowd 4,000 2012 McAuley et al., 2012

SST social media crowd 11,855 2013 Socher et al., 2013

WikiAttack Social media Author 1,089 2018 Carton et al., 2018

FEVER Social media Crowd 136,000 2018 Thorne et al., 2018

MovieReviews (v.2.0) Product reviews Crowd 200 2019 DeYoung et al., 2020

Snopes Corpus Social media Crowd 6,422 2019 Hanselowski et al., 2019

HateXplain Social media Crowd 20,148 2020 Mathew et al., 2021

Yelp-HAT Product reviews Crowd 15,000 2020 Sen et al., 2020

RaFoLa Modern slavery Author 989 2021 Mendez et al., 2022

Hummingbird Social media Crowd 500 2021 Hayati et al., 2021

SBIC Social media Author 360 2022 Marasović et al., 2022

DynaSent Product reviews Author 2,880 2023 Jakobsen et al., 2023

Incorporating human rationales during training of

supervised learning models can be traced back to the work

of Zaidan et al. (2007), where a human teacher highlighted text

spans in a document to improve model performance. Their

MovieReviews(v.1.0) corpus is the first rationale-annotated dataset

for text classification, including 1,800 positive/negative sentiment

labels on movie reviews.

Table 3 shows that the dominant collection paradigm is via

crowd sourcing platforms. A critical bottleneck of rationale

generation is the insufficient domain-specific rationale-annotated

data (Lertvittayakumjorn and Toni, 2019). Gathering enough

(input, label, and human rationales) triples from potential end-users

is essential as it provides rationalization models with a reference

for what constitutes a meaningful and understandable explanation

from a human perspective (Strout et al., 2019; Carton et al., 2020;

DeYoung et al., 2020). Rationale-annotated data is critical in real-

world applications, where the alignment of machine-generated

rationales with human reasoning greatly enhances the model’s

transparency, trustworthiness, and acceptance by users in practical

scenarios (Wang and Dou, 2022; Gurrapu et al., 2023).

Creating benchmark data sets with human annotations is

essential for training and comparing rationalization models,

as they provide a standardized resource to evaluate the

effectiveness, accuracy, and human-likeness of model-generated

explanations (Jacovi and Goldberg, 2021; Wang and Dou, 2022).

Such benchmarks facilitate consistent, objective comparison

across different models, fostering advancements in the field by

highlighting areas of strength and opportunities for improvement

in aligning machine-generated explanations with human reasoning

and understanding (Kandul et al., 2023; Lyu et al., 2024). The task

of extractive rationalization was surveyed by DeYoung et al. (2020),

who proposed the ERASER (Evaluating Rationales And Simple

English Reasoning) benchmark spanning a range of NLP tasks.

These data sets, including examples for text classification such as

MovieReviews(v.2.0) and FEVER, have been repurposed from pre-

existing corpora and augmented with labeled rationales (Zaidan

et al., 2007; Thorne et al., 2018). More recently, Marasović et al.

(2022) introduced the FEB benchmark containing four English

data sets for few-shot rationalization models, including the SBIC

corpus for offensiveness classification.

Questions have been raised about using human-annotated

rationales for training and evaluating rationalization models since

they are shown to be quite subjective (Lertvittayakumjorn and

Toni, 2019; Carton et al., 2020). Most published studies failed to

specify information about the annotators, such as gender, age, or

ethnicity. Jakobsen et al. (2023) makes an essential contribution

by being the first dataset to include annotators’ demographics and

human rationales for sentiment analysis. Diversity in collecting

human rationales is crucial to the development of universally

understandable and reliable models, enhancing their applicability

and acceptance across a broad spectrum of stakeholders and

scenarios (Tan, 2022; Yao et al., 2023).

Finally, different methods have been proposed to collect human

rationales for explainable text classification. On the one hand, in

some studies (e.g., Zaidan et al., 2007), annotators were asked to

identify the most important phrases and sentences supporting a

label. On the other hand, in the work of Sen et al. (2020), for

example, all sentences relevant to decision-making were identified.

Even though these approaches seem similar, they might lead to

substantially different outcomes (Hartmann and Sonntag, 2022;

Tan, 2022). Documentation and transparency in the annotation

of human rationales are essential as they provide clear insight
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TABLE 4 Overview of evaluation metrics for rationale’s quality.

Approach Desiderata Representative paper(s)

Proxy-based
Plausibility

Paranjape et al., 2020; Guerreiro

and Martins, 2021; Jang and

Lukasiewicz, 2021; Chan A. et al.,

2022; Atanasova et al., 2024

Faithfulness
Carton et al., 2020; DeYoung et al.,

2020; Zhang et al., 2021a; Chan A.

et al., 2022

Simulatability Hase et al., 2020

Consistency Atanasova et al., 2024

Robustness Chen H. et al., 2022; Ross et al.,

2022

Human-grounded
Understandability

Ehsan et al., 2019;

Lertvittayakumjorn and Toni,

2019; Hase and Bansal, 2020; Jain

et al., 2020

Relatability
Ehsan et al., 2019;

Lertvittayakumjorn and Toni,

2019; Hase and Bansal, 2020

into the reasoning process and criteria used by human annotators,

ensuring replicability and trustworthiness in the model evaluation

process (Carton et al., 2020). This detailed documentation is crucial

for understanding potential biases and the context under which

these rationales were provided, thereby enhancing the credibility

and generalizability of the rationalization models.

4 Evaluation metrics

The criteria for evaluating the quality of rationales in

explainable text classification are not universally established.

Generally, evaluation approaches fall into two categories: (i) proxy-

based, where rationales are assessed based on automatic metrics

that attempt to measure different desirable properties (Carton

et al., 2020; DeYoung et al., 2020), and (ii) human-grounded,

where humans evaluate rationales in the context of a specific

application or a simplified version of it (Doshi-Velez and Kim,

2017; Lertvittayakumjorn and Toni, 2019).

Table 4 summarizes the categories for rationale evaluation,

including metrics and their most relevant references.

4.1 Proxy-based

Plausibility in rationalization for text classification refers to

the extent to which explanations provided by a model align

with human intuition and understanding (DeYoung et al., 2020;

Wiegreffe et al., 2021). Plausible explanations enhance the trust

and credibility of classifiers, as they are more likely to be

understood and accepted by end-users, particularly those without

technical expertise (Doshi-Velez and Kim, 2017; Hase and Bansal,

2022; Atanasova et al., 2024). DeYoung et al. (2020) proposed

evaluating plausibility using Intersection-over-Union at the token

level to derive token-level precision, recall, and F1 scores.

Several studies have followed a similar evaluation approach for

extractive rationalization models (Paranjape et al., 2020; Guerreiro

and Martins, 2021; Chan A. et al., 2022), while others have

explored using phrase-matching metrics such as SacreBLEU and

METEOR (Jang and Lukasiewicz, 2021) for evaluating abstractive

rationales. In the case of attention-based methods that perform soft

selection, DeYoung et al. (2020) suggested measuring plausibility

using the Area Under the Precision-Recall Curve (AUPRC)

constructed by sweeping a threshold over token scores (DeYoung

et al., 2020; Chan A. et al., 2022).

While plausibility is important for rationalization models,

much of the literature acknowledges that generating plausible

rationales is not enough (Doshi-Velez and Kim, 2017; Arrieta

et al., 2020; Danilevsky et al., 2020). Previous research has

established that it is crucial to ensure that the rationales also

reflect the actual reasoning processes of the model rather than

being superficial or misleading (Belle and Papantonis, 2021; Jacovi

and Goldberg, 2021). Faithfulness refers to the degree to which

the generated rationales accurately represent the internal decision-

making process of the model. DeYoung et al. (2020) proposed

two automatic metrics for assessing faithfulness by measuring

the impact of perturbing or erasing snippets within language

explanations. First, comprehensiveness captures the extent to which

all relevant features for making a prediction were selected as

rationales. Second, sufficiency assesses whether the snippets within

rationales are adequate for a model to make a prediction. Using

this approach, researchers have established that a faithful rationale

should have high comprehensiveness and sufficiency (Zhang et al.,

2021a; Chan A. et al., 2022).

Supporting this view, Carton et al. (2020) introduced the

term fidelity to refer jointly to sufficiency and comprehensiveness.

According to their findings, a rationale can contain many

tokens irrelevant to the prediction while still having high

comprehensiveness and low sufficiency. Consequently, they

introduced the idea of fidelity curves to assess rationale irrelevancy

by looking at how sufficiency and comprehensiveness degrade as

tokens are randomly occluded from a language explanation. There

is a consensus among researchers and practitioners that this level

of authenticity in explanations is crucial for users to scrutinize NLP

decisions, particularly in high-stake domains where understanding

the model’s reasoning is paramount (Miller, 2019; Tjoa and Guan,

2020; Bibal et al., 2021).

Hase et al. (2020) showed that while plausibility and faithfulness

provide a good starting point for rationale evaluation, they

failed to capture causal attributions of explanations. Consequently,

they introduced a leakage-adjusted simulatability metric (LAS) to

measure the degree to which rationales provide semantic content

that informs an observer of the model outcome in the context

of its input. Similarly, Atanasova et al. (2024) proposed assessing

rationale consistency by measuring similarities in the reasoning

path of several models on a single input sequence. Since the

rationales depend on the method used to produce them (Carton

et al., 2020), it is essential to note that rationale consistency can only

be evaluated for models using the same approach and architecture.

Robustness refers to the model’s ability to consistently provide

reliable rationales across various inputs and conditions (Gunning

et al., 2019; Arrieta et al., 2020; Lyu et al., 2024). Robustness is
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crucial for explainable text classification as it ensures dependability

and generalizability of the explanations, particularly in real-

world applications where data variability and unpredictability are

common (Belle and Papantonis, 2021; Hartmann and Sonntag,

2022). Most researchers investigating robustness in rationalization

models have utilized adversarial examples to evaluate the model’s

rationales to remain trustworthy and reliable in potentially

deceptive environments (Zhang et al., 2020; Liang et al., 2022).

Using this approach, Chen H. et al. (2022) assessed the model’s

robustness by measuring performance on challenge datasets where

human-annotated edits to inputs that can change classification

labels, are available. Similarly, Ross et al. (2022) proposed assessing

robustness by testing whether rationalization models are invariant

to adding additional sentences and remain consistent with their

predictions. Data from both studies suggest that rationalization

models can improve robustness. However, leveraging human

rationales as extra supervision does not always translate to more

robust models.

It is important to note that most rationale evaluation research

has focused on extractive rationalization models (Carton et al.,

2020; Hase and Bansal, 2020). Assessing abstractive rationales for

explainable text classification presents several unique challenges.

First, the subjective nature of abstractive rationales makes

standardization of evaluation metrics, such as plausibility difficult,

as these rationales do not necessarily align with references of the

original input text (Camburu et al., 2020; Zhao and Vydiswaran,

2021). Second, ensuring faithfulness and robustness of abstractive

rationales is complex, as they involve generating new text that

may not directly correspond to specific input features, making it

challenging to determine whether the rationale reflects the model’s

decision-making reliably (Dong et al., 2019; Zhou et al., 2020).

These challenges highlight the need for innovative and adaptable

evaluation frameworks that can effectively capture the multifaceted

nature of abstractive rationales in explainable NLP systems.

4.2 Human-grounded

Even though the vast majority of research on rationale

evaluation has been proxy-based, some studies have begun

to examine human-grounded evaluations for explainable

text classification (Mohseni et al., 2018; Ehsan et al., 2019).

Nevertheless, to our knowledge, there is no published research

on human-grounded methods using domain experts in the same

target application. Instead, we have found some studies conducting

simpler human-subject experiments that maintain the essence of

the target application.

According to Ehsan et al. (2019), rationale understandability

refers to the degree to which a rationale helped an observer

understand why a model behaved as it did. They asked participants

to rate the understandability of a set of rationales using a 5-

point Likert scale. Instead, Lertvittayakumjorn and Toni (2019)

used binary forced-choice experiments. As part of their research,

humans were presented with pairs of explanations to choose the

one they found more understandable.

Finally, researchers have also been interested in measuring

simulatability using human-subject simulation experiments. In

a qualitative study by Lertvittayakumjorn and Toni (2019),

humans were presented with input-explanation pairs and asked

to simulate the model’s outcomes correctly. Similarly, Ehsan

et al. (2019) assessed simulatability using counterfactual simulation

experiments. In this case, observers were presented with input-

output-explanation triples and asked to identify what words needed

to be modified to change the model’s prediction to the desired

outcome.

In an investigation into human-grounded metrics for

evaluating rationales in text classification, Lertvittayakumjorn and

Toni (2019) concluded that experiments and systems utilized to

collect feedback on machine-generated rationales lack interactivity.

In almost every study, users cannot contest a rationale or ask

the system to explain the prediction differently. This view is

supported by Ehsan et al. (2019), who concluded that current

human-grounded experiments could only partially assess the

potential implications of language explanations in real-world

scenarios.

Even though human-grounded evaluation is key in assessing

the real-world applicability and effectiveness of rationalization

models, it presents several challenges that stem from the

inherent subjectivity and variability of human judgment (Doshi-

Velez and Kim, 2017; Carton et al., 2020). First, the diversity

of interpretations among different evaluators can lead to an

inconsistent assessment of the quality and relevance of the

generated rationales (Lertvittayakumjorn and Toni, 2019; Hase and

Bansal, 2020). As mentioned before, this diversity is influenced

by cultural background, domain expertise, and personal biases,

making it difficult to consolidate a standardized evaluation

metric (Mohseni et al., 2018; Yao et al., 2023). Second,

the cognitive load on human evaluators can be significant,

especially when dealing with complex classification tasks or

lengthy rationales, potentially affecting the consistency and

reliability of their judgment (Tan, 2022). Finally, there is the

scalability challenge, as human evaluations are time-consuming

and resource-intensive, limiting the feasibility of conducting large-

scale assessments (Kandul et al., 2023).

5 Challenges and future outlook

In this section, we discuss the current challenges in

developing trustworthy rationalization models for explainable text

classification and suggest possible approaches to overcome them.

5.1 Rationalization approaches

Extractive and abstractive rationalization approaches have

distinct advantages and disadvantages when applied to explainable

text classification. Table 5 summarizes the trade-offs of the

rationalization methods described in Section 2.

Extractive rationalization, which involves selecting parts of

the input text as justification for the model’s decision, boasts the

advantage of being directly linked to the original data, oftenmaking

these explanations more straightforward and more accessible to

validate for accuracy (Wang and Dou, 2022; Gurrapu et al.,

2023). However, this method can be limited in providing context

or explaining decisions requiring synthesizing information not
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TABLE 5 Main advantages and disadvantages of methods for rationale generation.

Rationale Approach Advantages Disadvantages

Extractive Extractive Works with limited or no rationale-annotated data Hard to train leading to unstable outcomes

Attention Achieves good classification performance Risks of identifying unreliable rationales

Abstractive Text-to-text Produces comprehensive rationales Require large amounts of rationale-annotated data

Generative Works with a limited amount of human rationales Possible misalignment between rationales and labels

explicitly stated in the text (Kandul et al., 2023; Lyu et al., 2024).

Abstractive rationalization, which generates new text to explain

the model’s decision, offers greater flexibility and can provide

more holistic and nuanced explanations that synthesize various

aspects of the input data. This approach can be more intuitive

and human-like, enhancing the comprehensibility for end-users (Li

et al., 2021; Zini and Awad, 2022). Yet, it faces challenges such

as the risk of hallucination—producing explanations that are not

grounded in the input data—and the complexity of ensuring that

these generated explanations are both accurate and faithful to

the model’s decision-making process (Liu et al., 2019a; Hase and

Bansal, 2020). Therefore, while extractive methods offer reliability

and direct traceability, abstractive methods provide richness and

depth, albeit with increased challenges in maintaining fidelity and

accuracy (Wiegreffe et al., 2021; Yao et al., 2023).

The choice between extractive and abstractive rationalization

models for explainable text classification largely depends on the

specific requirements and constraints of the application (Wang

and Dou, 2022; Gurrapu et al., 2023). On the one hand, extractive

rationalization models are generally more suitable in scenarios

where transparency and direct traceability to the original text are

paramount. They are ideal when the rationale for a decision needs

to be anchored to specific parts of the input text, such as in legal

or compliance-related tasks where every decision must be directly

linked to particular evidence or clauses (Bibal et al., 2021; Lyu et al.,

2024). On the other hand, abstractive rationalization models are

better suited for scenarios where a more synthesized understanding

or a broader context is necessary (Miller, 2019; Kandul et al.,

2023). They excel in situations where the rationale might involve

drawing inferences or conclusions not explicitly stated in the text.

Abstractive models are also preferable when the explanation needs

to be more accessible to laypersons, as they can provide more

natural, human-like explanations (Amershi et al., 2014; Tjoa and

Guan, 2020).

Even though the decision to use pipelined or multi-task

learning models for rationalization depends on the specific

goals and constraints, several studies suggest that multi-task

learning models perform better for both extractive and abstractive

rationalization (Dong et al., 2019; Zhou et al., 2020; Li et al., 2021;

Wang and Dou, 2022). Pipelined models are advantageous when

each module, rationalization and classification, require specialized

handling or when modularity is needed in the system (Jain et al.,

2020; Chrysostomou and Aletras, 2022). This approach allows

for greater flexibility in updating each component independently.

However, they can suffer from error propagation where the

rationalization can affect the classification (Kunz et al., 2022). In

contrast, multi-task learning models are generally more efficient

and can offer performance benefits, enabling sharing of insights

between tasks. Nevertheless, they may require more training data,

more complex hyperparameter tuning and careful balancing of the

learning objectives (Bastings et al., 2019; Chan A. et al., 2022).

Finally, the choice depends on the specific requirements for model

performance, the availability of training data, and the need for

flexibility in model deployment and maintenance.

Since approaches have been trained and tested on different

datasets using a variety of evaluation metrics, we have ranked them

based on their reported performance on theMovieReviews (Zaidan

et al., 2007), SST (Socher et al., 2013), and FEVER (Thorne

et al., 2018) datasets. Table 6 compares the performance of each

rationalization approach in terms of its predictive performance

and the quality of its produced rationales using sufficiency and

comprehensiveness scores. Based on the results reported by the

authors, we have categorized the predictive performance into:

XXX—Very good performance, XX—Good performance, and

X— Performance has potential for improvement. What stands out

in this table is the dominance of multi-task methods over pipelined

and soft-score approaches in terms of predictive performance

and explainability. Our summary shows that supervised multi-

task extractive approaches are state-of-the-art for rationalization in

terms of predictive performance and rationales’ quality, followed

by supervised multi-task text-to-text abstractive methods. We refer

the reader to bf for details of each rationalization approach’s

performance.

Combining extractive and abstractive rationales for explainable

text classification represents an innovative approach that harnesses

the strengths of both: the direct, evidence-based clarity of

extractive rationales and the comprehensive, context-rich insights

of abstractive explanations. A recent study by Majumder et al.

(2022) introduced RExC (Extractive Rationales, Natural Language

Explanations, and Commonsense), a rationalization framework

that explains its prediction using a combination of extractive and

abstractive language explanations. RExC selects a subset of the

input sequence as an extractive rationale using an encoder based

on the HardKuma distribution (Bastings et al., 2019), passes the

selected snippets to a BART-based generator (Lewis et al., 2020),

and inputs the abstractive rationales to a decoder that outputs the

final prediction. It is essential to highlight that all models are trained

jointly, and the supervision comes from the target vectors and

human-annotated explanations.

Beyond unimodal rationalization models for explainable text

classification, multimodal explanations, which integrate textual,

visual, and sometimes structured information, can provide

more comprehensive insights into AI models’ decision-making

processes (Park et al., 2018). Using this approach, Marasović

et al. (2020) have produced abstractive rationales for visual

reasoning tasks, such as visual-textual entailment, by combining
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TABLE 6 Summary of the evaluation of each rationalization approach in terms of its predictive capability and the quality of its generated explanations.

Rationalization Approach Method Supervision Predictive performance Explanation quality

Extractive

Extractive
Multi-task

Unsupervised XX XX

Supervised XXX XXX

Pipelined Unsupervised X X

Attention Soft-scores
Unsupervised XX X

Supervised XX XX

Abstractive

Text-to-text Multi-task Supervised XXX XX

Pipelined Supervised XX X

Generative Multi-Task Supervised XX XX

pre-trained language models with object recognition classifiers to

provide image understanding at the semantic and pragmatic levels.

Along the same lines, Zhang et al. (2024) developed a vision

language model to identify emotions in visual art and explain their

prediction through abstractive rationales. Recent evidence suggests

that multimodal explanations can allow for a deeper understanding

of how different types of data can be analyzed to produce more

accessible and intuitive explanations, broadening the scope and

applicability of rationalization in real-world scenarios (Chen and

Zhao, 2022; Ananthram et al., 2023; Zhang et al., 2024).

5.2 Rationale-annotated data

Generating more rationale-annotated data is crucial for

training and evaluating rationalization models, as it provides

a rich, diverse foundation for teaching these models how to

produce relevant and human-understandable explanations (Doshi-

Velez and Kim, 2017; Hase and Bansal, 2020). These data

sets enhance the model’s ability to generate accurate and more

contextually appropriate rationales and facilitate more robust and

comprehensive evaluation, improving the model’s reliability and

effectiveness in real-world applications. Even though there has

been vast progress since the publication of ERASER (DeYoung

et al., 2020) and FEB (Marasović et al., 2022) benchmarks, there

is still a lack of rationale-annotated data for text classification.

Considering that highlighting human rationales is not significantly

more expensive than traditional labeling (Zaidan et al., 2007), the

NLP community could move toward methods for collecting labels

by annotating rationales. By doing so, we could boost the results of

classification and rationalization models (Arous et al., 2021).

However, it is not enough to have more rationale-annotated

data. We also need better human rationales. Standardizing

methods for collecting rationale-annotated data is pivotal in

the development of rationalization models, as it ensures a

uniform approach to gathering and interpreting data, crucial

for maintaining the quality and consistency of training and

evaluation processes (Wiegreffe et al., 2021; Yao et al., 2023).

Documenting and reporting these procedures is equally important,

providing transparency about how the data was annotated

and allowing applicability in future research (Atanasova et al.,

2020; Li et al., 2021). Moreover, reporting and fostering the

diversity of the annotators involved is critical. Diversity in

demographics, expertise, and cognitive perspectives significantly

shape machine-generated rationales (Jakobsen et al., 2023). A

comprehensive approach to data annotation is vital to advancing

rationalization models that are reliable, effective and ethically

sound in their explanations, catering to a broad spectrum of real-

world applications and stakeholders.

Further work is needed to establish whether crafting datasets

annotated with multimodal explanations can enrich the training

and capabilities of rationalization approaches for explainable

NLP. Even though preliminary results seem to indicate those

visual and textual rationales can indeed provide explanatory

strengths (Chen and Zhao, 2022; Ananthram et al., 2023),

one of the main challenges is the complexity involved in

integrating diverse data types to ensure that annotations reflect

the interconnectedness of these modalities (Marasović et al., 2020).

Moreover, developing robust annotation guidelines that capture

the nuances of multimodal interactions is complex and requires

interdisciplinary expertise (Yuan et al., 2024; Zhang et al., 2024).

Since the reasoning process needed to infer a label is subjective

and unstructured, we must develop dynamic, flexible and iterative

strategies to collect human rationales (Doshi-Velez and Kim, 2017).

Considering that we aim to describe the decision-making process

in real-world applications accurately, we could move toward noisy

data labeling processes attempting to reflect the annotator’s internal

decision procedure. To illustrate, if annotators change their minds

while highlighting rationales, dynamic approaches should be able to

capture these changes so that we can learn from them (Ehsan et al.,

2019). This dynamic approach might allow for a more authentic

and comprehensive representation of human cognitive processes,

enriching the training and evaluation of rationalization models

with insights that mirror the nature of real-world human thought

and decision-making.

The use of human rationales has been key to the development

of explainable text classification models. However, further research

should focus on whether humans can provide explanations that

can later be used to train rationalization models (Miller, 2019;

Tan, 2022). We need to acknowledge that human rationales, while

a valid proxy mechanism, can only help us to understand the

decision-making process of humans partially (Amershi et al., 2014).

Consequently, we encourage the NLP community to stop looking at

them as another set of uniform labels and embrace their complexity

by working collaboratively with researchers in other domains. For

instance, to understand whether data sets of human explanations
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can serve their intended goals in real-world applications, we must

connect the broad range of notions around human rationales in

NLP with existing psychology and cognitive science literature. A

more holistic understanding of human explanations should allow

us to decide what kind of explanations are desired for NLP systems

and help clarify how to generate and use them appropriately within

their limitations.

5.3 Comprehensive rationale evaluation

While significant progress has been made in evaluating

rationalization models, areas require improvement to ensure safer

and more sustainable evaluation (Lertvittayakumjorn and Toni,

2019; Carton et al., 2020). Even though current approaches offer

valuable insights, there is a need for evaluation frameworks that

can assess the suitability and usefulness of the rationales in diverse

and complex real-world scenarios (Chen H. et al., 2022; Hase

and Bansal, 2022). Additionally, there is a growing need to focus

on the ethical implications of rationale evaluation, particularly in

sensitive applications (Atanasova et al., 2023; Joshi et al., 2023).

As a community of researchers and practitioners, we must ensure

that the models do not inadvertently cause harm or perpetuate

misinformation. Addressing these challenges requires a concerted

effort from the XAI community to innovate and collaborate, paving

the way for more reliable, fair, and transparent rationalization

models in NLP.

We have provided a list of diagnostic properties for assessing

rationales. It is important to note that these evaluation

metrics have mainly been generated from a developer-based

perspective, which has biased their results toward faithful

explanations (Lertvittayakumjorn and Toni, 2019; DeYoung

et al., 2020). Current evaluation approaches are not designed

nor implemented considering the perspective of other relevant

stakeholders, such as investors, business executives, end-users,

and policymakers, among many others. Further work must be

done to evaluate rationale quality from a broader perspective,

including practical issues that might arise in their implementation

for real-world applications (Tan, 2022).

Considering how important language explanations are for

building trust with end-users (Belle and Papantonis, 2021), their

contribution should also be evaluated in the context of their specific

application (Doshi-Velez and Kim, 2017). A lack of domain-

specific annotated data is detrimental to developing explainable

models for high-stake sectors such as the legal, medical and

humanitarian domains (Jacovi and Goldberg, 2021; Mendez et al.,

2022). As mentioned before, current evaluation methods lack

interactivity (Carton et al., 2020). End users or domain experts

cannot contest rationales or ask the models to explain them

differently, which makes them impossible to validate and deploy

in real-world applications. Even though it is beyond the scope of

our survey, work needs to be done to develop clear, concise and

user-friendly ways of presenting rationales as part of explainable

NLP systems (Hartmann and Sonntag, 2022; Tan, 2022). Effectively

communicated rationales boost user trust and confidence in the

system and facilitate a deeper comprehension of the model’s

decision-making process, leading to more informed and effective

use of NLP models.

6 Conclusions

Developing understandable and trustworthy systems becomes

paramount as NLP and text classification applications continue to

integrate into critical and sensitive applications. The present survey

article aimed to examine rationalization approaches and their

evaluation metrics for explainable text classification, providing a

comprehensive entry point for new researchers and practitioners

in the field.

The contrast between extractive and abstractive rationalization

highlights distinct strengths and limitations. On the one hand,

extractive rationalization approaches link to original data, ensuring

reliability and ease of validation. However, they may lack the

context or comprehensive insight needed for decision-making.

On the other hand, abstractive rationalization models offer the

flexibility to produce more intuitive and human-like explanations,

which enhance user usability and trust. Nevertheless, they face

challenges such as the potential for generating non-factual

explanations and the complexity of maintaining plausibility

in the decision-making process. Choosing between extractive

and abstractive models depends on application-specific needs:

extractive models are preferable where direct traceability is crucial,

such as legal applications. In contrast, abstractive models are suited

for situations requiring broader contextual interpretations.

Despite its challenging nature, the emerging work on

rationalization for explainable text classification is promising.

Nevertheless, several questions remain to be answered. Further

research is required to better understand human rationales,

establish procedures for collecting them, and develop accurate and

feasible methods for generating and evaluating rationales in real-

world applications.We have identified possible directions for future

research, which will hopefully extend the work achieved so far.
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Appendix

Performance of rationalization approaches

Table A1 presents the breakdown results for rationalization

approaches according to what has been reported for

TABLE A1 Performance of di�erent rationalization approaches on the MovieReviews, SST, and FEVER datasets.

Dataset Rationale Approach F1 Su� Comp References

MovieReviews

Extractive Pipeline 0.77 0.88 0.10 Atanasova et al., 2024

Extractive Pipeline 0.84 0.89 0.09 Guerreiro and Martins,

2021

Extractive Pipeline 0.91 0.95 0.12 Chan A. et al., 2022

Extractive MT Unsupervised 0.91 0.93 0.11 Lei et al., 2016

Extractive MT Unsupervised 0.94 0.92 0.12 Paranjape et al., 2020

Extractive MT Unsupervised 0.90 0.91 0.15 Carton et al., 2020

Extractive MT Supervised 0.92 0.93 0.14 Lei et al., 2016

Extractive MT Supervised 0.96 0.91 0.16 DeYoung et al., 2020

Abstractive MT Text-to-Text 0.97 0.89 0.11 Narang et al., 2020

SST

Extractive Pipeline 0.80 0.75 0.11 Guerreiro and Martins,

2021

Extractive Pipeline 0.93 0.89 0.11 Chan A. et al., 2022

Extractive MT Unsupervised 0.92 0.95 0.15 Carton et al., 2020

Abstractive Generative

Pipelined

0.90 0.79 0.07 Zhao and Vydiswaran,

2021

FEVER

Extractive MT Unsupervised 0.71 0.85 0.05 DeYoung et al., 2020

Extractive Pipeline 0.70 0.89 0.07 Guerreiro and Martins,

2021

Extractive MT Unsupervised 0.82 0.85 0.15 Carton et al., 2020

Extractive MT Supervised 0.85 0.87 0.14 DeYoung et al., 2020

Extractive MT Supervised 0.87 0.87 0.16 DeYoung et al., 2020

Abstractive Generative MT 0.84 0.87 0.11 Zhou et al., 2020

each author on the MovieReviews (Zaidan et al., 2007),

SST (Socher et al., 2013), and the FEVER (Thorne

et al., 2018) datasets. The predictive performance is

evaluated using the F1 Score (F1), and the quality of the

produced rationales is assessed using Sufficiency (Suff) and

Comprehensiveness (Comp).
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