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Introduction: Osteoporosis, characterized by low bone mineral density (BMD), 
is an increasingly serious public health issue. So far, several traditional regression 
models and machine learning (ML) algorithms have been proposed for predicting 
osteoporosis risk. However, these models have shown relatively low accuracy 
in clinical implementation. Recently proposed deep learning (DL) approaches, 
such as deep neural network (DNN), which can discover knowledge from 
complex hidden interactions, offer a new opportunity to improve predictive 
performance. In this study, we  aimed to assess whether DNN can achieve a 
better performance in osteoporosis risk prediction.

Methods: By utilizing hip BMD and extensive demographic and routine clinical 
data of 8,134 subjects with age more than 40 from the Louisiana Osteoporosis 
Study (LOS), we  developed and constructed a novel DNN framework for 
predicting osteoporosis risk and compared its performance in osteoporosis 
risk prediction with four conventional ML models, namely random forest (RF), 
artificial neural network (ANN), k-nearest neighbor (KNN), and support vector 
machine (SVM), as well as a traditional regression model termed osteoporosis 
self-assessment tool (OST). Model performance was assessed by area under 
‘receiver operating curve’ (AUC) and accuracy.

Results: By using 16 discriminative variables, we observed that the DNN approach 
achieved the best predictive performance (AUC = 0.848) in classifying osteoporosis 
(hip BMD T-score ≤ −1.0) and non-osteoporosis risk (hip BMD T-score > −1.0) 
subjects, compared to the other approaches. Feature importance analysis 
showed that the top 10 most important variables identified by the DNN model 
were weight, age, gender, grip strength, height, beer drinking, diastolic pressure, 
alcohol drinking, smoke years, and economic level. Furthermore, we performed 
subsampling analysis to assess the effects of varying number of sample size 
and variables on the predictive performance of these tested models. Notably, 
we observed that the DNN model performed equally well (AUC = 0.846) even by 
utilizing only the top 10 most important variables for osteoporosis risk prediction. 
Meanwhile, the DNN model can still achieve a high predictive performance 
(AUC = 0.826) when sample size was reduced to 50% of the original dataset.

Conclusion: In conclusion, we  developed a novel DNN model which was 
considered to be an effective algorithm for early diagnosis and intervention of 
osteoporosis in the aging population.
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Introduction

Osteoporosis is a systemic skeletal disorder characterized by low 
bone mineral density (BMD) and microarchitectural deterioration of 
bone tissue, resulting in an increased risk of bone fragility and 
susceptibility to fracture (Kanis, 2002). It has become an increasingly 
serious public health concern, especially in the aging population 
(Poole and Compston, 2006). In the United States, it is estimated that 
over 10.2 million older people have suffered from osteoporosis 
(Wright et al., 2014). Osteoporosis-related fractures, particularly hip 
fractures, are one of the leading causes of disability and mortality 
worldwide and resulted in an enormous social and economic burden 
on the society (Johnell and Kanis, 2004). Early diagnosis of 
osteoporosis risk is challenging. In the past two decades, several 
traditional epidemiological studies have identified a range of risk 
factors for osteoporosis and its related fractures, the most well-known 
factors include older age, low body weight, history of fracture, 
estrogen deficiency at an early age, low calcium intake, and vitamin 
D deficiency (Khosla and Melton, 2007). At present, dual-energy 
X-ray absorptiometry (DXA) is generally deemed as the gold 
standard tool for diagnosing osteoporosis. However, mass screening 
of subjects with high osteoporosis risk in the general population 
using DXA is not widely recommended because of the relatively high 
cost of the DXA scan. In addition, the availability of DXA scanner is 
relatively limited in most rural areas. Recently, the introduction of 
Osseus, a prototype device that measures BMD using non-ionizing 
microwave electromagnetic radiation, aims to overcome the cost and 
accessibility challenges associated with DXA (Albuquerque et al., 
2022). Nevertheless, further validation against established gold 
standard methods is needed to confirm Osseus’ effectiveness in early 
osteoporosis detection. To surmount this hurdle, a couple of 
epidemiological studies have attempted to develop algorithms/tools 
for predicting osteoporosis risk using demographic and routinely 
collected clinical data (Koh et al., 2001). For example, the most widely 
used tool, namely the osteoporosis self-assessment tool (OST), relies 
on a simple regression model with age and body weight to predict 
osteoporosis risk (Koh et  al., 2001). Nevertheless, this tool has a 
relatively low accuracy in clinical implementation (Raisz, 2005), 
resulting in a large number of subjects who were at high risk of 
osteoporosis failed to be  identified, while other subjects with 
relatively low osteoporosis risk were given unnecessary medical 
interventions. Although several more complex models have been 
proposed later by incorporating some other factors, such as family 
history, physical activity, and occupational risk etc., these models 
have not shown significantly improved performance in predicting 
osteoporosis risk compared to OST (Rud et al., 2009). Meanwhile, 
predicting dataset with massive sample size and high dimensionality 
may introduce several challenges, such as overfitting, heterogeneity, 
noise accumulation, and spurious correlation, which make 
conventional statistical methods inappropriate and unreliable in 
model development (Fan et al., 2014). Therefore, the state-of-the-art 
algorithms that can better discriminate osteoporosis risk and 
determine more nuanced relationships between risk factors and 
outcome need to be explored.

Machine learning (ML) is an area of artificial intelligence which 
can use a set of advanced algorithms for data classification without 
stringent statistical assumptions (Kotsiantis et al., 2006; Jordan and 
Mitchell, 2015). It offers a powerful alternative approach to 

conventional prediction modeling. ML relies on a computer to learn 
all complex and non-linear interactions which is more probable 
scenario for numerous biological systems (Loscalzo et  al., 2007; 
Sturmberg et al., 2012; Turnbull et al., 2018; Li et al., 2019; Medina-
Ortiz et  al., 2020; Manicka et  al., 2023) between variables by 
minimizing the error between predicted and observed outcomes 
(Dreiseitl and Ohno-Machado, 2002). In addition to potentially 
improving prediction, ML may identify latent variables, which are 
unlikely to be observed but might be inferred from other observable 
variables. In the past decade, a branch of ML algorithms (Table 1), 
such as random forest (RF), artificial neural network (ANN), 
k-nearest neighbor (KNN), and support vector machine (SVM) etc., 
have been widely applied in clinical medicine and have shown higher 
accuracy for diagnosis than conventional approaches (Hsieh et al., 
2011). In the bone-related field, several studies have indicated that 
supervised ML can help forecast low BMD or fractures (Sadatsafavi 
et al., 2005; Eller-Vainicher et al., 2011; Xu et al., 2013). For instance, 
it was reported that the performance of an ANN model for BMD 
prediction in postmenopausal women was superior to the 
conventional regression methods (Sadatsafavi et  al., 2005). Also, 
ANN showed a better performance for predicting morphometric 
vertebral fractures in postmenopausal osteoporosis than logistic 
regression analysis (Eller-Vainicher et al., 2011). Furthermore, Xu 
et al. (2013) suggested that a SVM model of several combined features 
can be  a useful tool for the early diagnosis and intervention for 
women with osteoporosis.

More recently, a new class of ML methods, namely deep learning 
(DL) or deep neural network (DNN), has gained much attention and 
achieved impressive and sometimes, breakthrough, results across a 
variety of artificial intelligence tasks (LeCun et  al., 2015). DL is 
inspired by the ability of human brain to abstract high-level 
representations from low-level sensory stimuli; these multi-leveled 
representations can be casted mathematically as multi-layered neural 
networks, it is being able to be  trained via layer-wise back-
propagation to obtain tractable optimization (LeCun et al., 2015). DL 
is currently the state-of-the-art method in the areas of image 
recognition (Krizhevsky et  al., 2012; Tompson et  al., 2014) and 
speech recognition (Hinton et  al., 2012). It has also produced 
promising results in reconstructing brain circuits (Helmstaedter 
et al., 2013) and natural language understanding (Collobert et al., 
2011). Interestingly, DL has also gained tremendous successes in 
various areas of genomics research (Angermueller et al., 2016; Min 
et al., 2017), such as predicting the intrinsic molecular subtypes of 
breast cancer (Tan et al., 2015), inferring expression profiles of genes 
(Chen et al., 2016), and predicting the functional activity of genomic 
sequence (Kelley et al., 2016). Furthermore, DL algorithms have been 
adopted to disease risk prediction and/or classification for several 
common diseases, such as cardiovascular disease (Poplin et al., 2018) 
and eye disease (Grassmann et al., 2018). However, few DL algorithms 
were applied to osteoporosis risk prediction, and it is still unclear 
whether such techniques can outperform other conventional ML 
algorithms in bone study. Therefore, it is intuitively appealing to 
systematically investigate and compare the performance of DL and 
other ML algorithms in prediction of osteoporosis risk, especially in 
large-scale populations.

In this study, by leveraging extensive BMD and other demographic 
and clinical data from our Louisiana Osteoporosis Study (LOS) (du 
et al., 2017), we developed and constructed a novel DNN framework for 
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predicting osteoporosis risk and compared its performance with four 
other commonly used ML models (i.e., RF, ANN, KNN, and SVM), as 
well as the traditional regression model OST. We demonstrated that the 
DNN model can more accurately predict the osteoporosis risk in the 
aging population, which may facilitate and increase the effectiveness of 
early diagnosis and prevention of this disease.

Materials and methods

Subjects

All the subjects used in this study were recruited through LOS 
(du et al., 2017), a repertoire of more than 17,000 subjects (by end 
of October 2023) collected for investigating genetic and 
environment risk and protective factors for osteoporosis in 
Southern Louisiana. Subjects aged 18 and over were recruited in 

New Orleans, Baton Rouge, and surrounding areas in Louisiana, 
USA. An extensive set of exclusion criteria (Supplementary materials) 
was adopted for the LOS recruitment to exclude subjects with 
known diseases/conditions that may affect bone metabolism. In the 
current study, we focused on 9,185 subjects, aged 40 years or older, 
who are at risk of developing osteoporosis as bone density gradually 
decreases due to changes in the bone remodeling process. 
We removed subjects of race/ethnicity with small sample size (372 
subjects of Native American/Pacific Islander and other) to mitigate 
the potential influences on the prediction performance and 
generalization of ML models, and participants who have inadequate 
numbers of available clinical measurements (679 subjects with more 
than 4 missing variables). Ultimately, a total of 8,134 subjects were 
encompassed in this study, including 3,541 males and 4,593 females 
from Caucasian/White, African-American/Black, Asian, and 
Hispanic/Latino. The detailed characteristics of the exquisitely 
selected study subjects were summarized in Table 2. This study was 

TABLE 1 Supervised ML algorithms for disease prediction and/or classification.

Approach Type of 
supervised 
learning

Description Graphical depiction

RF # Classification or 

regression

RF builds multiple decision trees and merges 

them together to get a more accurate prediction. 

The output is the mode of the predicted class 

(classification) or the mean of the predicted class 

(regression) of the individual trees

ANN Classification An ANN consists of units (neurons) arranged in 

layers, with the aim of converting an input 

vector into some output. The layers between the 

input and output layers are often hidden. Each 

unit takes an input, applies a (often nonlinear) 

function to it and passes it onto the next layer. 

Weights are applied to the signals passing from 

one unit to another, which are modified during 

the training phase

KNN Classification or 

regression

The KNN algorithm is a nonparametric method 

(that is, it makes no assumptions on the 

underlying data distribution). The algorithm is 

based on feature similarity (that is, how closely a 

new item resembles each item in the training 

set). The item is classified by a majority vote of 

its neighbors (that is, the new item is assigned to 

the class most common among its neighbors)

SVM Classification  • The goal of a SVM is to identify a hyperplane 

that best divides the data into the classes

 • This hyperplane could be a line (for separating 

2D data), a plane (for separating 3D data) or a 

hyperplane (for separating 4D data)

 • The support vector machine finds the 

coefficients that result in the best separation of 

the classes by trying to maximize the margin 

between the hyperplane and the closest points 

to the hyperplane

ML, machine learning; RF, Random forest; ANN, artificial neural network; KNN, k-nearest neighbor; SVM, support vector machine.
#Can be used for feature selection.
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approved by the Institutional Review Boards for Human 
Investigation at Tulane University (New Orleans, USA), and the 
signed informed-consent documents were obtained from all study 
participants before any data Research Topic.

Measurements

A total of 23 potential risk factors including demographic and 
anthropometric measurements, lifestyle factors, and medical history were 
assessed by questionnaires for all subjects. The detailed measurement and 
labeling process for each potential risk factor was described in 
Supplementary materials. In this study, we focused on total hip BMD, as 
low hip BMD is a major risk factor of hip fractures which are one of the 
leading causes of disability and mortality worldwide and resulted in an 
enormous social and economic burden on the society (Johnell and Kanis, 
2004). The BMD was measured with Hologic Discover-A DXA machine 
(Hologic Inc., Bedford, MA, United  States) by trained and certified 
research staff. The machine was calibrated daily, and software and 
hardware were kept up to date during the data Research Topic process. 
The measurement precision, as reflected by coefficients of variation for 
total hip BMD, was approximately 1.0%. More details on data quality 
control including the usual covariation for repeated measures have been 
described in our earlier publication (Deng et al., 1999). The osteoporosis 

risk of each subject was defined based on his/her hip BMD T-score value, 
which is expressed as the number of standard deviations of a person’s 
measured BMD above or below the mean BMD value of young adults of 
the same sex and ethnicity (Watts, 2004). We categorized the subjects into 
an osteoporosis risk group (hip BMD T-score ≤ −1.0) and a 
non-osteoporosis risk group (hip BMD T-score > −1.0).

Data preprocessing

The dataset was preprocessed to improve the performance of 
model prediction. Initially, all the missing data and outliers were 
imputed using predictive mean matching algorithm (Morris et al., 
2014) through R package mice.1 Due to the high dimensionality of the 
input variables, we calculated and visualized the Pearson’s correlations 
between all 14 continuous variables through R package corrplot2 and 
removed variables with correlation coefficient larger than 0.70. In 
addition, we  performed a robust feature selection analysis on the 
remaining variables based on genetic algorithm (Muni et al., 2006) to 

1 https://cran.r-project.org/web/packages/mice/

2 https://cran.r-project.org/web/packages/corrplot/

TABLE 2 The basic characteristics of the study subjects with 16 most discriminative predicting features.

Variables Total (n  =  8,134) Osteoporosis-risk Group 
(n  =  2,004)

Non-osteoporosis risk group 
(n  =  6,130)

Age (year) 55.12 (9.77) 59.95 (10.75) 53.54 (8.87)

Height (cm) 167.31(9.38) 164.66 (9.19) 168.18 (9.27)

Weight (kg) 79.04 (19.54) 66.01 (13.18) 83.30 (19.39)

Diastolic_Pressure (mmHg) 79.28 (12.25) 76.79 (12.15) 80.01 (12.17)

Heart_Rate (times/min) 72.95 (11.91) 72.77 (11.56) 73.01 (12.02)

Grip_Strength (kg) 31.38 (12.41) 27.15 (10.62) 32.76 (12.64)

Num_Exercises_Weekly (times/

week)

2.96 (2.70) 3.07 (2.76) 2.92 (2.67)

Smoke_Year (year) 14.50 (16.79) 16.10 (18.18) 13.79 (12.28)

Sex (male/female) 3,541/4,593 752/1,252 2,789/3,341

Race/Ethnicity # 1 (n = 4,517), 2 (n = 2,887), 3 (n = 517), 4 

(n = 213)

1 (n = 752), 2 (n = 1,252), 3 (n = 130), 4 

(n = 50)

1 (n = 3,212), 2 (n = 2,368), 3 (n = 387), 4 

(n = 163)

Sun_Exposure (no/yes) 1,524/6,610 423/1,581 1,101/5,029

Alcohol_Drink (no/yes) 2,530/5,604 652/1,352 1,878/4,252

Beer_Drink (no/yes) 4,725/3,409 1,269/735 3,456/2,764

Fracture_History (no/yes) 5,779/2,355 746/1,258 4,521/1,609

Economic_Level # 1 (n = 2,201), 2 (n = 912), 3 (n = 740), 4 

(n = 454), 5 (n = 906), NA (n = 2,921)

1 (n = 520), 2 (n = 231), 3 (n = 158), 4 

(n = 106), 5 (n = 227), NA (n = 762)

1 (n = 1,681), 2 (n = 681), 3 (n = 582),4 

(n = 348), 5 (n = 679), NA (n = 2,159)

Education_Level # 1 (n = 230), 2 (n = 1,962), 3 (n = 2,775), 4 

(n = 1,043), NA (n = 2,124)

1 (n = 54), 2 (n = 472), 3 (n = 671), 4 

(n = 277), NA (n = 530)

1 (n = 176), 2 (n = 1,594), 3 (n = 2,104), 4 

(n = 766), NA (n = 1,696)

Continuous variables were presented as mean (SD).
#The race was categorized into Caucasian/White, African-American/Black, Asian, and Hispanic/Latino, which were coded as 1, 2, 3, and 4, respectively. The economic levels (personal annual 
income) were categorized into under $20,000, $20,000–39,999, $40,000–59,999, $60,000 − 79,999, and $80,000 or more, which were coded as 1, 2, 3, 4, and 5, respectively. The education levels 
were categorized into less than high school graduate, high school graduate, college (including some college and college graduate), and graduate level, which were coded as 1, 2, 3, and 4, 
respectively. NA indicates the missing data.
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determine the best subset of relevant variables for model construction. 
Genetic algorithm is relatively insensitive to noise, and can not only 
improve the model classification performance but also increase the 
model interpretability (Saeys et  al., 2007). Finally, the most 
discriminative variables identified by genetic algorithm were selected 
for final model building.

DL algorithm

DL refers to DNN framework, which is widely applied in pattern 
recognition, image processing, computer vision, and recently in 
bioinformatics (Min et  al., 2017). Similar to other feed-forward 
artificial neural networks, DL employs more than one hidden layer (y) 
that connects the input (x) and output layer (z) via a weight (W) 
matrix as shown in Eq. (1). Here we used sigmoid function as the 
activation function:

 y sigmoid Wx b= +( ) (1)

Activation value of the hidden layer (y) can be  calculated by 
sigmoid of the multiplication of the input sample x with the weight 
matrix W and bias b. The transpose of the weight matrix W and the 
bias b can then be used to construct the output (z) layer, as described 
in Eq. (2):

 z sigmoid W y b= +( )′ ′  (2)

The best set of the weight matrix W and bias b is expected to 
minimize the difference between the input layer (x) and the output 
layer (z). The objective function is called cross-entropy in Eq. (3) 
below, in which the optimal parameters are obtained by stochastic 
gradient descent searching:

 
L x z x z x zH

k

d
k k k k,( ) = − + −( ) −( ) 

=
∑

1

1 1log log

 
(3)

To train the model, we first supplied sample input (x) to the first 
layer and obtained the best parameters (W, b) and the activation of the 
first hidden layer (y), and then used y to learn the second layer. 
We repeated this process in subsequent layers, updating the weights 
and bias in each epoch. We then used back-propagation to tune the 
parameters of all layers. Finally, we fed the output of the last hidden 
layer to a softmax classifier which assigned new labels to the samples.

Modeling and evaluation

We randomly split the dataset into 80% training set and 20% 
testing set. The 80/20 split is a common practice of splitting ratio for 
samples of moderate size in the ML applications. To avoid sampling 
bias, we  performed 10-fold cross-validation scheme on the 80% 
training set during the model construction process and tested the 
model on the hold out 20% of data. In the realm of binary 
classification tasks, the classification threshold represents the pivotal 
probability threshold utilized to differentiate between positive 

(osteoporosis risk) and negative (non-osteoporosis risk) classifications 
for observations. In our classification testing, we  adhered to the 
default threshold of 0.5. Specifically, this threshold dictates that if the 
predicted probability of osteoporosis risk surpasses or equals 0.5, the 
observation is classified as positive (osteoporosis risk); conversely, if 
the predicted probability falls below 0.5, it is classified as negative 
(non-osteoporosis risk). The overall performance of the models was 
assessed by area under a receiver-operating characteristic (ROC) 
curve (AUC). We  repeated the splitting process ten times and 
calculated the average AUC on the 10 hold out testing sets. The 
performance of the ML algorithms was also evaluated by accuracy, 
sensitivity, and specificity. The sensitivity or true positive rate (TPR) 
is defined as the percentage of participants who are correctly 
identified as having the disease, as described in Eq. (4):

 
Sensitivity True Positive

True Positive False Negative
=

+
 

   
(4)

The specificity or true negative rate (TNR) is defined as the 
percentage of participants who are correctly identified as being 
healthy, as described in Eq. (5):

 
Specificity True Negative

Tr e Negative False Positive
=

+
 

u   
(5)

The quantity 1-specificity is the false positive rate and is the 
percentage of participants that are incorrectly identified as having the 
disease. The accuracy is defined as the percentage of participants who 
are correctly identified as being healthy and having the disease, as 
described in Eq. (6):

 

Accuracy True Positive True Negative
True Positive True Neg

=
+
+

  
  aative

False Positive False Negative
+

+   
(6)

To control overfitting, we tuned DNN model on the following 
regularization parameters: Epochs (number of passes of the full 
training set), l1 (increases model stability, penalty to converge many 
weights to 0), l2 (penalty to prevent weights enlargement), input 
dropout ratio (ratio of ignored neurons in the input layer during 
training), and number of hidden layers. We used R package h2o (www.
h2o.ai/) to develop the novel DL model and tune the parameters. For 
comparisons, we selected OST model and a representative set of ML 
algorithms that are commonly used for risk prediction by the clinical 
community, including RF, ANN, KNN, and SVM. The model 
development and parameter tuning for OST and the selected four ML 
algorithms were carried out through R package caret.3

Datasets used in this study were class-imbalanced because the 
non-osteoporosis risk group contained significantly more samples 
than the osteoporosis risk group. Applying a classifier to the 
imbalanced data can result in erroneous prediction (heavily biased 
toward the majority class). To obtain the optimal result, we adopted a 
sampling-based approach for rebalancing the data (He and Garcia, 
2009; Haixiang et al., 2017).

3 https://cran.r-project.org/web/packages/caret/
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Feature importance analysis

To test the relative contribution of each factor to osteoporosis 
risk, we  performed feature importance analysis through the 
embedded method of each ML algorithm. In these approaches, 
features that provided unique information to the trained model 
were ranked more important than those giving redundant 
information. The variable importance functions “varimp” in h2o 
and “varImp” in caret R packages were used to rank features for 
the developed novel DNN and all other models, respectively.

Subsampling experiments

To understand the impact of training information on model 
prediction, we  further performed two additional subsampling 
experiments: (1) randomly removing 25, 50, and 75% of the data 
sets to assess the effect of sample size on model prediction; (2) 
using only the top  2, 5, and 10 most important variables to 
identify the most effective risk factors for model prediction. The 
new model was trained for each scenario and its performance was 
evaluated on a separate testing set with 10-fold cross-
validation scheme.

Results

The predictive performance of the 
developed novel DNN model outperforms 
other conventional ML algorithms

A total of 8,134 subjects (n = 3,541 males and 4,593 females), aged 
40 years or older, were retrieved from LOS data set, of which 2,004 
(24.6%) subjects had high osteoporosis risk (hip BMD T-score ≤ −1). 
To smooth out the noise and simplify the model, we first dropped out 
3 continuous variables, including body mass index (BMI), waist 
circumference, and hip circumference, which were highly correlated 
with weight (Pearson’s correlations >0.70) (Supplementary Figure 1). 
To detect the influence of the remaining 20 variables on the BMD 
variation, we  implemented feature selection analysis by genetic 
algorithms and further removed 4 potential risk factors including milk 
drinking, cheese intake, systolic pressure, and wine drinking. Finally, 
16 most discriminative variables (Table 2, Supplementary Figure 2) 
were selected for model building.

To assess the ability of the developed novel DNN framework 
for predicting osteoporosis, we compared the ROC curves of the 
developed novel DNN with four commonly used ML models (RF, 
ANN, KNN, and SVM), as well as the conventional OST model 
(Figure 1). As shown in Table 3, the developed novel DNN model 
yielded the best predictive performance (AUC = 0.848) among all 
the tested methods, with relatively higher sensitivity (0.740) and 
specificity (0.793). Further statistical analysis demonstrated that 
the developed novel DNN model has a significant improvement 
(Wilcoxon signed-rank test p < 0.05) in predicting osteoporosis 
compared to most other tested methods (Figure 2). RF algorithm 
has the highest predictive accuracy of 0.757, followed by DNN 
(0.753), ANN (0.747), SVM (0.745), OST (0.731), and KNN 
(0.651) methods. These findings indicated that the developed 

novel DNN model was more effective in predicting osteoporosis 
risk compared to the other methods in this study setting.

Identification of common important 
features among the developed novel DNN 
model and other algorithms

We performed feature importance analysis for the developed 
novel DNN model. As shown in Figure  3, the top  10 most 
important features for predicting osteoporosis risk are weight, 
age, gender, grip strength, height, beer drinking, diastolic 
pressure, alcohol drinking, smoke years, and economic level. 
Interestingly, all these features have been either proposed as 
osteoporosis risk factors or associated with osteoporosis in the 
previous studies (Grainge et  al., 1998; Cappuccio et  al., 1999; 
Henry and Eastell, 2000; Koh et al., 2001; KANTOR et al., 2004; 
Tucker et al., 2009; Kim et al., 2012; du et al., 2017). Furthermore, 
nine out of the top 10 features (except for alcohol drinking) from 
the developed novel DNN model were also identified in the 
top 10 features from one or more of the other tested ML models 
(Supplementary Figures 3A–D). Among them, five risk factors 
were presented in the top  10 ranked features across all ML 
models, including weight, age, grip strength, height, and smoke 
years. Relative to the subjects in the non-osteoporosis risk group, 
subjects with osteoporosis risk were of significantly higher age 
and smoke years, and lower weight, height, and grip strength 
(Wilcoxon signed-rank test p < 0.05).

The optimal number of sample size and 
important variables for osteoporosis risk 
prediction

To assess the effects of sample size on the predictive 
performance of the tested models, we randomly subsampled 75, 
50, and 25% of the original data set, corresponding to 
approximately 6,000, 4,000, and 2,000 subjects, respectively. As 
expected, decreasing in sample size generally led to reduced 
AUCs in all classification methods (Figure  4A). Notably, the 
developed novel DNN and ANN models still performed fairly 
well (AUC DNN = 0.826, AUC ANN = 0.826) when sample size was 
reduced to 50% of the original data set, but the performances 
were dropped dramatically when the sample size was decreased 
from 50 to 25% of the original data set (Wilcoxon signed-rank 
test p < 0.05). Interestingly, OST achieved the best AUC (0.804) 
among all the tested models when the sample size is around 25% 
of the original samples (n = 2,000).

In parallel, we investigated the predictive performances of the 
tested models when only utilize the top 10, 5, and 2 most important 
features identified by each corresponding algorithm. As shown in 
Figure 4B, we observed that even with reduced numbers of features, 
the developed novel DNN model and the robust ML methods (ANN 
and RF) still had fairly good performances, especially when using the 
top  10 most important variables for prediction. For example, the 
simplified novel DNN model with top  10 risk factors obtained a 
comparable discriminatory power (AUC top10 variables = 0.846) against the 
original novel DNN model (AUC all variables = 0.848).
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Discussion

Making accurate predictions of disease risk can be of great 
clinical value for healthcare professionals. A highly effective 
data-driven predictive algorithm is desired to increase the 
efficiency of disease prevention and improve patient outcomes 
through early detection and treatment. In the past decade, a wide 
range of conventional statistical models and ML algorithms have 
been developed for osteoporosis risk assessment. However, these 
models/algorithms do not adequately fulfill the need of clinicians 
to accurately predict osteoporosis risk. Recently proposed DNN 
approach, which increases the depth of the neural network and 

adds parameters to make more adjustments to the input variables, 
has achieved record-breaking performance in a variety of clinical 
implementations, such as medical imaging analysis, and disease 
prediction/classification. Nevertheless, little progress has been 
achieved so far with respect to the development of DNN model 
for osteoporosis risk prediction. To fill this gap, we developed 
and constructed a novel DNN framework for osteoporosis risk 
prediction, and compared its performance with several previously 
developed risk prediction models, including four widely used ML 
techniques and the conventional tool OST. We also tested the 
feature importance for the developed novel DNN algorithm and 
identified the common important features among this novel 
DNN and other algorithms. At last, we  assessed the optimal 
number of important features and sample size for osteoporosis 
risk prediction. To the best of our knowledge, this is the first 
report on application of DNN for osteoporosis risk assessment in 
the aging population with large sample size.

By using extensive demographic and routine clinical data of 
8,134 subjects with age more than 40 from the LOS, 
we demonstrated that the developed novel DNN model has the 
best performance (AUC = 0.848) among all the tested models in 
distinguishing osteoporosis risk subjects. The top  10 most 
important features of osteoporosis identified by the developed 
novel DNN include weight, age, gender, grip strength, height, 
beer drinking, diastolic pressure, alcohol drinking, smoke years, 

FIGURE 1

ROC curve comparison among DNN, OST, and other ML models.

TABLE 3 Performance comparison among DNN, OST, and other ML 
models.

Model AUC Accuracy Sensitivity Specificity

DNN 0.848 0.753 0.740 0.793

RF 0.828 0.757 0.748 0.785

ANN 0.839 0.747 0.725 0.815

KNN 0.718 0.651 0.642 0.675

SVM 0.785 0.745 0.725 0.808

OST 0.819 0.731 0.714 0.786
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FIGURE 3

Top 10 most important variables identified by DNN model. Feature importance index was determined by calculating the relative influence of each 
variable through tree-based model: whether that variable was selected to split on during the tree building process, and how much the squared error 
(over all trees) improved (decreased) as a result (Candel et al., 2023). Each feature’s importance has been scaled between 0 and 1 based on the most 
significant feature.

and economic level. Consistent with previous reports (Koh et al., 
2001), our results also suggested that low body weight and older 
age are the most important risk factors for the development of 

osteoporosis. Although many clinical studies have shown that low 
grip strength correlates with low BMD and higher risk of fragility 
fractures (Kim et al., 2012), there has been no study using grip 

FIGURE 2

AUC comparison between DNN and other algorithms. Average AUC on 10 hold out test sets of the DNN framework against four ML algorithms (RF, 
ANN, KNN, and SVM) and the OST model for prediction of osteoporosis risk. The above algorithms were run 10 times on different train/test splits. 
We used pairwise Wilcoxon signed-rank test to estimate the statistical significance of the difference in performance between DNN and other methods 
(∗∗ p  <  0.05, ∗ p  <  0.1).
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strength as a predictor for osteoporosis risk prediction. 
Interestingly, in the current study, grip strength ranked in the 
top 10 risk factors across all the ML models. The effect of grip 
strength on BMD may be explained by the mechanostat theory 
since the bones adapt not only to static forces (of excessive 
weight), but also to the dynamic forces created by muscular 
contractions (Frost, 2003). Previous studies have suggested close 
interactions between skeletal muscle and bone metabolism (Kaji, 
2013). For example, muscle-derived local growth factors, IGF-I 
and IGF-binding protein-5, may affect bone metabolism in an 

anabolic fashion and ultimately enhance bone formation (Kaji, 
2013). We also identified two discriminative variables, alcohol 
and beer drinking, in the top  10 most important features for 
osteoporosis. Interestingly, moderate alcohol consumption can 
decrease the turnover of bone for women, which may benefit 
their bone health and lower the risk of developing osteoporosis 
(Sampson, 2002). Also, previous study showed that dietary intake 
of silicon, a major constituent of beer (Sripanyakorn et al., 2004), 
was positively associated with BMD in osteoporotic women 
(Eisinger and Clairet, 1993; Jugdaohsingh et al., 2002), and this 

FIGURE 4

AUC comparison among different models. (A) AUC comparison among different models with different sample sizes; (B) AUC comparison among 
different models with different numbers of variables. OST applies a simple regression model based on age and body weight.
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has since been confirmed in a sample of men and premenopausal 
women in the Framingham study (Jugdaohsingh et al., 2004). 
Nevertheless, in the current study, we  only considered the 
dichotomous status (yes/no) of current alcohol or beer drinking 
due to the limited questionnaire information. Therefore, the 
future tasks of model building should attempt to distinguish the 
effect of varying levels of alcohol/beer consumption on 
osteoporosis risk prediction.

Interestingly, a recent study of osteoporosis risk prediction 
using a dataset of 10,000 patient records, including chronic 
condition/disease, identified several influential variables, such as 
age, gender, lipid disorders, cancer, and Chronic Obstructive 
Pulmonary Disease (COPD) (Tu et  al., 2024). Indeed, their 
findings align with our results that both age and gender are 
significant risk factor of osteoporosis. Notably, lipid disorders, 
such as high low-density lipoprotein (LDL) cholesterol and 
triglycerides, are linked to increased risk of cardiovascular 
diseases including hypertension. Elevated lipids can lead to 
arterial plaque formation and stiffness, contributing to higher 
diastolic blood pressure. This relationship underscores the 
importance of managing lipid levels to reduce cardiovascular 
risks, including hypertension-related complications (Zhang et al., 
2019; Baba et  al., 2023). Furthermore, the well-established 
relationship between smoking duration (measured in pack-years) 
and COPD highlights the substantial impact of lifelong smoking 
on respiratory health. Studies indicate that lifelong smokers have 
a 50% probability of developing COPD during their lifetime, with 
early smoking initiation exacerbating adverse clinical outcomes 
such as compromised lung function, increased mortality risk, and 
cardiac changes like thicker left ventricular diameters (Laniado-
Laborin, 2009). Effective smoking cessation strategies are 
paramount, yet their efficacy varies among COPD patients based 
on their smoking history (Laniado-Laborin, 2009). Despite these 
challenges, both studies demonstrate the effectiveness of machine 
learning models in early detection and risk stratification for 
osteoporosis, offering promise for personalized prevention and 
management approaches in clinical practice.

For any predictive model to be practical in making clinical 
decision, it should avoid model complexity and use data that can 
be easily assessed by clinicians at the time of triage, it may not 
be necessary to add all variables even though they perhaps have 
some influences on predictive performance. Therefore, to 
optimize the risk factors and simplify the predictive model, 
we tested the effects of varying number of important features on 
performance of osteoporosis prediction. Notably, by using the 
top  10 most important features instead of all the risk factors, 
we  observed only a negligible reduction of the predictive 
performance in the developed novel DNN model. This suggested 
that our simplified novel DNN model may be an optimal choice 
for predicting osteoporosis risk in clinical practice. In addition, 
we tested the effects of sample size on model performance and 
found that the developed novel DNN model still performed well 
when sample size was approximately 4,000. Interestingly, OST 
achieved the best performance (0.804) among all the tested 
models when sample size decreased to approximately 2,000, that 
there is no universal best predictive model across all conditions 
and the OST may be a preferred model when only very limited 
features are available, and the sample size is relatively small. 

Moreover, we  explored the predictive performance of the 
developed novel DNN model with both reduced sample size and 
limited input features, and found that our DNN model can still 
achieve an AUC of 0.821 when utilizing the top  10 most 
important variables with approximately 4,000 subjects, which was 
better than or comparable to the performances of most other ML 
algorithms using the full dataset.

Comparing the results from the previous studies on 
osteoporosis risk prediction using various machine learning 
models provides a broad view of the current capabilities and 
advancements in this field. Sadatsafavi et al. (2005) focused on 
using ANN and linear regression to predict BMD in Iranian post-
menopausal women. They found that as the number of input 
variables increased, ANN outperformed linear regression models, 
especially for larger datasets (2,158 participants), demonstrating 
better accuracy and predictive power as measured by AUC. Eller-
Vainicher et al. (2011) assessed the effectiveness of ANN versus 
logistic regression in diagnosing severe degrees of osteoporosis 
among 372 postmenopausal women, ANN demonstrated superior 
prognostic performance utilizing 45 clinical variables. 
Specifically, in distinguishing women with any degree of 
osteoporosis from those without, ANNs achieved a sensitivity of 
72.5% and accuracy of 75.5%. Xu et al. (2013) proposed a novel 
method using micro-CT images analyzed through SVM and 
KNN, achieving excellent diagnostic precision, recall, and 
F-measure. This approach emphasized the effectiveness of 
combining multiple image-derived features for highly accurate 
classification between osteoporotic and normal cases. In our 
study, we  assessed the performance of a DNN in predicting 
osteoporosis risk using comprehensive data from over 8,000 
participants. The DNN model outperformed other machine 
learning models (RF, ANN, KNN, SVM) and a traditional 
regression model in predicting BMD T-scores, achieving the 
highest AUC (0.848). Importantly, the DNN model maintained 
high predictive performance even with reduced sample sizes and 
fewer variables, highlighting its efficiency and robustness. In 
summary, while all studies demonstrate the growing effectiveness 
of machine learning models in osteoporosis prediction and 
diagnosis, the DNN model in our study showed exceptional 
adaptability and high performance across different conditions. 
These results suggest that deep learning could be particularly 
beneficial in clinical settings for early diagnosis and intervention 
of osteoporosis, leveraging complex and extensive datasets to 
improve prediction outcomes.

The predictive models for osteoporosis developed in this study has 
significant implications for global public health and primary 
healthcare. Firstly, the use of predictive models such as the DNN can 
greatly impact global public health by enabling early diagnosis and 
intervention for osteoporosis. Early detection of osteoporosis risk 
allows for timely preventive measures and interventions, which can 
help mitigate the progression of the disease and reduce associated 
complications such as fractures. This, in turn, can contribute to 
improving overall health outcomes and quality of life for individuals 
at risk of osteoporosis. Moreover, the application of advanced 
predictive models like the DNN in primary healthcare settings holds 
promise for enhancing healthcare delivery. Primary healthcare 
providers can leverage such models to assess osteoporosis risk in 
general population more accurately, leading to personalized screening 
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and intervention strategies for their patients. This can lead to more 
efficient use of healthcare resources, improved patient outcomes, and 
reduced healthcare costs associated with osteoporosis-related 
complications. Overall, this study not only advances our 
understanding of osteoporosis risk prediction but also has the 
potential to make a significant impact on public health by offering 
effective tools and strategies for early diagnosis and intervention of 
osteoporosis and/or osteoporosis-associated fracture, particularly in 
primary healthcare settings.

One of the main limitations of our study is that we only focus on 
demographic and routine clinical data assessed by questionnaires. To 
further enhance the predictive accuracy and interpretability of 
osteoporosis risk prediction models, future studies can attempt to 
construct a comprehensive prediction model by including additional 
factors, such as multivariate time series variables, blood biochemical 
markers (e.g., fasting blood glucose and serum lipid levels etc.), as well 
as the simultaneous prediction of osteopenia and osteoporosis using 
multi-category classification. On the other hand, we  should also 
consider model complexity and feasibility and difficulty in acquiring 
these data in clinical practice. Furthermore, our study was carried out 
at a single institution. Although the sample size is the largest so far in 
the bone field, further external validation work with other independent 
populations should be  designed to assess the performance and 
generalizability of our proposed novel DNN model. Lastly, although 
we implemented several precautions in our study design and analysis, 
such as meticulously choosing a diverse dataset from the LOS to 
encompass various demographic and clinical variables, we recognize 
that the impact of traditional clinical protocols on data balance and 
biases remains a hurdle in predictive modeling. Future investigations 
may delve into strategies to tackle these limitations more 
comprehensively, such as integrating supplementary data sources or 
crafting robust preprocessing techniques to manage biased data 
more adeptly.

Conclusion

In conclusion, the novel DNN model that we  developed and 
constructed in this study has a good performance in osteoporosis risk 
prediction compared with other ML models. It may serve as a cost-
effective prescreening tool to determine candidates for evaluation with 
DXA and help clinicians to initiate early preventive actions for 
osteoporosis-related fracture.
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