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Real-valued convolutional neural networks (RV-CNNs) in the spatial domain have

outperformed classical approaches in many image restoration tasks such as

image denoising and super-resolution. Fourier analysis of the results produced

by these spatial domain models reveals the limitations of these models in

properly processing the full frequency spectrum. This lack of complete spectral

information can result in missing textural and structural elements. To address

this limitation, we explore the potential of complex-valued convolutional

neural networks (CV-CNNs) for image restoration tasks. CV-CNNs have shown

remarkable performance in tasks such as image classification and segmentation.

However, CV-CNNs for image restoration problems in the frequency domain

have not been fully investigated to address the aforementioned issues. Here,

we propose several novel CV-CNN-based models equipped with complex-

valued attention gates for image denoising and super-resolution in the frequency

domains. We also show that our CV-CNN-based models outperform their

real-valued counterparts for denoising super-resolution structured illumination

microscopy (SR-SIM) and conventional image datasets. Furthermore, the

experimental results show that our proposed CV-CNN-based models preserve

the frequency spectrum better than their real-valued counterparts in the

denoising task. Based on these findings, we conclude that CV-CNN-based

methods provide a plausible and beneficial deep learning approach for image

restoration in the frequency domain.

KEYWORDS

image restoration, image denoising, super-resolution, convolutional neural networks

(CNNs), complex-valued convolutional neural networks (CV-CNNs), complex-valued

attention gates, structured illumination microscopy, Fast Fourier Transform

1 Introduction

Convolutional neural networks (Krizhevsky et al., 2017) have become the leading state-

of-the-art algorithms in the field of computer vision, ranging from image classification,

pattern recognition, and object detection to tasks such as image restoration. Several

image restoration problems, such as image denoising (Zhang et al., 2018; Li et al., 2020),

reconstructing super-resolution (SR) image data (Dong et al., 2014), image inpainting (Xie

et al., 2012), and JPEG compression artifact removal (Zheng et al., 2018) have been

extensively investigated using CNN architectures. These CNNmethods have demonstrated
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substantial improvements in image restoration tasks over classical

approaches (Lim et al., 2017; Gao et al., 2024; Zuo et al., 2018;

Tran et al., 2020; Gu et al., 2012; He et al., 2010; Timofte et al.,

2013, 2014). The vast majority of CNN based image restoration

techniques have been developed by employing standard real-

valued convolutional neural networks (RV-CNNs). RV-CNN based

architectures are constrained to work with real-valued inputs,

outputs, and parameters. In various disciplines such as biomedical

engineering, physics, optics, radar and telecommunications,

however, signals are recorded that are complex valued in their raw

form (Schreier and Scharf, 2010; Barrachina et al., 2021). Complex

representations of signals have real and imaginary components

to e.g. carry magnitude and phase values that provide additional

insights which are otherwise difficult to capture with purely real-

valued signals (Foreman, 2012). Also, in the frequency domain, the

contents of an image are represented as complex numbers (Xu et al.,

2020).

Complex-valued convolutional neural networks (CV-CNNs)

have recently been proposed to deal with such complex

signals (Benvenuto and Piazza, 1992; Georgiou and Koutsougeras,

1992). CV-CNNs rely on complex inputs, network parameters, and

the outputs are either complex or real values depending on the

task (Lee et al., 2022). Since the real and imaginary components of

a complex signal contain more information, the use of complex-

valued networks is more crucial compared to its real-valued

counterpart (Bassey et al., 2021). In image classification (Hafiz

et al., 2015), segmentation (Akramifard et al., 2012), speech

enhancement (Tsuzuki et al., 2013), and MRI fingerprint signal

processing (Virtue et al., 2017), CV-CNNs have shown exceptional

performance compared to their real counterparts. However, the

performance of CV-CNNs in the frequency domain has not

been extensively investigated in the context of image restoration

problems such as image denoising and super-resolution image

reconstruction. Quan et al. (2021) investigated the potential of

CV-CNNs for image denoising using dummy imaginary values

in the spatial domain. Rawat et al. (2021) denoised chest X-

ray (CXR) images by using the complex-valued based method

with residual learning. Similarly, Pham et al. (2021) evaluated

the performance of a complex Fourier network for the image

denoising problem by explicitly convolving a complex filter with

the Fourier transform of the corrupted image. Nevertheless, CV-

CNNs have never been directly employed for the denoising

and reconstructing of super-resolution structured illumination

microscopy (SR-SIM) and other conventional images in the

frequency domain.

Deep learning algorithms based on real-valued networks have

revolutionized the denoising and reconstruction of high-quality

SR-SIM images. Structured illumination microscopy (SIM) is

an extensively used super-resolution imaging technology due to

its ability to double the spatial resolution for live cell imaging

beyond the diffraction limit of light (Heintzmann and Huser, 2017;

Schermelleh et al., 2019; Demmerle et al., 2017). SR-SIM technology

is considered the most straightforward super-resolution (SR)

reconstruction method among various other SR approaches since

it requires fewer raw SIM samples with low illumination intensity

levels (Ströhl and Kaminski, 2016; Zheng et al., 2021). However,

the conventional SR-SIM reconstruction algorithms require high

SNR raw SIM samples to reconstruct the high-quality SR-SIM

images (Huang et al., 2018). Consequently, the reconstruction

algorithms are unable to produce high-quality SR-SIM images from

raw samples acquired under low SNR conditions (Smith et al.,

2021). Several RV-CNN based methods have been developed to

denoise and reconstruct the SR-SIM images (Shah et al., 2021; Jin

et al., 2020; Chen et al., 2021; Shah et al., 2022). Given that image

restoration tasks are challenging and ill-posed problems, this leads

to the existence of numerous viable possible solutions in the high-

dimensional space during inference (Belthangady and Royer, 2019).

Furthermore, the RV-CNNs follow the spectral bias within the

Fourier spectrum, learning the low-frequencymodes faster than the

high-frequency modes (Rahaman et al., 2019). As a result of these

concerns, it has been discovered that the SR-SIM images denoised

and reconstructed using real-valued deep-learning approaches lose

part of the high-frequency information (Shah et al., 2021; Qiao

et al., 2021). The gap in the high-frequency information is highly

visible in the Fourier spectra of the restored SR-SIM images. As

a result, the disparity in the Fourier spectrum of the restored and

reference images raises various concerns about the effectiveness of

RV-CNNs-based image restoration approaches.

1.1 Motivation and contributions

The primary motivation behind this work is to retrieve a

restored image that exhibits a Fourier spectrum closely resembling

the Fourier spectrum of the reference or ground truth image. There

has been very scarce research conducted in this particular context.

Qiao et al. (2021) proposed a deep Fourier channel attention

network (DFCAN) to overcome the frequency content difference

across high-frequency information using Fourier channel attention

(FCA) mechanism in the spatial domain. Similarly, Liu et al.

(2023) investigated and minimized the gap in the high-frequency

components by proposing a dual-domain learning strategy for the

reconstruction of SIM images. However, their architecture requires

repetitive transformation of features within each block, which

impedes the exploration of the full potential of CV-CNNs. This

prompted us to initiate additional research in this area, resulting

in the formulation of two research questions to investigate this

topic:

1. Is it possible to perform image denoising and super-resolution

entirely in the frequency domain using CV-CNNs?

2. Do CV-CNNS outperform RV-CNNs in terms of generalization

performance when applied to previously unseen SR-SIM

modalities?

To address these research problems, we propose CV-

CNN based image restoration algorithms for denoising and

reconstruction of SR-SIM images in the frequency domain

rather than the pure spatial domain. This work investigates the

full capabilities of CV-CNNs for image restoration problems,

intending to reduce the Fourier spectrum difference between the

reconstructed and reference SR-SIM images. This work makes the

following significant contributions:

• We explore the potential of CV-CNNs and suggest a novel

complex-valued attention gate (C-AG).
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• We propose two CV-CNN based architectures, named

complex-valued collaborative attention network (CV-CAN)

and complex-valued dual domain attention network (CV-

DDAN), both equipped with complex-valued attention gates

for the denoising task.

• Comparison of the proposed CV-CNN with existing RV-CNN

architectures for the denoising and knowledge transfer tasks.

• A pure CV-CNN based architecture named complex-valued

super-resolution network is designed for the super-resolution

task in the frequency representation.

Moreover, we also demonstrate that our proposed complex-

valued based denoising architecture CV-DDAN surpasses real-

valued CNN based approaches visually as well as in terms of

peak-signal-to-noise ratio (PSNR) and structural similarity index

measurement (SSIM) values. Similarly, the Fourier spectrum of

the resulting denoised images by CV-CNN based approaches is

more promising than their real-valued counterparts. We test our

proposed architectures on SR-SIM images as well as the commonly

used BSD500 benchmark datasets. The results indicate that our

proposed methods are not limited to super-resolution microscopic

images, but also perform well-across other datasets.

2 Materials and methods

This section covers the key components of complex-valued

neural networks and the Fast Fourier Transform algorithm used in

this work. In addition, themechanism of the incorporated attention

gates is also discussed in this section. Finally, the publicly available

datasets are also described in this section. The Red-fairSIM and

UNet-fairSIM architectures have already been described in our

prior work (Shah et al., 2021) and will not be reiterated here

in detail. The Red-fairSIM and UNet-fairSIM methods are based

on the combination of fairSIM (Müller et al., 2016) with the

RedNet (Mao et al., 2016) and UNet (Ronneberger et al., 2015)

architectures (Shah et al., 2021). Both RedNet and UNet methods

are constructed using RV-CNNs (Shah et al., 2021).

2.1 Complex-valued neural network
components

This subsection provides an overview of the complex

components, including the complex-valued convolutional layer,

activation function, and max pooling.

2.1.1 Complex-valued convolution layer
The complex number has both real and imaginary components

in its representation. The complex-valued convolution (CV-

Conv) layer have been designed to deal with complex values.

The implementation of CV-Conv layer involves four real-valued

convolution layers. In CV-Conv layer, a complex filter matrix

K = Kℜ + iKℑ is convolved (∗) with a complex input matrix

I = Iℜ + iIℑ where the individual variables Kℜ,Kℑ, Iℜ, Iℑ are real

matrices, considering a vector can be represented as a matrix with

one of two dimension being one. The ℜ and ℑ denote the real and

imaginary components. The convolution operator is distributive in

the complex domain, hence the convolution of the kernel K with

the input I is following:

K ∗ I = (Iℜ ∗ Kℜ − Iℑ ∗ Kℑ)+ i(Iℜ ∗ Kℑ + Iℑ ∗ Kℜ) (1)

Figure 1 illustrates the complex-valued convolution operation.

Similarly, according to Ding and Hirose (2013), we can write the

matrix notations for the real and imaginary parts of the convolution

operation as follows:

[
ℜ(K ∗ I)

ℑ(K ∗ I)

]
=

[
Kℜ −Kℑ

Kℑ Kℜ

]
∗

[
Iℜ
Iℑ

]
(2)

The implementation of CV-Conv can be represented by

Equation 2. The CV-Conv learns by backpropagation, a sufficient

condition is to use a loss function as well as activations that

are differentiable with respect to real and imaginary components

separately in the network (Hirose and Yoshida, 2012; Chiheb et al.,

2017). The authors in Hirose and Yoshida (2012) demonstrate

that the separately differentiable functions are compatible with the

backpropagation of the CV-Conv layer.

2.1.2 Complex-valued activations
A variety of activation functions have been created to handle

complex-valued representations. In this work, we used the complex

ReLU (CReLU) activation function (Chiheb et al., 2017). The

CReLU activation function applies the ReLU individually to the real

and imaginary parts of the neuron.

CReLU(I) = ReLU(Iℜ)+ iReLU(Iℑ) (3)

The Equation 3 shows the mathematical form of the CReLU

activation function, Iℜ, and Iℑ represents the real and imaginary

feature components of the input feature I.CReLU is a split-complex

activation function, and the real and imaginary components are

both individually and sectionally differentiable (Chiheb et al.,

2017).

2.1.3 Complex-valued Max pooling
The complex-valued max pooling is the implementation of

conventional max pooling individually on the real and imaginary

part of the complex-valued features in the network (Barrachina

et al., 2022) as shown in Equation 4.

CMax(I) = Max(Iℜ)+ iMax(Iℑ) (4)

The CMax-pooling in the complex-valued CNN works with

the max-by-magnitude approach in Equation 4. The real and

imaginary parts are individually processed in this layer, likewise in

the other layers (Chiheb et al., 2017).
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FIGURE 1

Computations in the complex-valued convolution layer. The symbol * represents the convolution operation.

2.2 Fast Fourier Transform

The Fast Fourier Transform (FFT) is used to obtain frequency

information from images by transforming them from the spatial

domain to the complex domain. FFT is a fast and efficient algorithm

for computing a signal’s discrete Fourier transform (DFT) or its

inverse (Popa and Cernăzanu-Glăvan, 2018). The symmetry and

periodic properties of FFT reduces the computational complexity.

For an image of size N × N, (p, q) and (u, v) denote the spatial

and frequency coordinates. Correspondingly, I(p, q) and I(u, v)

represent the spatial and frequency values. The 2D DFT is defined

as

F[I(u, v)] =

N−1∑

p=0

N−1∑

q=0

I(p, q)e−i2π(
u.p
N +

v.q
N ) (5)

Since FFT (F) is a bijective function in the image space that

means we can define the inverse of FFT (F−1) as follows:

F
−1[I(p, q)] =

1

N2

N−1∑

u=0

N−1∑

v=0

I(u, v)ei2π(
u.p
N +

v.q
N ) (6)

Equations 5, 6 demonstrate that an image can be transformed

back and forth from spatial to frequency domain without losing any

information (Gonzalez, 2009).

2.3 Attention gates

Attention gates (AGs) are widely used attention mechanisms

in the field of natural language processing (NLP) (Li et al.,
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2018) and computer vision for segmentation (Zuo et al., 2021),

image captioning (Huang et al., 2019), and classification (Wang

et al., 2017). They are categorized into two types: Hard

attention (Mnih et al., 2014) involves reinforcement learning

and is non-differentiable, which makes the training of the

model more complicated. Soft attention (Jetley et al., 2018) is

probabilistic and can be trained by using gradient descent and

utilizing standard back-propagation without implementing Monte

Carlo sampling. Oktay et al. (2018) proposed Attention-UNet by

incorporating the attention gates (AGs) into the concatenation

based skip connections of the standard UNet (Ronneberger

et al., 2015) architecture to extract pancreas segmentation in 3D

abdominal CT images. The architecture of Attention-UNet is

shown in the upper branch of Figure 4A. The main concept behind

AGs is to emphasize the salient features which are propagated

through the skip connections. The AGs focus on the relevant

information while suppressing the irrelevant information from the

background region such as noise (Oktay et al., 2018). The AG takes

two input vectors, xl ∈ R
Fl→Hx×Wx×Cx and gd ∈ R

Fd→Hg×Wg×Cg ,

representing the input feature vector and a gating signal vector

where Fl and Fd corresponds to the number of feature maps in

layers l and d with spatial dimensions height (H), width (W), and

number of channels (C), respectively, as illustrated in Figure 2.

The features of the gating signal selected from the coarser scale

of the deeper layers to suppress the irrelevant information. The

input feature maps are downsampled to the resolution of gating

signal prior to the AGs. The output x̂l ∈ R
Hx×Wx×Cx of the AGs

is the element-wise multiplication of the attention weight vector

β l ∈ R
Hx×Wx×Cx with the input feature vectors xl as shown

in Equation 7. The attention weights identify the relevant image

regions and preserve only the meaningful activation which are

related to the task.

x̂l = xl · β l (7)

The gating vector is combined with the input vector by additive

attention (Yu et al., 2018) instead of multiplicative attention.

β l
= σ2(W

T
s (σ1(W

T
x x

l
+WT

g g
d
+ bg))+ bs)) (8)

In Equation 8, the linear transformations are performed by:

Wx ∈ R
Fl×Fs ,Wg ∈ R

Fd×Fs and Ws ∈ R
Fs×1, and bias terms

bg ∈ R
Fs and bs ∈ R. Fs is the number of feature maps in the

intermediate convolution layer s. The linear transformations are

generated by using 1 × 1 × 1 channel-wise convolution layers

to decouple the feature maps from higher to lower dimensional

space for the gating operation at each image scale, which reduces

the training parameters and computational cost of the AGs. The

linear transformation is followed by the sigmoid activation function

σ2(x
l) = 1

1+exp(−xl)
, and the ReLU activation function σ1(x

l) =

max(0, xl) on each feature vector. Finally, the attention weights are

upsampled to the dimensions of xl using trilinear interpolation

before the element-wise multiplication. These operations are

carried out prior to the concatenation function to ensure that only

significant and relevant information is included. The gradients of

the background regions are down-weighted in the backward pass.

The Attention-UNet combines the power of attention gates with

UNet to guide the denoising process by selectively focusing on

structural features in the image while suppressing the noise and

irrelevant details. However, the attention gates are designed with

real-valued components, they are limited to real-valued features

and cannot be used effectively with the complex-valued features

since complex-valued features cannot be fully captured by the

real-valued gating mechanism.

2.4 Datasets

In this study, we used three different types of datasets:

two microscopic datasets, primarily Tubulin and Vesicle

datasets, in addition to a non-microscopic BSD dataset.

SIM microscopy (Gustafsson, 2000) was used to obtain raw

SIM images of Tubulin and Vesicle datasets under different

illumination levels and microscopic settings. The raw Tubulin

and Vesicle SIM samples were acquired using 3D SIM imaging

technologies (Gustafsson et al., 2008). The stack of 15 raw SIM

images (i.e., five phases and three orientations) of dimensions

15 × 512 × 512 (frames × width × height) pixels of both SIM

structures were propagated into the reconstruction algorithm to

produce a super-resolution SIM image of size 1024 × 1024 (width

x height) pixels. The fairSIM reconstruction algorithm (Müller

et al., 2016) and the softWoRx commercial software were used

to reconstruct the Tubulin and Vesicle SR-SIM samples in the

frequency domain from the raw SIM images. The Tubulin dataset

consists of 101 fields-of-view (FOVs), each FOV recorded for 200

timestamps. The Vesicle dataset is reconstructed using the 3D-SR-

SIM method (i.e., softWoRX software), resulting in 3D-SR-SIM

samples. However, each z-plane of the 3D-SR-SIM data is extracted

using a slice-by-slice approach as 2D sample. The slicing strategy

yields 175 FOVs (i.e., basically 175 different z-planes extracted

from nine FOVs originally), each FOV is acquired for different

timestamps. Tubulin and Vesicle datasets contain 2,525 and 7,284

samples, respectively. The training and test sets of both datasets

were partitioned based on the number of FOVs. The training sets

for the Tubulin and Vesicle datasets were built using 81 and 121

FOVs, respectively. The training sets of the Tubulin and Vesicle

datasets compromise 2,025 and 5,562 samples. The remaining

samples from both datasets were used for the test sets. Each sample

in both datasets consists of the reconstructed 16-bit noisy SR-SIM

input and a reference image of size 1, 024× 1, 024 (width× height)

pixels. The input images of both datasets contain real noise, which

is a combination of mixed Poisson-Gaussian noise along with the

reconstruction artifacts. The complete characteristics, description,

and sample preparation of both datasets are further explained

in the Shah et al. (2023). The Berkeley segmentation dataset

(BSD500), which is related to conventional image restoration

problems, was selected as the third dataset in this work (Martin

et al., 2001). The input images in this dataset were corrupted by the

introduction of additive white Gaussian noise with zero mean and

standard deviation of 30, respectively.

3 Proposed model architectures

This section will cover all the proposed methodologies used

in this work to explore the scope of complex-valued CNN based

image restoration networks, as well as the novel complex-valued
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FIGURE 2

Schematic of the attention gate (AG).

attention gate that is employed in conjunction with the proposed

complex-valued denoising and super-resolution architectures.

3.1 Fourier transform encoding and
decoding layers

To transform an image from the spatial to the frequency

domain, we used a Fourier transform encoding (FTE) layer which

is based on the FFT algorithm. The FFT algorithm is used by

the FTE layer to convert the input image or feature maps from

the spatial domain to the complex representation. The FTE layer

also shifts the DC component of FFT feature representation to the

center-most location, where the positive and negative frequencies

surround the DC component. Since CV-CNNs only interact with

the complex values, meaningful complex-valued feature mappings

must be transmitted into the CV-CNN layer for further processing.

The Fourier transform decoding (FTD) layer reverses the

complex-valued feature representations into their real values using

the inverse Fast Fourier transform (IFFT). The DC component

of the Fourier representation is first shifted from the center-most

location back to the original position, along with the low and high-

frequencies. Following that, the IFFT is applied to complex-valued

feature maps to convert them back into real-valued spatial feature

maps. These real-valued feature maps are then propagated to the

RV-CNNs. These FFT-based encoding and decoding layers are used

within our proposed architectures.

3.2 Complex-valued attention gates

The standard attention gates (AGs) are not designed to

compute attention values natively with complex features. One

possibility is to process only the real part (i.e., magnitude

information) of feature maps in the attention gates, while

discarding the imaginary part (i.e., phase information). However,

the loss of phase information can often have significant

consequences, since the imaginary part carries a crucial structural

representation in the complex-valued features. To mitigate the

loss of phase information, complex-valued attention gates (C-

AGs) have been developed during this work. The C-AGs inspired

by the real-valued AGs are one of the major contributions of

this work; their core architecture resembles real-valued attention

gates. To handle the complex-valued feature maps, the C-AG

is built around complex components. The complex components

in the C-AGs allow the attention mechanism to capture both

real and complex values of the input features and to leverage

the phase information in the attention mechanism of the skip

connections of complex-valued networks. The complex attention

weight vector in C-AGs, enables the attention mechanism to

recognize the salient frequency regions in the frequency domain

while suppressing the irrelevant frequency regions. The inputs to

C-AGs are the complex input feature vector and the complex gating

signal vector, x̃l ∈ C
Fl→Hx̃×Wx̃×C̃x and g̃d ∈ C

Fd→Hg̃×Wg̃×C̃g ,

where Fl and Fd represent the feature maps with dimensions height

(H), width (W), and number of channels (C) of layers l and d,

respectively, as shown in Figure 3. The tilde indicates the complex-

valued representation. The complex gating signal is selected from

a coarser scale. Since C-AGs only work with the complex-valued

feature maps, the convolution layer in the complex attention

block is replaced by CV-Conv layers. The input and the gating

vectors are propagated through the CV-Conv layers and summed

element-wise to maximize the aligned weights while minimizing

the unaligned weights (Oktay et al., 2018). The resulting vector goes

through a CReLU (φ1), 1x1x1 CV-Conv layer, and CSigmoid (φ2)

activation function to produce the complex attention weights (α).

The complex attention weights are upsampled to the dimension of

x̃l using a complex-valued upsampling layer, as shown in Figure 3.

αl
= φ2(W

T
s̃ (φ1(W

T
x̃ x̃

l
+Wg̃ g̃

d
+ b̃g))+ b̃s) (9)

In Equation 9, W̃s ∈ C
Fs×1,Wx̃ ∈ C

Fl×Fs ,Wg̃ ∈ C
Fd×Fs are the

linear transformations with bias terms b̃g ∈ C
Fs and b̃s ∈ C. Fs

represents the number of feature maps in the intermediate layer s̃.

In the final step, the output of the C-AGs is obtained by

the convolution (∗) of the complex-valued feature maps with the

complex-valued attention weight vectors rather than the element-

wise multiplication, due to their complex nature, as shown in the

Equation 10.

˜̂xl = x̃
l
∗ αl (10)

In Equation 10, ˜̂xl ∈ C
Hx̃×Wx̃×C̃x is the complex attention gate

output of complex feature maps (̃x) and complex attention weights

(αl). The proposedC-AGs are trainable and differentiable, and thus

fall in the category of soft attention.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1353873
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Shah et al. 10.3389/frai.2024.1353873

3.3 Complex-valued attention UNet

To denoise and reconstruct the super-resolved images entirely

in the complex/frequency domain, we devise the underlying

Attention-UNet (Oktay et al., 2018) to a complex-valued Attention-

UNet (CV-Atten-UNet). The CV-Atten-UNet is a complex version

of the real-valued Attention-UNet since the model is constructed

with complex components such as CV-convolution,Cmax pooling,

andCattention gates (C-AGs) to interact with the complex features.

Consequently, the input images are transformed into complex

inputs (Iin ∈ C
m1×m1 ) using a Fourier encoding layer. The complex

components incorporate the complex-valued representations (i.e.,

the real and imaginary information) to enhance the effectiveness

of the complex-valued networks (Lee et al., 2022). Similarly, the

deployment of C-AGs allows the network to dynamically adjust

the feature fusion, leading to the capture of adaptive feature

representations by suppressing the irrelevant features. C-AGs

connect the skip connection symmetrically to the adjacent complex

encoder and decoder blocks, as shown in the lower branch of

Figure 4B. The architecture is based on four complex encoder

and decoder blocks. Each complex encoder block contains two

complex-valued convolution layers along with CRelu activation

functions and a complex pooling layer to compress the complex

feature maps at different scales. The complex decoder block

expands the features and is made up of two complex-valued

convolution layers along with a complex-valued upsampling layer.

In the final block, the Fourier decoding layer is merged with a single

convolution layer to obtain the spatial output (O ∈ R
m1×m1 ). The

description of CV-Atten-UNet is given in Equation 11.

Output = FTD(Complex decodern(Complex encodern(Iin)))

(11)

where:

Complex encoder block : CV-Conv → CReLU → CV-Conv →

CReLU→ CMax pooling

Complex decoder block : CV-Conv → CReLU → CV-Conv →

CRelu→ CUpsampling

FTD : Represents the Fourier transform decoding layer.

In the Equation 11, n is 4, reflecting the number of complex

encoder and decoder blocks in the contraction and expansion

sections.

3.4 Complex-valued collaborative
attention network

To enhance the performance of CV-CNN-based methods, we

propose a complex-valued collaborative attention network (CV-

CAN) to eliminate noise and provide a high-quality clean image.

Figure 3 shows the architecture of CV-CAN which takes the spatial

input image (Iin ∈ R
m1×m1 ) and reconstructs a spatial output

(O ∈ R
m1×m1 ). Specifically, the CV-CAN network is comprised

of several real and complex-valued encoder-decoder blocks. The

real-valued encoder blocks first compress the image and extract

the low level features. The features maps produced by the real-

valued encoder blocks are converted from spatial into frequency

domain. The transformation of the feature maps takes place using

the FTE layer. The complex-valued encoder blocks extract further

features in the frequency domain. The encoder blocks exploit

different level of details in the spatial and frequency domains.

Similarly, the complex-valued decoder blocks combines the low and

high level to reconstruct the desired complex-valued feature maps.

The final output image is obtained by employing the real-valued

decoder blocks followed by the FTD layer. The real and complex

encoder-decoder blocks are composed of real and complex-valued

components, respectively. The proposed C-AGs are also employed

in the skip connections across the adjacent complex-valued blocks

to emphasize the relevant significant features in the frequency

domain. Similarly, the real-valued encoder-decoder blocks are also

joined via the skip connections with attention gates to focus on

the significant and relevant spatial features. The learnable AGs

compress the irrelevant noisy background information (Oktay

et al., 2018).

The CV-CAN employs two complex and real-valued encoder

decoder blocks. The description of real and complex blocks is

illustrated in Equation 12.

Output = Decodern(FTD(Complex decodern(Complex encodern

(FTE(Encodern(Iin))))))

(12)

where:

Encoder block : Conv→ReLU→Conv→ReLU→Max pooling

Decoder block : Conv→ ReLU→ Conv→ Relu→ Upsampling

Complex encoder and decoder blocks are explained in

Equation 11. The FTE and FTD correspond to the Fourier

transform encoder and decoder layers. The n represents the

number of blocks, which is 2.

3.5 Complex-valued dual-domain
attention network

The complex-valued dual-domain attention network (CV-

DDAN) operates on both spatial and frequency domain data

simultaneously to further improve the frequency learning ability

of the existing CV-CNN methods. The network accepts two inputs

(Iin1 ∈ R
m1×m1 and Iin2 ∈ C

m1×m1 ), from two different

representations, one of which is a real-valued spatial input and the

other is a complex-valued frequency input as shown in the Figure 4.

The input of the complex branch is generated by the FTE layer.

To process these inputs, the network has two separate encoding-

decoding pathways to extract the features from spatial and complex

domains. The adjacent real and complex encoder-decoder blocks of

the dual-domain attention network are joined with each other via

real and complex-valued AGs in their respective skip connections.

The output of the complex branch is transformed from the complex

feature to the real feature maps using the FTD layer, as stated in

Equation 13. The outputs of both branches are fused by an additive
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FIGURE 3

Architecture of complex-valued collaborative attention net.

operation and fed into the final output block to produce a spatial

domain output image (O ∈ R
m1×m1 ).

The purpose of the dual-domain attention network is to capture

and exploit maximum information from the spatial and frequency

domains by using real and complex branches during the training

process. Another important aspect is to retrieve the high frequency

components of the output image which is not the case with

traditional CNN methods.

Output = Decodern(Encodern(Iin1))+ FTD(Complex decodern

(Complex encodern(Iin2)))

(13)

The description of real and complex encoder and decoder

blocks is illustrated in the Equations 11 and 12, where the value of

n is 4.

3.6 Complex-valued super-resolution
network

To investigate the potential of CV-CNNs for the

super-resolution task in the frequency domain we design a

complex-valued super-resolution network (CV-SRN). The CV-

SRN model is the modified version of CV-Att-UNet model.

The integration of an upsampling block into the CV-Att-

UNet architecture results in the CV-SRN model. The main concept

behind this architecture is to explore the reconstruction capabilities

of CV-CNNmodels in the complex domain after the application of

Fourier Transform. CV-SRN converts the complex-valued feature

maps before the upsampling block using the FTD layer as shown

in Figure 5.

The CV-SRN architecture takes complex-valued input (Iin ∈

C
m1/2×m1/2) which is half the size of the final output image (O ∈

R
m1×m1 ). The CV-SRN processes the low resolution image of size

512 × 512 pixels and generates a high-quality SR-SIM of size

1, 024 × 1, 024 pixels. This architecture can effectively increase the

spatial dimensions of super-resolution images by a factor of two.

4 Experimental results

We carried out a series of experiments to assess the

performance of the proposed CV-CNN architectures in

denoising and super-resolution tasks. Of special importance is

the comparison with the corresponding real-valued counterparts.
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FIGURE 4

Architecture of complex-valued dual domain attention network (A) is the spatial branch and (B) depicts the complex branch of the network.

FIGURE 5

Architecture of complex-valued super-resolution network.
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Furthermore, this study also investigates the generalization

capabilities of the suggested denoising methods.

We used three publicly available datasets for the benchmarking,

two microscopic ones (Tubulin, Vesicle) and one conventional

(BSD). The Tubulin and Vesicle datasets consist of high-quality SR-

SIM images with real noise, which is a mixture of Poisson-Gaussian

noise (Shah et al., 2023), while the BSD dataset contains additive

white Gaussian noise (AWGN). To ensure fair comparison, all

the denoising networks were trained on these three datasets

with consistent hyper-parameters such as number of epochs, loss

function, and learning rate1. The mean squared error loss function

and the ADAM optimizer were used to train all the networks.

4.1 Denoising

To evaluate the real-valued and complex-valued networks for

the image denoising task, we first trained several state-of-the-

art real-valued denoising networks, such as UNet-fairSIM, Red-

fairSIM (Shah et al., 2021), and Attention-UNet (Oktay et al.,

2018), on the aforementioned datasets for three trials each. The

quantitative and visual results of these real-valued networks are

shown in Table 1 and Figures 6–8. To summarize the results of

the real-valued networks, it is worth mentioning that the Red-

fairSIM provides visually and quantitatively (i.e., individually and

collectively) superior results for all three datasets among the real-

valued denoising networks employed in this study.

To investigate the potential of CV-CNNs, we first trained a

simple pure CV-CNN based method called CV-Att-UNet (i.e.,

explained in Section 3.3), which mimics the traditional Attention-

UNet architecture for the denoising tasks. First, dummy zero

imaginary values are introduced to the scalar pixel values of

the input/output images to convert them from real to complex

pixel values. In this setting, the CV-Att-UNet network provides

almost identical results to RED-fairSIM. However, a significant

drop in CV-Att-UNet performance was observed when the input

and output images were transformed using the FFT approach, as

illustrated in Table 1. Similarly, denoised images of the CV-Att-

UNet reveal that the noise has been reduced, but the structural

information of the object is also missing from the resulting images,

as shown in Figures 6–8. This investigation indicates that the

pure CV-CNN-based architecture, such as CV-Att-UNet, fails to

completely denoise and restore the images in the frequency domain,

particularly with high noise levels.

To utilize the CV-CNNs more effectively, we designed two

novel CV-CNN architectures, CV-CAN (explained in Section 3.4)

and CV-DDAN (explained in Section 3.5), for the image denoising

task. The complex-valued layers in the CV-CAN are used in a serial

scheme to create a compact network. The quantitative findings

of the CV-CAN model are equivalent to the real-valued networks

1 Although the CV-CAN and CV-DDAN networks converge faster, typically

after 40 epochs than real-valued CNNs, which take 75 epochs, all models

were trained and monitored for 100 epochs to ensure a fair comparison.

From these 100 epochs, the best performing models are selected. During

the training process, the optimal learning rate was set to 1 × 10−4 to train all

networks.
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FIGURE 6

Results of test samples of Tubulin and Vesicle datasets. The first four rows show the results of the Tubulin images and the next four rows depict the

Vesicle SR-SIM samples. The first and fifth rows contain the noisy as well as the denoised images of RV-CNN based methods, whereas, the third and

seventh rows display the images denoised by CV-CNN based models along with the reference images. The second, fourth, sixth, and eight rows

display two regions of interest (ROI) extracted from each respective image. The cropped ROIs of size 100× 100 pixels are upsampled to 300× 300

for demonstration purposes. SR-SIM images scale bar: 4 µm.
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FIGURE 7

Three test samples from datasets Tubulin (A) and Vesicles (B) and BSD (C) are shown in this figure. Both (A, B) contain the reference SR-SIM image

along with the resultant denoised ROIs which are extracted from the respective full-size denoised images of all the models. The extracted ROIs are

upsampled to 300× 300 from 100× 100 pixels. SR-SIM images scale bar: 4 µm.

for the Tubulin dataset shown in Table 1. However, we noticed

a drop in the PSNR and SSIM values (i.e., see Table 1) for the

BSD andVesicle datasets. The CV-CANprovides superior denoised

images with improved visual appearance compared to the real

counterparts, as shown in the ROIs of Figures 6–8, specifically for

the Tubulin and Vesicle datasets.

The architecture of CV-DDAN is also a combination of

real and complex-valued based CNN layers. The architecture of

CV-DDAN is composed of real and complex-valued branches

connected in a parallel scheme with a summation-based operator

in the final block. This network requires two concurrent inputs:

the spatial domain input for the real branch and the frequency

domain input for the complex branch. The denoised ROIs of

CV-DDAN in Figures 6–8 show more promising results than the

other networks for both microscopic SR-SIM and conventional

BSD datasets. The quantitative findings on the Tubulin dataset

clearly demonstrate that the proposed CV-DDAN outperforms

all other image denoising methods in terms of the individual

and collective average PSNR and SSIM values as shown in

Table 1. However, in the case of the Vesicle and BSD datasets,

a modest decline in average PSNR values can be noticed in

the Table 1, though the CV-DDAN is still superior in terms
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FIGURE 8

Results of test samples of Tubulin (A), Vesicle (B), and BSD (C) datasets are shown in this figure. The first two blocks show the results of Tubulin and

Vesicle SR-SIM images. The first row in each block contains the noisy along with denoised images of RV-CNN based models whereas, the second

row in each block shows the images denoised by CV-CNN based model together with the reference images. The odd columns present the full-size

outputs of all the methods and the even number columns display the region of interest (ROI) extracted from the respective image. The cropped ROIs

of size 50× 100 pixels are upsampled to 100× 200 for visualization. SR-SIM images scale bar: 4 µm.

of average SSIM values. Similarly, the Fourier spectrum of all

denoised images shows that the FFT spectrum of both CV-

CAN and CV-DDAN networks is dense and visually similar

to the FFT spectrum of the reference image (see Figure 9).

This implies that our proposed complex-valued-based approaches

preserve more high-frequency information than their real-valued

counterparts.

4.2 Super-resolution

The results of the CV-SRN architecture (explained in

Section 3.6) are compared with a real-valued super-resolution

UNet (SR-UNet). The SR-UNet is a modified form of the

conventional UNet (Ronneberger et al., 2015) in that it is extended

by an upsampling block. The upsampling block consists of
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FIGURE 9

This figure shows the results of test samples of the Tubulin dataset along with the FFT spectrum. The first and third rows show the results of the spatial

output of the Tubulin images. The second and fourth rows show the Fourier spectrum of the corresponding images. SR-SIM images scale bar: 4 µm.

upsampling and convolution layers. The SR-UNet works with

the spatial domain inputs and outputs. In contrast, the CV-

SRN takes a frequency domain input and produces a twofold

spatial high-quality super-resolved output. In the case of SR-SIM

reconstruction, 15 raw SIM images of size 512 × 512 (width ×

height) pixels are combined to compute the average projection

image. The input image is transformed into a complex domain by

the FFT transformation.

The experimental results in Figure 10 and Table 2 show that

the CV-SRN can successfully carry out the super-resolution task,

i.e., that it can generate a double spatial dimension high-resolution

output image from the high SNR low-dimensional image. The

visual findings demonstrate good quality structures almost identical

to the real-valued network, however, the mean PSNR and SSIM

values in Table 2 are smaller than for the real-valued counterpart.

However, the CV-SRN is limited to super-resolution tasks and fails

to yield presentable results in the case of joint denoising and super-

resolution tasks from low-SNR SIM images. This indicates again the

limitations of pure CV-CNNnetworks (similar to the CV-Att-UNet

network in Section 4.1) for general image restoration tasks.

4.3 Knowledge transfer

CV-CNNs are known for their strong ability to generalize

well (Lee et al., 2022). In this work, we therefore also explore the

generalization power of RV-CNNs and CV-CNNs on previously

unseen biological structures in a direct-transfer setting. Direct

transfer refers to the ability of pre-trained models to generalize

on unseen new test data from a closely related domain without

any retraining or fine-tuning. For our direct-transfer experiment

with selected RV-CNN and CV-CNN architectures (Red-fairSIM
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FIGURE 10

Results of test samples from the Tubulin (first row), Vesicle (second row), and BSD (third row) datasets are shown in this figure. The first, second, and

third columns present the results of the CV-SRN and SR-UNet methods. The third column shows the reference images. The cropped and zoomed

regions of interest (ROIs) of size 100× 100 pixels are upsampled to 200× 200 pixels and shown on the lower left corner of the full-size image.

SR-SIM images scale bar: 4 µm.

TABLE 2 Mean PSNR and SSIM values along with standard deviations (STD) calculated over the test samples of the BSD, Tubulin, and Vesicle datatests for

super-resolution tasks.

Mean PSNR (STD) and SSIM (STD) values of di�erent methods

CV-SRN SR-UNet

PSNR (STD) SSIM (STD) PSNR (STD) SSIM (STD)

Tubulin dataset 46.37 (0.60) 0.95 (0.003) 40.73 (2.10) 0.97 (0.00)

Vesicle dataset 60.05 (1.15) 0.98 (0.00) 61.75 (1.08) 0.99 (0.00)

BSD 34.54 (1.90) 0.94 (0.00) 36.37 (1.95) 0.98 (0.00)

and CV-DDAN), liver sinusoidal endothelial cells (LSECs) stained

with phalloidin (actin) and BioTracker membrane structures were

collected via total internal reflection fluorescence – structured

illumination microscopy (TIRF-SIM) (Barbieri et al., 2021) as

additional test data. The results of these tests are shown in

Figures 11, 12.

A closer look at Figures 11A, B shows that the previously

trained CV-DDAN model on the Tubulin dataset provides visually

more convincing denoised images of LSECs stained with phalloidin

(actin) probes than the Red-fairSIMmodel. The CV-DDAN trained

on the Vesicle dataset cannot fully recover the structure compared

to the Red-fairSIM model, as shown in Figure 11, but still produces

adequate results by suppressing the noise, as shown in Figure 11

(see full fifth column). Similarly, these pre-trained models are able

to produce denoised images of the LSECs BioTracker membrane

samples as shown in Figure 12. The Red-fairSIMmodel pre-trained
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FIGURE 11

This figure depicts the result of LSECs with Phalloidin (actin) staining (i.e., A, B) images denoised by direct transfer. The first column illustrates the input

images. The second and fourth columns present the denoised outcomes of Phalloidin actin produced by the Red-fairSIM models pre-trained on the

Tubulin and Vesicle datasets. The third and fifth columns portray the denoised images of the CV-DDAN methods trained on Tubulin and Vesicle

datasets. The second and fourth rows show the zoomed ROIs extracted from the actual denoised image for demonstration purposes. Scale bar: 4 µm.

on Vesicle data shows very compelling results among all other pre-

trainedmodels as illustrated in Figures 12A, B. However, the images

of LSEC stained with BioTracker membrane samples denoised

by the CV-DDAN pre-trained with the Vesicle dataset appear

suppressed compared to other methods. Overall, we can clearly

see from the results of the direct transfer approach that the pre-

trained models are able to reconstruct and denoise the images of

the new unseen samples to some extent, despite the characteristics

of the networks. The denoised images obtained by the CV-DDAN

seem to be more promising and superior in some images, but not

completely.

5 Discussion

During this work, we thoroughly investigated CV-CNNs for

denoising and super-resolution problems. The findings of this

study provide sufficient use cases of CV-CNNs for various datasets

with different noise levels and noise types. CV-CNNs were not

completely investigated previously for image restoration tasks,

particularly image denoising in the frequency domain. Here, we

demonstrated the effectiveness of CV-CNNs for multiple image

restoration tasks. We also suggested multiple approaches for

efficiently deploying CV-CNNs for the image denoising and super-

resolution. In addition, we addressed the following questions: 1.

Is it possible to denoise and super-resolve the images entirely

in the frequency domain or the complex domain (i.e., after

the FFT transformation) using CV-CNNs? 2. Do CV-CNNs

outperform RV-CNNs in terms of generalization performance

when applied to unseen SR-SIM modalities? To answer these

questions, we trained multiple RV-CNN and CV-CNN based

architectures on three datasets. We demonstrated that the pure

CV-CNN based architecture (CV-Atten-UNet) cannot outperform

its real counterparts on its own. However, the fusion of spatial

and frequency information in our parallel scheme (CV-DDAN)

provides better results than the other approaches to a certain

extent. The visual results clearly show that the CV-DDAN

approach outperforms its real and complex-valued image denoising

counterparts on all tested datasets. While the quantitative results

are better for the tubulin dataset regarding both PSNR and SSIM,

only the mean SSIM values improve for the vesicle and BSD

datasets. In contrast, the CV-CAN (serial scheme) produces only

comparable results to real-valued SOTA denoising networks such

as Red-fairSIM, UNet-fairSIM, and Attention-UNet. Overall, the
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FIGURE 12

Result of the direct transfer strategy on the LSECs stained with BioTracker membrane (i.e., A, B). The first column shows the input images. The second

and fourth columns display the outcomes of the Red-fairSIM networks pre-trained on the Tubulin and Vesicle datasets. The third and fifth columns

depict the denoised images by the CV-DDAN method. The second, and fourth rows show the zoomed ROIs extracted from the corresponding above

given images. Scale bar: 4 µm.

fusion of frequency and spatial learning in CV-CNN based models

is crucial to enhance the recovery of signals in both domains,

particularly to improve the performance in the high-frequency

region, as shown in Figure 9.

Similarly, the results of CV-SRN show that the CV-CNNs

perform well for the super-resolution task for all three datasets,

as shown in Figure 10. The visual results clearly indicate that

the network designed entirely with CV-CNNs alone can generate

good-quality super-resolved images from the noiseless inputs, but

it cannot reconstruct high-quality super-resolved output images

from the images acquired under low SNR conditions. Furthermore,

when comparing the generalization ability based on the direct

transfer strategy, the RV-CNN and CV-CNN methods yield mostly

comparable results. The effectiveness of model generalization is

influenced by the diversity of the datasets and the complexity of

the architectures. Therefore, it is very likely that one method will

outperform the other on certain examples while struggling on

others, which was indeed the case in our experiments.

A recent study (Quan et al., 2021) used CV-CNNs and

proposed a CDNetwork (Complex-valued Denoising Network) to

denoise the images in the complex domain by adding constant

imaginary values to the pixel values in the spatial domain instead of

transforming the images by FFT algorithm. Similarly, the authors

in Rawat et al. (2021) introduced CVMIDNet, a CV-CNN based

method to eliminate Gaussian noise from chest X-ray images.

In Pham et al. (2021), authors presented the Complex Fourier

Network to generate complex filters for the denoising of small

size images of SET12 and CBSD68 datasets. Dedmari et al. (2018)

reconstructed Magnetic Resonance Imaging (MRI) by training

a complex dense fully convolutional neural network (CDFNet).

These above-mentioned proposed CV-CNN based architectures

were either trained on specific data (i.e., MRI or X-ray, etc) or on

very small-size images. Shao et al. (2023) designed an uncertainty-

guided hierarchical frequency domain Transformer to learn both

low and high-frequency components using a combination of real-

valued CNNs and vision Transformer rather than CV-CNNs.

The authors in Qiao et al. (2021) exploit the learning of

frequency features of SR-SIM images in the spatial domain of the

channel attention module. Their learning of spatial and frequency

information was purely based on RV-CNNs. Recently, Liu et al.

(2023) proposed a dual-domain learning strategy for end-to-end

SIM reconstruction using CV-CNNs. Their novel architecture

involves the repetitive conversion of feature maps from the

frequency domain to the spatial domain prior to the addition
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operation with spatial features in each dual-domain residual block.

Due to this repeated transformation of features, this block-wise

approach could lead to significantly higher computational cost and

also fail to exploit the full potential of CV-CNN layers (Liu et al.,

2023). In contrast, in our architectures, the spatial and frequency

branches are designed in a completely parallel scheme with all of

their corresponding components to cover a wide range of local

and global spatial and frequency features. Moreover, our approach

is not limited to the end-to-end reconstruction of SR-SIM, but

provides a versatile method for denoising images of all kinds.

The incorporation of complex operations in the CV-CAN, CV-

DDAN, and CV-SRN results in the addition of phase information,

which led to easier optimization (Nitta, 2002), better performance,

and improved generalization ability. The CV-CNNs are mostly

dense and contain more training parameters than the RV-CNNs

due to their characteristics. According to the evaluated training

times, the CV-DDAN requires twice the time of its real-valued

counterpart, such as Red-fairSIM. However, excellent performance

is more important than computational efficiency in the field of

biomedical sciences.

6 Conclusions

We demonstrated that our proposed CV-CNN based serial

(CV-CAN) and parallel (CV-DDAN) architectures provide mostly

denoising results which are superior to purely real-valued

approaches. Similarly, the CV-SRN produces acceptable results

for the super-resolution task. We have also remarked that the

CV-SRN is limited to super-resolution tasks and fails when used

in conjunction with denoising. The CV-Atten-UNet is able to

suppress and eliminate noise from high frequency components, but

an overall image degradation is observed throughout the denoising

process. This raises concerns about the ability of pure CV-CNNs

to perform image denoising. Therefore, a main result of our

findings is that the fusion of spatial and frequency information

by simultaneously processing spatial and complex features in

architecture such as CV-DDAN is the only way forward to improve

the image quality and reduce the loss of high frequency information

in the Fourier spectrum. In addition, the real and complex-valued

attention gates were also useful for effectively learning local and

global frequency features.
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