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Introduction: Animals use camouflage (background matching, disruptive 
coloration, etc.) for protection, confusing predators and making detection 
difficult. Camouflage Object Detection (COD) tackles this challenge by 
identifying objects seamlessly blended into their surroundings. Existing COD 
techniques struggle with hidden objects due to noisy inferences inherent in 
natural environments. To address this, we propose the Discriminative Context-
aware Network (DiCANet) for improved COD performance.

Methods: DiCANet addresses camouflage challenges through a two-stage 
approach. First, an adaptive restoration block intelligently learns feature weights, 
prioritizing informative channels and pixels. This enhances convolutional neural 
networks’ ability to represent diverse data and handle complex camouflage. 
Second, a cascaded detection module with an enlarged receptive field refines 
the object prediction map, achieving clear boundaries without post-processing.

Results: Without post-processing, DiCANet achieves state-of-the-art 
performance on challenging COD datasets (CAMO, CHAMELEON, COD10K) 
by generating accurate saliency maps with rich contextual details and precise 
boundaries.

Discussion: DiCANet tackles the challenge of identifying camouflaged objects 
in noisy environments with its two-stage restoration and cascaded detection 
approach. This innovative architecture surpasses existing methods in COD 
tasks, as proven by benchmark dataset experiments.
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1 Introduction

The idea behind Charles Darwin’s theory of evolution and natural selection is the evolution 
of prey camouflage patterns and the understanding of animal cognition in a more ecological 
context. The earliest research on camouflage dates to the last century (Cott, 1940). Research 
by Thayer (1918) and Cott (1940) comprehensively studied the phenomenon of camouflage. 
Camouflage is an evolutionary concealment technique to mask objects’ location, identity, and 
movement in their surrounding environment. For living organisms to adapt to their 
environment, they require the exhibition of adaptive traits or behavioral strategies better suited 
to the environment. The combination of these physiological characteristics, such as color, 
pattern, morphology, and behavior (Gleeson et al., 2018; Stevens and Ruxton, 2019), provides 
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them with some survival advantages by disrupting the visual silhouette 
of animals or potential predators. Inspired by this important natural 
phenomenon, humans have made attempts to replicate these patterns 
in many fields.

As a multidisciplinary study of computer science and evolutionary 
biology, it has a wide range of applications in practical scenarios, 
including wildlife preservation and animal monitoring; arts (e.g., 
recreational art) (Chu et al., 2010; Ge et al., 2018); agriculture (e.g., 
locust detection to prevent invasion); computer vision and other 
vision-related areas (e.g., search-and-rescue missions in natural 
disasters; military target detection and surveillance systems; rare 
species discovery); medical image analysis [e.g., polyp segmentation 
(Fan et al., 2020b); lung infection segmentation (Fan et al., 2020c; Wu 
et al., 2021)], to mention a few.

There are two types of camouflaged objects: naturally camouflaged 
objects and artificially camouflaged objects (Stevens and Merilaita, 
2009). Natural camouflage results from the coevolution of predators 
and prey. Figures 1A,B show disruptive coloration and background 
pattern matching in animals attempting to exploit predators’ visual 
processing and cognition. Other camouflage strategies include 
countershading, transparency, masquerade, distractive markings 
(Galloway et  al., 1802), etc. Artificially camouflaged objects are 
predatory camouflage strategies often seen in humans, such as military 
troops, vehicles, weapons, and positions in war zones (Zheng et al., 
2018). These objects first observe their environment and elegantly 
blend their texture patterns to create a familiar scene as the 
environment to deceive potential observers’ visual perception systems, 
as shown in Figure 1C.

COD has gained increased attention in the computer vision 
community but is not well-studied due to the insufficiency of large 
training datasets and a standard benchmark like Pascal-VOC 
(Everingham et al., 2015), ImageNet (Deng et al., 2009), MS-COCO 
(Lin T. Y. et al., 2014), etc.

The majority of computer vision literature is largely concerned 
with the detection/segmentation of non-camouflaged objects (Ren 
et al., 2017). Based on the detecting and segmenting viewpoint (Zhao 
Z. Q. et al., 2019), the objects can be divided into three categories: 
generic objects, salient objects, and camouflage objects. Generic object 
detection (GOD) is a popular direction in cognitive computer vision 
which aims to find common objects. They can either be salient or 
camouflaged. Salient object detection (SOD) aims to find attention-
grabbing objects in an image, i.e., objects with pre-defined classes. 
There exists a vast amount of research works for both generic (Shotton 
et al., 2006; Liu et al., 2010; Girshick et al., 2014; Everingham et al., 

2015; Girshick, 2015; Ren et al., 2015; Kirillov et al., 2019; Le et al., 
2020), and salient object detection (Wang et al., 2017; Wu et al., 2019; 
Zhao J. X. et al., 2019; Zhao and Wu, 2019; Fan et al., 2020a; Qin et al., 
2020; Waqas Zamir et al., 2021). COD aims to identify objects whose 
shape and outline are not easily recognizable in images, as shown in 
Figure  2. The high intrinsic similarities between the camouflaged 
objects and the background require a significant amount of visual 
perception knowledge, hence making COD far more challenging than 
the conventional salient object detection or generic object detection 
(Ge et al., 2018; Zhao Z. Q. et al., 2019; Zhao J. X. et al., 2019).

In this paper, we  present a review of deep-learning object 
detection from a camou-flaged perspective. We  proposed a 
discriminative context-aware network called “Di-CANet.” In 
consideration of the noisy interference in natural systems, the 
low-frequency distribution contains smooth data disordering while 
the high-frequency details get an unwanted approximation. These 
contain channel-wise and pixel-wise features unevenly distributed 
across the camouflaged image and should be  differentiated using 
weighted information to get an appropriate representation of salient 
features of objects. Therefore, rather than directly assigning equal 
weights to the channel-wise and pixel-wise features (Woo et al., 2018), 
inspired by Qin et al. (2020), we introduced an adaptive restoration 
block (ARB). This is used to adaptively learn the weights of the image 
features and assign different weights to them. This not only contributes 
to the representative ability of convolutional neural networks (CNN) 
but also provides the required robustness against various types of 
information preservation. After processing the ARB, these features are 
complementary-aware according to the fusion pipeline to generate 
restored camouflage images. Next, a cascaded detection module (Fan 
et al., 2020a) fortified with a modified receptive field block (Liu and 
Huang, 2018) was adopted to segment ecological signals and drive the 
segmentation performance of the target objects during the detection 
stage. Furthermore, a more refined camouflaged object prediction 
map is attained with clear boundaries and the generation of an 
accurate saliency map in terms of contextual details.

With the above considerations, the proposed DiCANet is 
used to develop a good, camouflaged prediction map. Our 
contributions can be summarized as follows: (1) We proposed a 
discriminative context-aware network (“DiCANet”) for 
camouflage object segmentation; (2) We intelligently infused an 
adaptive restoration block into a bio-inspired cascaded detection 
block to effectively guide detection and segmentation 
performance. The ARB comprises three key components: (a) 
feature attention block (FAB), (b) Group architecture 

FIGURE 1

Natural and artificial camouflaged objects. (A,B) show Natural camouflage and (C) shows Artificial camouflage.
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incorporation, and (c) Attention-based feature fusion network. 
Details of these components will be  discussed in subsequent 
sections; (3) The proposed COD model boosted performance to 
a new state-of-the-art (SOTA). The experiments are verified for 
the effectiveness of our proposed method.

2 Related work

This section reviews related works in two folds: image restoration 
approaches and deep learning-based COD approaches.

2.1 Image restoration

Visual information present in the real world contains 
undesired image contents, and as a positionally sensitive problem, 
it requires pixel-to-pixel correspondence between the input and 
the output image. To recover image content from natural images, 
the traditional approach showed promising reconstruction 
performance but suffered from computational drawbacks 
(Ulyanov et al., 2018). Recently, a deep-learning-based restoration 
model has led to the breakthrough of the conventional approach 
and achieved state-of-the-art results (Waqas Zamir et al., 2021; 
Zamir et  al., 2022). Designing algorithms robust enough to 
maintain a spatially precise, high-resolution representation with 
strong semantic information throughout the entire network has 
been a challenge. Research by Zamir et  al. (2020) proposed a 
novel multi-scale residual block to effectively learn enriched 
features for effective real image restoration and enhancement. 
Despite recent major advancements, state-of-the-art methods 
suffer from high system complexity, making them computationally 
inefficient (Nah et al., 2017; Abdelhamed et al., 2018; Chu et al., 
2021). To reduce the inter-block complexity of the other SOTA 
methods (Chen et al., 2022) adopted the stacked neural networks 
in UNet architecture with skip connections (Ronneberger et al., 
2015), following (Wang et al., 2022; Zamir et al., 2022), etc., to 
design a nonlinear activation-free network framework that is 
based on CNN rather than a transformer-based network due to 
SOTA performance drawbacks as reported by Liu et al. (2022) 
and Han et al. (2021). Research by Qin et al. (2020) proposed a 
feature fusion attention network, that fuses the FAB with an 
attention-based multipath local residual structure to focus on 

learning weights of important spatial information to generate 
accurate results.

2.2 COD

Research into COD has rooted history in biology and arts 
(Thayer, 1918; Cott, 1940). The studies are still relevant in 
widening our knowledge of visual perception. The recognition of 
camouflaged objects has not been well explored in the literature. 
Early camouflage research focused on detecting the foreground 
region even when the foreground texture resembled that of the 
background (Galun et al., 2003; Song and Geng, 2010; Xue et al., 
2016). Based on cues such as color, shape, intensity, edge, and 
orientation, these works distinguished the foreground and 
background. To address the issue of camouflage detection, a few 
techniques based on hand-crafted features such as texture 
(Sengottuvelan et al., 2008; Pan et al., 2011; Liu et al., 2012) and 
motion (Hou, 2011; Le et al., 2019) are put forth. However, due 
to the high similarity between the foreground and background, 
none of these approaches performs well in real application 
scenarios for segmenting camouflaged objects but is only effective 
in the case of a simple and non-uniform background. Despite the 
numerous CNN-based object detection models available, unique 
designs are required to build models for COD. In contrast to 
pixel-level segmentation, GOD detects objects with bounding 
boxes. Furthermore, the segmentation in COD is based on 
saliency from a human perspective, not semantics, which is not 
modeled in GOD models. On the other hand, models that are 
designed for SOD are unable to effectively detect concealed 
objects. SOD models do non-semantic segmentation and model 
saliency; nevertheless, they do not specialize in finding indefinite 
boundaries of objects, as salient objects tend to be of potential 
human interest. Researchers have proposed several feasible 
methods for COD.

Recently, (Le et al., 2019) proposed an end-to-end network 
for segmenting camouflaged objects by integrating classification 
into the segmentation framework. Research by Lamdouar et al. 
(2020) and Zhu et  al. (2021) has proposed novel approaches 
based on the assumption that camouflaged objects exist in an 
image, which is not always practical in the real world. To simulate 
the real world, (Le et al., 2021) proposed camouflaged instance 
segmentation without any assumption that camouflaged objects 

FIGURE 2

Object segmentation exemplars: (A) Given input image, (B) GOD, (C) SOD, (D) COD.
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exist in an image. Following the same motivation, (Fan et  al., 
2020a) proposed a Search Identification Network (SINet) 
comprising two modules, namely a search module and an 
identification module, where the former searches whether a 
potential prey exists while the latter identifies the target animal. 
The SINet framework leverages a modified Receptive Field Block 
(Liu and Huang, 2018) to search for camouflaged object regions. 
Furthermore, aside from their COD model, (Fan et al., 2020a) 
presented a large COD dataset, called COD10K, which progressed 
COD research to a new level in the field of computer vision. 
Similarly, (Dong et al., 2021) proposed an MCIF-Net framework 
that integrates a large receptive field and an effective feature 
aggregation strategy into a unified framework to extra rich 
context features for accurate COD. In addition to existing 
literature, recent advancements, and relevant studies, such as the 
notable works of (Hussain et al., 2021; Qadeer et al., 2022; Naqvi 
et al., 2023), contribute to the understanding of object detection, 
tracking, and recognition in various contexts, enhancing the 
breadth and depth of the related literature. Despite research 
devoted to the challenges in the field of COD to achieve 
out-standing performance in terms of accuracy, existing deep 
learning-based COD methods suffer major limitations such as 
weak boundaries (i.e., edges), low boundary contrast, variations 
in object appearances, such as object size and shape, leading to 
unsatisfactory segmentation performance (Fan et al., 2020a; Mei 
et  al., 2021; Ji et  al., 2022), and raises the demands of more 
advanced feature fusion strategies.

Biological studies (Stevens and Merilaita, 2009; Merilaita et al., 2017; 
Rida et al., 2020) have shown that targets that are deliberately hidden 
cause more noisy inferences in the visual perception system, which 
contributes to object concealment. In nature, this is a common 
phenomenon. Finding ecologically relevant signals hidden in extreme 
situations becomes a challenge. More so, without precise control of the 
feature fusion process, detectors are vulnerable to significant attacks from 
low-frequency details, which cause vague object boundaries and 
misjudgment in extreme situations. Inspired by this real-world 
phenomenon, this paper aims to design a novel baseline model to balance 
the accuracy and efficiency of COD by adaptively exploiting the semantic 
and spatial information to obtain plausible final context-aware camouflage 
prediction maps with refined edge boundaries.

3 Materials and methods

3.1 Motivation and proposed framework

The term “survival of the fittest” was conceptualized by 
Charles Darwin’s theory of evolution (Flannelly, 2017). The 
survival of numerous species in the wild depends on cultural 
adaptation; thus, hunting in a wide variety of ecosystems of living 
things is essential to help organisms thrive in their environment. 
Motivated by the first two stages of predation, i.e., search (a 
sensory mechanism) and identification in nature, the DiCANet 
framework is proposed. The simplified version of the proposed 
framework is shown in Figure 3. Details of each component are 
discussed in subsequent sections.

3.2 Camouflaged image

The art of camouflage hinges on manipulating an object’s visual 
appearance to blend into its surroundings. At the heart of this strategy 
is the concept of pixel similarity. Digital images including those used 
in camouflage analysis are represented by pixels —tiny blocks of 
varying features that collectively form the image. In the context of 
input camouflaged images, the concept of pixel similarity measures 
how closely the pixels of objects in the camouflaged image match with 
the surroundings in terms of color, visual patterns, surface variations, 
and intensity (Talas et al., 2017). The more similar the pixels of the 
camouflaged object are to those of its intended background (Figure 3), 
the more effective the camouflage and the harder for observers to spot 
detectable features of the concealed object. Furthermore, any 
detectable discrepancies in pixel similarity will reveal the presence of 
the hidden object, undermining the effectiveness of the camouflage. 
By analyzing these features and strategically manipulating the pixel 
attributes of a camouflaged object, we proposed an effective Context-
aware Network for Camouflaged Object Detection.

3.3 Adaptive restoration block (ARB)

To restore concealed images, redundant information unevenly 
distributed across a real-world image should be adaptively bypassed 
while robustly allowing the network architecture to focus on more 
effective information. The ARB framework’s internal block contains 
several key elements, including (a) the feature attention block (FAB), 
(b) the attention-based basic block structure, and (c) the feature fusion 
framework. A detailed framework is shown in Figure 4.

Given a 3− D real-world camouflage input image 
I H Wc

H xW xCin∈ , ,where  and Cin are the shape of the image (i.e., 
dimensions and input channel number) respectively. To map the input 
camouflaged image space into a higher dimensional feature space, a 
3 3∗  convolution HSF ⋅( )  was applied to extract shallow features with 
edge information Fsf H xW xC∈  formulated as:

 F H Isf SF c= ( ) (1)

Deep features  Fdf H XW X C∈  are then extracted from Fsf  as:

 F H Fdf DF sf= ( ) (2)

Where HDF ⋅( )  is the deep features extraction module and it 
contains K  residual Group Architectures block (RGAB) with multiple 
skip connections. More specifically, intermediate features 
F F FK1 2, ,……..  and output deep features FDF  are extracted block by 

block as:

 F H F i K F H Fi RGAB i DF CONV Ki
= ( ) = ……… = ( )−1 1 2, , , , , (3)

Where HRGABi ⋅( )  represents the i th−  RGAB and HCONV  is the 
last convolutional layer, which introduces the convolution operation’s 
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inductive bias into the network and sets the stage for shallow and deep 
feature aggregation.

3.4 Feature attention block (FAB)

To improve model representation, an attention mechanism has 
been introduced inside a CNN (Zhang et al., 2018; Dai et al., 2019; Niu 
et  al., 2020). Many image restoration networks treat channel-and 
pixel-level features equally, making them incapable of efficiently 
handling images with uneven low-and high-frequency distributions. 
Realistically, redundant information is unevenly distributed across 
images, and the weight of the unwanted pixels should be significantly 
different for each channel-and pixel-wise feature. In the attention 
block, features are learned via a dynamic mechanism that enables the 
model to concentrate on diverse segments of the input data, 
highlighting pertinent features and attenuating or suppressing 
irrelevant ones. This process is typically realized through computing 
attention weights, which signify the significance or relevance of 
various input features. This adaptive learning approach provides 
additional flexibility for the network hierarchy in dealing with 
different types of information. Feature Attention blocks consist of a 
residual block with channel attention (RB-CA) and residual attention 
with pixel attention (RB-PA) as shown in Figure 5. The former ensures 
that different channel features have different weighted information 
(He et al., 2010) while the latter attentively focuses on informative 
features in the high-frequency pixel regions.

3.4.1 Channel attention (CA)
To achieve channel-wise weighting for each channel in feature 

maps, global average pooling (GAP) was employed before feeding the 
data into fully connected layers for classification tasks. The concept of 
GAP in CNNs focuses on each feature map (channel) and aggregates 
information across the entire spatial extent of the feature maps, 
resulting in a single value per channel (Lin M. et al., 2014; Forrest, 
2016; Hu et al., 2018; Machine Learning Mastery, 2019). The 1D vector 
(channel descriptors) obtained from GAP can then be  used in 
subsequent calculations to extract meaningful features from the 
image. The mathematical expression detailing how channel descriptors 
achieve weighted information is as follows:

 
g H F

H xW
X i jc p c cj

W
i
H= ( ) = ( )== ∑∑1

11
,

 
(4)

Where H p represents the global pooling function, Fc the input, 
and X i jc ,( ) denotes the value of c th− channel Xc at spatial position 
i j,( ). The shape of the feature map changes from C x H xW to C x x1 1 

i.e., collapsing H xW . These feature maps are fed through two 
convolution layers and a computationally efficient sigmoid, followed 
by ReLu activation function (Figure 5A) to provide the weights of the 
different channels formulated as follows:

 
CA Conv Conv Ac c= ( )( )( )( )σ δ

 
(5)

FIGURE 3

Proposed DiCANet architecture.

FIGURE 4

Adaptive restoration block architecture.
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Where σ  and δ  represent the sigmoid function and the ReLu 
activation function, respectively. By elementwise multiplication of the 
input Fc and weights of the channels CAc , the output of the channel 
attention Fc∗ can be deduced as follows:

 F CA Fc c c
∗ = ⊗  (6)

3.4.2 Pixel attention (PA)
To capture fine-grained details about spatial context, pixel 

attention (PA) mechanisms actively focus on specific pixels within the 
entire area (spatial extent) of the feature maps. The concept of 
attention mechanisms in CNNs, including those that focus on pixel-
level details, has been explored in various research studies (e.g., Ismail 
Fawaz et al., 2019; Dosovitskiy et al., 2020). Inspired by CA (Hu et al., 
2018) and spatial attention (SA) (Woo et al., 2018), PA is used to 
improve the feature representation capacity to obtain images with 
clear object boundaries. Comparable to CA as shown in Figure 5B, the 
input Fc∗ (i.e., the output of the channel attention block) is fed through 
two convolution layers with ReLu and sigmoid activation function 
(Figure  5B). The shape of the feature map changes from 
C x H xW  to 1 x H xW .

 
PA Conv Conv Fc= ( )( )( )


 


∗σ δ
 

(7)

Recall that activation maps are often followed elementwise 
through an activation function such as ReLU. Therefore, by 
elementwise multiplication of Fc∗ and PA, Feature Attention Block 
(FAB) output F is given by:

 
F F PAc= ∗ ⊗  (8)

Integrating Channel Attention and Pixel Attention within CNNs 
empowers the network to learn both the overall image context and the 
finer details of specific regions simultaneously. This leads to stronger 
and more informative feature representations, improving the network’s 
ability to distinguish objects. Recent research (e.g., Hu et al., 2018; 
Ismail Fawaz et al., 2019; Dosovitskiy et al., 2020) has explored this 
combined approach to enhance CNN performance in various 
computer vision tasks like image classification, object detection, and 
semantic segmentation.

3.5 Block structure (BBS)

The performance of neural networks has been significantly 
impacted since attention mechanisms (Xu et al., 2015; Vaswani et al., 
2017; Wang et al., 2018) and the emergence of residual connections 
(He et al., 2016) were introduced to train deep networks. The design 
of the BBS Bi( ) is built on the combination of these concepts. As 
shown in Figure 6, BBS consist of a multiple local residual learning 
(LRL) skip connection block and a FAB. Local residual learning 
permits low-frequency details to be bypassed through multiple local 
residual learning, allowing the main network to learn discriminatively 
useful information. The combination of several basic block structures 
with skip connections increases the depth and capability of the ARB 
in overcoming training challenges.

By implementing a two-layer convolutional network at the end of 
the ARB network (as shown in Figure 4) and employing a long-skip 
connection global residual learning module as a recovery strategy to 
restore the input camouflage image.

3.6 Feature fusion attention strategy

Shallow feature information can often be difficult to retain as the 
network gets deeper. U-Net (Ronneberger et  al., 2015) and other 
networks strive to fuse different level features of shallow and deep 
information. As depicted in Figure 4, feature maps produced by the 𝐺 
group architecture in the channel direction are concatenated. 
Following the FAB weighting strategy, the retained low-level features 
with edge information in the shallow layer that preserve spatial details 
for establishing object boundaries are fed into deep layers, allowing 
the ARB network (ARB-Net) to focus more on semantic information 

A B

FIGURE 5

Feature attention block. (A) Channel attention (CA). (B) Pixel attention (PA).

FIGURE 6

Basic block structure.
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like high-frequency textures for hidden objects scene visibility in real-
world scenarios.

3.7 Loss function

According to Lim et  al. (2017), training with L1 loss often 
outperformed training with L2 loss for image restoration tasks. 
Following the same strategy, we adopted L1 loss as our default loss 
function for training the ARB-Net. The total loss function L is:

 
L

N
I ARB Igt
i

c
i

i
NΘ( ) = − ( )=∑1

1  
(9)

where Θ  represents the ARB-Net parameters, Igti  stands for 
ground truth, and Ici  stands for the real-world camouflaged input 
image. The proposed ARB-Net extends the hyperparameters detailed 
in Qin et al. (2020), encompassing vital parameters like image size, 
learning rate, optimizer, batch size, and loss function. The selection 
process for the Adaptive Restoration Block (ARB) was meticulously 
executed through a systematic approach combining experimentation, 
domain knowledge, and optimization techniques. Leveraging our 
understanding of camouflage object detection and image restoration, 
we meticulously fine-tuned the hyperparameters to meet the unique 
demands of the task. Through iterative adjustments and rigorous 
validation of test data, we identified the most effective configuration 
for the ARB. This comprehensive approach ensures that the ARB-Net 
is finely tuned to excel in the intricate domain of camouflage object 
detection, enhancing its performance and applicability in real-
world scenarios.

3.8 Cascaded detection block

3.8.1 Sensory module (SM)
According to a neuroscience study by Langley et al. (1996), when 

prey indiscriminately hides in the background, selective search 
attention (Riley and Roitblat, 2018) plays a significant role in the 
predatory sensory mechanism to reduce non-prey details, thus saving 
computational time. To take advantage of the sensory mechanism, 
search attention is used in the initial feature learning to select and 
aggregate semantic features from the restored camouflage image IARB 
in the previous section.

Given an input image I RARB
W xH x 3 (the output of the ARB) a 

set of features f kk , , , , , 1 2 3 4 5{ }{ } is extracted from the ResNet-50 
(He et al., 2016) backbone architecture. The resolution of each feature 

fk is H xk2
 Wk2

, k = { }4 4 8 16 32, , , , . Studies by Lin et  al. (2017) 

demonstrated that high-level features in deep layers keep semantic 
information for finding objects, whereas low-level features in shallow 
layers preserve spatial details for establishing object boundaries. Based 
on the property of neural networks, extracted features are categorized 
as low-level X X0 1,{ }, intermediate-level X2{ }, and high-level features 
X X3 4,{ },which are later fused through concatenation, up-sampling, 

and down-sampling operations; thereafter, by leveraging a dense 
convolutional network strategy of (Huang et al., 2017) to preserve 

more information from different layers and then use a modified 
receptive field (Liu and Huang, 2018) block to enlarge the receptive 
field and output a set of enhanced features.

3.8.2 Identification module (IM)
In the identification module, disguised objects need to be precisely 

identified using the output features obtained from the previous 
sensory module. Following the identification network of (Fan et al., 
2020a), our final context-aware camouflaged object prediction maps 
with refined boundaries are generated.

4 Results

To demonstrate the generality of our newly proposed DiCANet 
COD model, the ARB-Net goes through a fine-tuning stage with 
different key network parameters and is trained on local image patches 
to perform restoration for more complex image background scenarios. 
For optimal results that preserve the camouflaged object’s latent 
spectral content and structural details, the Group Structure 𝐺 and 
each Basic Block Structure 𝐵 are set to 3 and 19 respectively, in the 
ARB. The filter size for all convolution layers is set to 3 3∗ , except for 
the Channel Attention, whose kernel size is 1 1∗ . Additionally, all 
feature maps maintain a fixed size except for the Channel Attention 
module. Each Group Structure outputs 64 filters.

5 Discussion

5.1 Experimental settings

5.1.1 Training/Testing details
ARB-Net builds on the same training settings of (Qin et al., 2020). 

Following the same hyperparameter configurations of (Fan et  al., 
2020a) for CDB. We  evaluate the DiCANet models on the whole 
CHAMELEON (Skurowski et al., 2018) and test sets of CAMO (Le 
et al., 2019), and COD10K (Fan et al., 2020a). The entire experiment 
was executed on a 2.2 GHz dual-core Intel Core i7 CPU with 8 GB of 
RAM using Google COLAB as our working interface. Evaluation 
Metrics: We adopt four benchmark evaluation metrics to evaluate the 
performance of the DiCANet model including S-measure (Fan et al., 
2017), mean E-measure (Fan et  al., 2018), weighted F-measure 
(Margolin et al., 2014), and Mean Absolute Error.

5.2 Baseline models

To demonstrate the robustness of DiCANet, this research selected 
13 strong baseline methods that adopted ResNet50 (He et al., 2016) as 
the backbone network for feature extraction and achieved SOTA 
performance in related fields, namely GOD and SOD: object detection 
FPN (Lin et al., 2017); semantic segmentation PSPNet (Zhao et al., 
2017); instance segmentation Mask RCNN (He et al., 2017), HTC 
(Chen et al., 2019), and MSRCNN (Huang et al., 2019); medical image 
segmentation UNet++ (Zhou et al., 2018) and PraNet (Fan et al., 
2020b); salient object detection PiCANet (Liu et al., 2018) BASNet 
(Qin et al., 2019), CPD (Wu et al., 2019), PFANet (Zhao and Wu, 

https://doi.org/10.3389/frai.2024.1347898
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Ike et al. 10.3389/frai.2024.1347898

Frontiers in Artificial Intelligence 08 frontiersin.org

2019), EGNet (Zhao J. X. et  al., 2019), and camouflaged object 
segmentation SINet (Fan et al., 2020a).

5.3 Quantitative comparison

Table 1 summarizes the quantitative results of different baselines 
on three standard COD datasets. The proposed model achieved the 
highest values for the evaluation metrics, which indicates 
superior performance.

For the CAMO dataset, comparing DiCANet model with the top 
two performing baselines: PraNet and SINet, the proposed method 
improved by 0.003 and 0.009, respectively in terms of M , and by 0.057 
and 0.041, respectively, in terms of Eφ and Fβ

ω . Although DiCANet 
achieved a low structural similarity score S∝, accurate predictions 
with high integrity of preserved edge details and clear boundaries were 
still achieved. Similarly, when compared with the edge boundary 
models, e.g., EGNet and PFANet, our DiCANet improves Eφ  and Fβ

ω 
by (0.08 and 0.103) and (0.302 and 0.427), respectively, while 
drastically reducing MAE error by 0.016 and 0.110 for the 
CHAMELEON dataset. DiCANet achieved a significant improvement 
in S∝ of 0.011 compared with the best model PraNet. Interestingly, for 
the most challenging dataset, COD10K, DiCANet outperformed the 
competition in prediction accuracy for all metrics and boosted 
performance to a new SOTA.

5.4 Qualitative comparison

Figure 7 shows the qualitative comparison of the camouflaged 
prediction map of DiCANet against the top four cutting-edge models. 
Row 1 to row 2, (top to bottom) are examples from CHAMELEON 
datasets; row 3 are examples from CAMO datasets; row 4 is an 

example from COD10K’s super-class: amphibious. It is evident that 
DiCANet outperforms all competing models and provides the best 
prediction that is the closest to ground truth (best viewed 
when zoomed).

Noncamouflaged regions are consistently included in the results 
of the compared methods, while some details of camouflaged objects 
are neglected. In contrast, the competing models inaccurately detect 
disguised objects and provide unreliable visual results. The proposed 
model demonstrated excellent performance in  locating concealed 
objects accurately, with rich, fine details in predictions and clear 
boundaries. Additionally, our method captures the object boundaries 
quite well due to the power of ARB’s adaptive weighing mechanism 
and feature fusion strategy.

5.4.1 Failure case
Despite achieving satisfactory quantitative performance and 

setting a record in the COD task, the proposed DiCANet framework 
exhibits limitations in specific scenarios as shown in Figure 8. When 
dealing with multiple camouflaged objects grouped closely together 
(row 1), DiCANet might struggle to accurately predict the number of 
objects. This limitation can be attributed to the network’s limited prior 
knowledge in handling scenes with a specific number of objects. The 
complicated topological structures (row 2) with dense details can also 
pose challenges for DiCANet due to background complexity 
distraction. This complexity overwhelms the attention mechanisms, 
diverting focus from the camouflaged objects. Additionally, the 
intricate details in the background could share similar features with 
the camouflage patterns, making it difficult to distinguish the 
camouflaged object from its surroundings. These limitations provide 
valuable insights and potential areas for future investigation. By 
tackling these challenges and exploring novel approaches, researchers 
can create more resilient COD systems capable of managing even the 
most intricate and challenging scenarios.

TABLE 1 Quantitative comparison in terms of S∝, E F and Mφ β
ω, ,  on three benchmark COD datasets (Fan et al., 2020a).

Baseline 
models

CHAMELEON CAMO – Test COD10K – Test

S∝ ↑ Eφ ↑ Fβ
ω ↑

M ↓ S∝ ↑ Eφ ↑ Fβ
ω ↑

M ↓ S∝ ↑ Eφ ↑ Fβ
ω ↑

M ↓

FPN 0.794 0.783 0.590 0.075 0.684 0.677 0.483 0.131 0.697 0.691 0.411 0.075

MaskRCNN 0.643 0.778 0.518 0.099 0.574 0.715 0.430 0.151 0.613 0.748 0.402 0.080

PSPNet 0.773 0.758 0.555 0.085 0.663 0.659 0.455 0.139 0.678 0.680 0.377 0.080

UNet++ 0.695 0.762 0.501 0.094 0.599 0.653 0.392 0.149 0.623 0.672 0.350 0.086

PiCANet 0.769 0.749 0.536 0.085 0.609 0.584 0.356 0.156 0.649 0.643 0.322 0.090

MSRCNN 0.637 0.686 0.443 0.091 0.617 0.669 0.454 0.133 0.641 0.706 0.419 0.073

BASNet 0.687 0.721 0.474 0.118 0.618 0.661 0.413 0.159 0.634 0.678 0.365 0.105

PFANet 0.679 0.648 0.378 0.144 0.659 0.622 0.391 0.172 0.636 0.618 0.286 0.128

CPD 0.853 0.866 0.706 0.052 0.726 0.729 0.550 0.115 0.747 0.770 0.508 0.059

HTC 0.517 0.489 0.204 0.129 0.476 0.442 0.174 0.172 0.548 0.520 0.221 0.088

EGNet 0.848 0.870 0.702 0.050 0.732 0.768 0.583 0.104 0.737 0.779 0.509 0.056

PraNet 0.860 0.907 0.763 0.044 0.769 0.824 0.663 0.094 0.789 0.861 0.629 0.045

SINet 0.869 0.891 0.740 0.044 0.751 0.771 0.606 0.100 0.771 0.806 0.551 0.051

DiCANet (Ours) 0.871 0.950 0.805 0.034 0.747 0.828 0.647 0.091 0.775 0.872 0.629 0.043

The best scores are highlighted in bold. t indicates the higher the score the better, and ↓: the lower the better.
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5.4.2 Ablation study
To further demonstrate the superiority of DiCANet architecture 

with previous state-of-the-art methods, we conducted an ablation 
study by considering challenging camouflage scenarios (Figure 9). 
The study observes that DiCNet consistently shows distinctive 
detection and segmentation of concealed objects in challenging 
natural scenarios, such as partial occlusion (1st row), weak object/
background contrast (2nd row), and strong background descriptor 
(3rd row). Meanwhile, the structural similarity 𝑺∝ scores (in red) of 
DiCANet are much higher and with a minimal error (in red) 
compared to the competitors, which further demonstrates the 
superiority of our method. We  can also clearly see that the 
combination of the proposed adaptive ARB-Net and Feature Fusion 
Attention Strategy has significantly elevated our results to an 
exceptional level.

6 Conclusion

This paper presents Discriminative Context-Aware Network 
(DiCANet), a novel joint learning framework for detecting concealed 
objects with refined edges. The proposed model leverages two key 
components: the ARB-Net and the CDB. To improve the camouflage 
scene visibility, we employed ARB-Net to adaptively generate different 
attention weights for each channel-and pixel-wise feature and 
strategically fuse the feature maps to expand the discriminative power 
and representative ability of the convolution networks. To drive 
camouflage object localization and segmentation performance, 
we employed the CDB module. Based on the ARB and CDB modules, 
a context-aware network that effectively aims to pay more attention to 
local contextual information to evaluate the objectivity of the 
camouflage prediction map was proposed. Extensive experiments 

A B C D E F G

FIGURE 7

Camouflaged objects segmentation results. (A) Image, (B) GT, (C) DiCANet, (D) SINet, (E) PraNet, (F) EGNet, (G) CPD.

A B C D

FIGURE 8

Failure cases of our DiCANet. (A) Images, (B) GT, (C) Ours, (D) SINet.
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show that mining distinctive information can overcome the difficulties 
of both SOD and COD tasks with superior performance; thus, 
DiCANet outperforms SOTA methods under the commonly used 
evaluation metrics and deserves further exploration in other related 
computer vision tasks.
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