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Introduction: Acute Myeloid Leukemia (AML) is one of the most aggressive

hematological neoplasms, emphasizing the critical need for early detection

and strategic treatment planning. The association between prompt intervention

and enhanced patient survival rates underscores the pivotal role of therapy

decisions. To determine the treatment protocol, specialists heavily rely on

prognostic predictions that consider the response to treatment and clinical

outcomes. The existing risk classification system categorizes patients into

favorable, intermediate, and adverse groups, forming the basis for personalized

therapeutic choices. However, accurately assessing the intermediate-risk group

poses significant challenges, potentially resulting in treatment delays and

deterioration of patient conditions.

Methods: This study introduces a decision support system leveraging cutting-

edge machine learning techniques to address these issues. The system

automatically recommends tailored oncology therapy protocols based on

outcome predictions.

Results: The proposed approach achieved a high performance close to 0.9 in

F1-Score and AUC. The model generated with gene expression data exhibited

superior performance.

Discussion: Our system can e�ectively support specialists in making well-

informed decisions regarding the most suitable and safe therapy for individual

patients. The proposed decision support system has the potential to not

only streamline treatment initiation but also contribute to prolonged survival

and improved quality of life for individuals diagnosed with AML. This marks

a significant stride toward optimizing therapeutic interventions and patient

outcomes.
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1 Introduction

Acute Myeloid Leukemia (AML) is a highly aggressive hematological malignancy
characterized by the infiltration of cancer cells in the bone marrow. It is associated with
lower remission rates as patients age, and the average overall survival rate ranges from 12
to 18 months (Rose-Inman and Kuehl, 2014; Pelcovits and Niroula, 2020).

The European Leukemia Net (ELN) established guidelines for diagnosing and treating
AML in 2010 (Döhner et al., 2010). These served as a cornerstone in the field, providing
valuable insights. Subsequent updates were published in 2017 (Döhner et al., 2017) and
2022 (Döhner et al., 2022), reflecting advancements in understanding AML’s biomarkers,
disease subtypes, and overall behavior. These updates have contributed to a more
comprehensive and up-to-date disease management approach.
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According to the current diagnostic criteria for AML,
established by the World Health Organization (WHO), the
presence of at least 10 or 20% myeloblasts in the bone marrow or
peripheral blood is required, depending on the specific molecular
subtype of the disease (Arber et al., 2022). These guidelines,
outlined in the Classification of Tumours of Haematopoietic and
Lymphoid Tissues, provide standardized criteria for diagnosing
AML accurately.

Apart from the initial diagnosis, patients with AML also
undergo a prognostic evaluation to determine their risk profile,
typically categorized into favorable, intermediate, and adverse. This
risk stratification relies on analyzing cytogenetic and molecular
characteristics (The Cancer Genome Atlas Research Network,
2013). Cytogenetic characteristics involve specific chromosome
alterations, while mutations in genes such as NPM1, RUNX1,
ASXL1, TP53, BCOR, EZH2, SF3B1, SRSF2, STAG2, and ZRSR2

determine molecular characteristics. Healthcare professionals
extensively employ the ELN risk classification to make critical
treatment decisions, as it directly influences the patient’s prognosis,
quality of life, and overall survival.

The main problem with the current ELN risk classification is
the significant variability within the same risk group. Accurately
assessing the intermediate-risk group is especially challenging,
potentially causing delays in starting treatment and worsening
patients’ conditions. To address this problem, we present a decision
support system that automatically recommends therapeutic
protocols for AML patients based on their survival prediction.
By minimizing subjectivity and streamlining the decision-making
process, the proposed approach can enhance patient outcomes,
extending survival time and improving overall quality of life.

2 Related work

Treatment decisions for AML rely heavily on predicting
the patients’ response and clinical outcomes, primarily based
on cytogenetic factors (Estey, 2019). However, significant
heterogeneity within the same risk groups results in diverse
outcomes, ranging from rapid decease to unexpected
remission (Döhner et al., 2010).

Chemotherapy has been the established standard therapy since
the mid-1970’s, but its effectiveness in terms of survival rates
has been limited (Bennett et al., 1976). Recent advancements
have facilitated the collection and analysis of extensive data on
genetic mutations and gene expressions (The Cancer Genome Atlas
Research Network, 2013), leading to novel therapeutic strategies
and a more targeted approach to treatment. These have opened
up new possibilities for improving the outcomes and overall
management of AML patients.

In 1976, a study conducted by an international collaboration
of French, American, and British researchers known as the
FAB (French-American-British) group introduced a classification
system for AML. Based on the analysis of morphological
characteristics in the bone marrow and peripheral blood, this
classification system aimed to stratify AML patients into distinct
subtypes. The FAB classification scheme defined six subtypes
(M1, M2, M3, M4, M5, and M6) based on the differentiation
and maturation levels of the leukemic cells. This classification
system was a fundamental framework for understanding and

characterizing AML, contributing to subsequent research and
guiding clinical approaches (Bennett et al., 1976).

In 2010, the European Leukemia Net (ELN) introduced a novel
risk classification system that considers cytogenetic and molecular
information, providing a more comprehensive assessment of
disease severity (Döhner et al., 2010). This updated scheme includes
four risk categories: favorable, intermediate I, intermediate II, and
adverse. While this stratification system offers improved accuracy
compared to traditional cytogenetic analysis, it is challenging to
implement it during the initial clinical evaluation due to the
high costs associated with sample collection and the subsequent
molecular analyses required. Nonetheless, this risk classification
plays a crucial role in guiding treatment decisions and optimizing
patient outcomes in the management of AML.

A significant update to the ELN’s guidelines was published
in 2017 based on findings regarding AML behavior (Döhner
et al., 2017). The updated risk classification grouped patients
into three categories (favorable, intermediate, and adverse) and
refined the prognostic value of specific genetic mutations. Since
then, specialists have commonly used this stratification to support
important decisions about the course of each treatment, which can
directly impact the patient’s quality of life and life expectancy.

In 2022, the ELN updated its risk classification system,
incorporating significant changes based on emerging research
findings. One notable revision includes the FLT3-ITD gene
expression as a key determinant. Patients with high expression
levels of this gene, lacking other adverse risk characteristics, are
now categorized as intermediate risk. Furthermore, mutations in
genes such as BCOR, EZH2, SF3B1, SRSF2, STAG2, and ZRSR2 are
now associated with the adverse risk classification (Döhner et al.,
2022). These updates reflect new insights regarding the impact
of these genetic factors on disease progression and treatment
outcomes (The Cancer Genome Atlas Research Network, 2013;
Angenendt et al., 2019). The evolving understanding of these
molecular characteristics provides valuable information for risk
stratification and personalized management of AML patients.

Patients with a favorable risk profile typically exhibit favorable
responses to chemotherapy. Conversely, those with an adverse
risk profile often display limited responsiveness to standard
chemotherapy and may require alternative treatments, such as
Hematopoietic stem cell transplantation (The Cancer Genome
Atlas Research Network, 2013). However, the therapeutic response
of AML patients with an intermediate risk profile remains
less clearly defined. The heterogeneous nature of this subgroup
makes it challenging to predict their specific treatment outcomes,
demanding further research and tailored approaches to optimize
their clinical management.

The current risk classifications present challenges due to
significant variability within the same risk group. Factors such as
age and gender can significantly influence treatment outcomes.
For instance, patients under 60 years old tend to respond better
to high-dose chemotherapy. In comparison, patients over 60
years old may have a lower tolerance for intense chemotherapy
and require alternative palliative therapies (Lagunas-Rangel et al.,
2017). However, current risk classifications do not consider age
a relevant factor in treatment decision-making. As a result, even
among patients classified as having intermediate risk, specialists
often rely on additional information, such as results from other tests
and analyses, to determine the most appropriate therapy despite
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limited evidence of efficacy (Döhner et al., 2010). This reliance
on supplementary information can delay treatment initiation and
worsen the patient’s clinical condition. Therefore, there is a need
for improved risk stratificationmodels that consider diverse patient
characteristics to ensure more precise and timely therapy decisions
in AML.

To address these challenges, recent studies have applied
machine learning (ML) techniques to predict patient survival and
treatment outcomes. By leveraging ML algorithms, researchers
aim to automate the prediction of patient response to specific
treatments and the likelihood of achieving complete remission.
These ML models can handle huge clinical and molecular features
to compute predictions, allowing for a more data-driven approach
to treatment decision-making. The main goal is to provide valuable
insights and assist clinicians in making informed decisions that can
optimize patient outcomes and improve the overall management of
the disease.

Gal et al. (2019) employed supervised machine learning models
to predict complete remission in pediatric patients with AML.
They used data extracted from RNA sequencing and clinical
information as input features for their models. The k-nearest
neighbors algorithm achieved the highest performance among
the ML techniques evaluated. Additionally, the authors observed
notable differences in gene expression patterns between the pre-
and post-treatment periods, suggesting the potential of using gene
expression data as predictive markers for treatment response in
AML patients.

In a subsequent study, Mosquera Orgueira et al. (2021)
employed clinical and genetic data to train a random forest
classifier to predict the survival probability of AML patients.
The researchers identified patient age and gene expressions of
KDM5B and LAPTM4B as the three most influential variables.
These findings suggest that combining ML techniques with clinical
and molecular data holds significant predictive potential for AML
diagnosis and supporting therapeutic decision-making. The study
emphasizes the importance of incorporating genetic information
into predictive models, as it provides valuable insights into the
prognosis and treatment response. Such ML-based approaches
offer a promising avenue for enhancing patient management and
personalized treatment strategies.

Gerstung et al. (2017) presented a statistical decision support
model to predict personalized treatment outcomes for AML
patients. The model employs prognostic data available in a
knowledge bank and demonstrates the significant impact of
clinical and demographic factors, including age and blood cell
count, on early death rates, particularly mortality related to
treatment. Through the knowledge bank-based model, the authors
observed that approximately one-third of the analyzed patients
would modify their treatment protocols when comparing the
model’s recommendations to those of the ELN. This highlights
the potential of leveraging comprehensive prognostic data and
statistical modeling to enhance treatment decisions and potentially
improve patient outcomes. The study underscores the importance
of incorporating personalized and data-driven approaches in the
management of AML.

In a comprehensive study, Itzykson et al. (2021) proposed a
rule-based decision support system that integrates statistical
and machine learning techniques to facilitate treatment
decision-making for elderly patients diagnosed with AML.

The model employs overall survival predictions based on the
Kaplan-Meier method and incorporates seven oncogenetic
markers (NPM1, FLT3-ITD, DNMT3A, NRAS, ASXL1, KRAS, and
TP53) to stratify patients into distinct treatment groups. These
groups provide insights into the intensity of treatment required and
offer guidance on whether treatment decisions should be strictly
adhered to, cautiously analyzed, or entirely discarded. The authors
found that their model exhibited more discriminative ability
than the 2017 ELN stratification, successfully identifying 30–35%
of patients with superior outcomes and accurately censoring
the need for hematopoietic stem-cell transplantation in the first
remission. Moreover, multivariate logistic regression analysis
identified mutations in the NRAS, SETBP1, RUNX1, and ASXL1

genes as independent predictors of poor complete remission rates
in non-adverse risk patients. These findings further emphasize the
significance of incorporating decision-support tools that consider
clinical and genetic data for accurate treatment prediction.

An interpretable model for predicting the survival of AML
patients was presented by Almeida et al. (2023). This model
leveraged the Explicable Boosting Machines (EBM) technique, and
the results emphasized the importance of using genetic data in
AML analysis, particularly gene expression data. Furthermore, they
highlighted the importance of selecting specific treatment groups
for patient survival.

Several recent studies on AML-related diseases have also
demonstrated the effectiveness of applying state-of-the-art ML
techniques in pattern recognition, risk prediction, and survival
prediction. These diseases include acute lymphoblastic leukemia
(Fitter et al., 2021), myelodysplastic syndrome (Radhachandran
et al., 2021), breast cancer (Kate and Nadig, 2017), prostate
cancer (Zolbanin et al., 2015; Rabaan et al., 2022), rectal
cancer (Wang et al., 2022), skin cancer (Ahmed et al., 2022),
nasopharynx cancer (Jing et al., 2020), pancreatic cancer (Walczak
and Velanovich, 2018; Muhammad et al., 2019; Wang et al.,
2020), infective endocarditis (Ris et al., 2019), AML in pediatric
patients (Hoch et al., 2021), and AML with myelodysplasia-
related changes (Yu et al., 2021). The success observed indicates
that contemporary ML techniques can automatically uncover
meaningful patterns within vast datasets.

In this context, this study presents a decision support
system designed to recommend suitable therapeutic protocols
automatically for AML patients based on their survival prediction.
The primary aim is to mitigate the subjectivity inherent in
treatment decisions and reduce the time involved in the decision-
making process. Consequently, we can deliver more accurate and
reliable treatment recommendations that minimize adverse effects.
Our ultimate goal is to improve patient outcomes by extending
their survival time and enhancing their overall quality of life.

3 Materials and methods

The decision support system proposed in this work combines
supervisedmodels computed by three establishedmachine learning
methods commonly employed in themedical field: RandomForests
(RF), Support Vector Machines (SVM), and Logistic Regression
(LR). This system automatically recommends the best treatments
for AML patients based on the automatic prediction of clinical
outcome (survival/decease).
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FIGURE 1

Pipeline for training and evaluating the ensemble. Initially, three sets of clinical and genetic data are input. Then, these data are preprocessed and

cleaned to facilitate the feature selection process. This process is expert-guided for clinical data (Expert) and automated for genetic data (Chi-Square

and LASSO). With these validated datasets, we trained individual models (HPO stands for Hyperparameter optimization). The best individual

predictors are selected to compose the classification committee. Subsequently, a new training and evaluation process is carried out, now based on

the classification committee (ensemble). In the end, a therapy recommendation is computed.

Altogether, we have trained nine clinical outcome prediction
models using selected attributes from real and public databases
composed of (i) clinical data (CLIN), (ii) mutation data (MUT),
and (iii) gene expression data (EXP). Then, we combined the
best-trained models, one for each combination of the three
databases. The ensemble outputs are aggregated to compose a
robust final prediction model. Figure 1 summarizes the processes
for generating the proposed system, and Figure 2 illustrates the
architecture of the resulting ensemble models. In the following, we
detail each process involved in designing the method proposed in
this work.

The final output encompasses recommending a therapeutic
course from distinct treatment groups defined by experts in the

field and outlined below. As both the individual models and the
committee yield survival predictions, the recommendation rests on
selecting the group that optimizes the survival forecast for the AML
patient.

3.1 Datasets

The datasets used to train and evaluate the prediction models
come from studies by The Cancer Genome Atlas Program (TCGA)
and Oregon Health and Science University (OHSU). These datasets
are known as Acute Myeloid Leukemia (The Cancer Genome
Atlas Research Network, 2013; Tyner et al., 2018) and comprise
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FIGURE 2

The architecture of the proposed decision support system. Initially, individual models are trained using the datasets [clinical (CLIN), gene mutation

(MUT), and gene expression (EXP)] with the three Machine Learning techniques [Random Forests (RF), Logistic Regression (LR), and Support Vector

Machine (SVM)]. Subsequently, the best individual models are selected for each kind of data from all those produced (the asterisk symbol represents

these models). In the following, a combination of these models is created by a classification committee with the final prediction vote weighted. Since

the result of this committee and the models is a survival response, the process is repeated for all possible Treatment Intensity. In the end, the

recommended therapy is the one that maximizes the probability of patient survival.

TABLE 1 Amount of original data in each database.

Features

Database #Samples #Patients Clinical Mutation Expression

TCGA 200 200 31 25,000 25,000

OSHU 672 562 97 606 22,825

clinical and genetic data of AML patients. Both are real and
available in the public domain at: https://www.cbioportal.org/.
We used three sets with data collected from the same patients:
one with clinical information, another with gene mutation data,
and another with gene expression data. Table 1 summarizes
the original data in the three feature sets extracted from the
two databases.

Specialists in the data domain analyzed and grouped the
treatments in the clinical data into four categories according to the
intensity of each therapy (Almeida et al., 2023):

1. Target therapy—therapy that uses a therapeutic target to inhibit
some mutation/AML-related gene or protein;

2. Regular therapy—therapy with any classical chemotherapy;
3. Low-intensity therapy—non-targeted palliative therapy,

generally recommended for elderly patients; and

4. High-intensity therapy—chemotherapy followed by autologous
or allogenic hematopoietic stem cell transplantation.

Likewise, cytogenetic information was normalized and grouped
by specialists in the data domain. In addition, to reduce the
original fragmentation in the data related to the patient’s race, we
binarized the values with 1 indicating that the patient is white and
0 otherwise. This is because white patients represent about 75% of
the data.

3.2 Data cleaning and preprocessing

Since the data comes from two sources, we have processed them
to ensure consistency and integrity. With the support of specialists
in the application domain, we removed the following data:
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TABLE 2 Clinical features description.

Feature Description

Diagnosis age Patient age when diagnosed with AML

Bone marrow blast % Percentage of blasts in the bone marrow

Mutation count Number of genetic mutations observed

PB blast % Percentage of blasts in peripheral blood

WBC White blood cell count

Gender Patient gender

Race Whether the patient is white or not

Cytogenetic info Cytogenetic information that the specialist used in
diagnosing the patient

ELN risk classification ELN risk groups (favorable, intermediate, and adverse)

Treatment intensity
classification

The intensity of treatment received by the patient
(target, regular, low-intensity, or high-intensity
therapy)

Overall survival status Patient survival status (living or deceased).

TABLE 3 Main statistics of clinical features with a continuous nature.

Feature Minimum Maximum Median Mean

Diagnosis age 18 88 58 55.38

Bone marrow
blast %

20 100 72 68.18

Mutation
count

1 34 9 9.72

PB blast % 0 99.20 38.15 40.54

WBC 0.4 483 39.44 18.04

1. Samples not considered AML in adults observed by (i) the age of
the patient, whichmust not be<18 years, and (ii) the percentage
of blasts in the bone marrow, which should be ≥20%;

2. Samples without information on survival elapsed time after
starting treatment (Overall Status Survival);

3. Duplicated samples. We have removed all instances from the
OHSU database in which the attribute value of Site of Sample

differed from Bone Marrow Aspirate. As the original dataset
contains multiple samples from the same patient, all blood
samples collected outside the bone marrow were removed.

4. All instances from the OHSU database were excluded where the
value of the attribute Sample Timepoint differed from de novo.
This is because the TCGA database contains only blood samples
from patients with AML de novo;

5. Attributes identifying the type of cancer, as all patients were
diagnosed with AML; and

6. Any other feature that is not present in both databases.

We used the 3-Nearest Neighbor method (KNN; Cover and
Hart, 1967) to fill empty values in clinical data features (CLIN)
automatically. We used the features with empty values as the target
attributes and filled them using the value predicted from the model
trained with other attributes (i.e., without empty values). After
the preprocessing stage, the gene expression (EXP) and mutation

(MUT) data do not have empty values. Nevertheless, we removed
the features of 37 genes with no mutations.

Subsequently, we kept only the samples in which all the
variables are compatible, observing data related to the exams and
treatment received by the patients, as these affect the nature of
the clinical, mutation, and gene expression data. Of the 872 initial
samples in the two databases, 272 were kept at the end of the
preprocessing, integration, and data-cleaning processes. Finally,
specialists in the data domain checked and validated all the data.

3.3 Feature selection

This section describes the feature selection process used to
represent clinical, gene mutation, and gene expression data.

3.3.1 Clinical data
Among the clinical attributes common in the two databases

(TCGA and OSHU), specialists in the data domain selected
the following according to their relevance for predicting clinical
outcomes. In Table 2, we briefly describe all selected clinical
features, and Table 3 summarizes the main statistics of those with
a continuous nature. Figures 3, 4 summarize their main statistics.

The Diagnosis age is concentrated in the range of 50–70 years,
with an outlier below 20 years and above 18 among those who did
not survive during the analyzed period. In contrast, the age range
among surviving patients is between 32 and 60. It is in line with
the literature that the diagnosis age can influence the course of the
disease (Gal et al., 2019; Mosquera Orgueira et al., 2021).

The percentage of blasts in peripherical blood (PB blast

%) and bone marrow (Bone marrow blast %) shows a similar
distribution concerning the "living" and "deceased" patients. The
white blood cell count (WBC) revealed outliers, with its distribution
concentrated between 0 and 100. Finally, most patients’ mutations
range (mutation count) from 5 to 15, with outliers exceeding 25.

Most patients fall into the "Intermediate" group. Given that
this classification commonly influences therapeutic decisions, a
higher proportion of patients in this group experienced adverse
outcomes (Döhner et al., 2017).

Regarding Gender, there are more males than females in these
studies. Furthermore, the mortality incidence is notably higher
among males, a factor that can be considered in the therapeutic
decision-making process. Regarding Race, there is a predominant
incidence of patients identified as white, while other races are
grouped under the Other category.

Finally, the data predominantly focused on the High Intensity

and Regular Therapy groups, treatments that involve oral
chemotherapy, and, in the case of high intensity, there is
consolidation with bone marrow transplantation. Most patients
who received Low-Intensity treatment succumbed to the disease.
This type of therapeutic choice is commonly employed for patients
in the terminal stage.

3.3.2 Gene expression data
After data preprocessing and cleaning, 14,712 gene expression

attributes remained. To select the most relevant ones for survival
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FIGURE 3

Boxplots illustrating the distribution of continuous clinical features. The data is segmented based on the classes of the target attribute. Blue bars

represent the Living patients, while red represents the Deceased ones. "WBC" refers to White Blood Count, a numerical measurement of the total

count of white blood cells in a given blood volume. Additionally, "PB" stands for Peripheral Blood, indicating blood collected from the peripheral

circulatory system rather than from specific organs or tissues.

prediction, we employed the LASSO method (SVM with L1
regularization). This calculates coefficients for each attribute based
on its relevance for classification.

We have trained themethod using all gene expression attributes
with a regularization factor of C = 0.01. At the end of the training
process, 22 expression attributes were selected: CCDC144A,

CPNE8, CYP2E1, CYTL1, HAS1, KIAA0141, KIAA1549, LAMA2,

LTK, MICALL2, MX1, PPM1H, PTH2R, PTP4A3, RAD21, RGS9BP,

SLC29A2, TMED4, TNFSF11, TNK1, TSKS, and XIST.

3.3.3 Gene mutation data
After cleaning and preprocessing the data, 281 gene mutation

features remained. Then, we employed the χ
2 statistical method to

select a subset of these features. For this, we defined the following
hypotheses: H0—patient survival is independent of gene mutation;

H1—both groups are dependent. Using p < 0.1, a set of 10 gene
mutation features were selected: SRSF2, U2AF1, RIF1, PRKAA2,
CALR, CADM2, PTPN11, PHF6, CTNNA2, and TP53.

After the cleaning and preprocessing stage, we obtained the
final database used to train and evaluate the prediction models.
It has 272 samples (patient data) consisting of 11 clinical features
(CLIN dataset), 22 gene expression features (EXP dataset), and 10
gene mutation features (MUT dataset). Table 4 summarizes each of
these datasets. All the code used in this paper and the final database
are publicly available at: https://github.com/jdmanzur/ml4aml.

3.3.4 Expression impact survival analysis
Three genes caught our attention in the gene expression

selection process: MICALL2, KIAA0141, and SLC29A2. Thus, we
deeply analyzed the impact on survival outcomes and biological
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FIGURE 4

Distribution of categorical clinical features segmented according to the classes of the target attribute. Blue bars correspond to the Living patients,

while red represents the Deceased ones. "ELN risk classification" corresponds to the European LeukemiaNet risk classification system, a recognized

panel extensively referenced in leukemias.

TABLE 4 Final datasets used to train and evaluate the outcome prediction

models.

Dataset #Features Features

Clinical
(CLIN)

11 Diagnosis age, Bone marrow blast (%),
Mutation count, PB blast (%), WBC, Gender,
isWhite, Cytogenetic info, ELN risk
classification, Treatment intensity
classification, and Overall survival status
(class)

Gene
expression
(EXP)

22 CCDC144A, CPNE8, CYP2E1, CYTL1, HAS1,

KIAA0141, KIAA1549, LAMA2, LTK,

MICALL2, MX1, PPM1H, PTH2R, PTP4A3,

RAD21, RGS9BP, SLC29A2, TMED4,

TNFSF11, TNK1, TSKS, and XIST

Gene
mutation
(MUT)

10 SRSF2, U2AF1, RIF1, PRKAA2, CALR,

CADM2, PTPN11, CTNNA2, PHF6, and

TP53

characteristics of patients with AML. First, we compare their
mRNA levels between AML patients and samples of normal
hematopoietic cells. Then, we plot the Kaplan-Meier curves
to check the overall survival for AML patients dichotomized
according to high or low expression. Next, we compute a
heatmap using ClusterVis to summarize the expression of the
top-25 upregulated and 25 downregulated genes for high vs.
low expression (Figure 5). Additionally, we use Volcano plots to

depict the extent and significance of differential gene expression
for each gene, comparing high vs. low. Finally, we also compute
Gene Set Enrichment Analysis plots for biological processes
associated with the three gene expressions in AML patients
(Figure 6).

3.4 Training the outcome prediction
models

We have used three established supervised machine learning
methods to train models that automatically predict the clinical
outcome (survival/decease) based on the chosen treatment
intensity (target, regular, low-intensity, and high-intensity) for a
given patient. The methods are Random Forest (RF), Logistic
Regression (LR), and Support Vector Machines (SVM). Table 5
briefly describes the ML methods used in this study.

Due to the small amount of data available to train and evaluate
the models, we did not employ deep learning techniques, as
these methods demand a huge amount of data. Furthermore, the
explainability of prediction models is a desirable characteristic in
this context.

We fit the main hyperparameters through a grid
search (Mitchell, 1997). Table 6 presents the range of values
evaluated. We kept the default values for all other parameters.
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FIGURE 5

MICALL2, KIAA0141, and SLC29A2 expression impact survival outcomes and biological characteristics in AML patients. (A) MICALL2 (probe

219332_at), KIAA0141 (201977_s_at), or SLC29A2 (probe 204717_s_at) mRNA levels were compared between AML patients (n = 577), and samples

of normal hematopoietic cells (normal bone marrow n = 5, CD34+ cells n = 8). The "y" axis represents mRNA expression levels at arbitrary values.

Horizontal lines represent the median. (B) Kaplan-Meier curves represent overall survival for AML patients dichotomized according to high or low

MICALL2, KIAA0141, or SLC29A2 expression (using the ROC curve as the cut-o� point). Hazard ratio (HR), 95% confidence interval, and p values are

indicated (log-rank test). (C) Heatmap constructed using ClusterVis that summarizes the expression of the top-25 upregulated and 25 downregulated

genes for high vs. low MICALL2, KIAA0141, or SLC29A2 expression. Color intensity represents the z-score within each row.

We have trained the three classification methods (RF, LR, and
SVM) with the three datasets (CLIN, MUT, and EXP), resulting
in a total of nine individual prediction models (3 ML Models ×
3 datasets).

3.5 Ensemble

Among the nine outcome prediction models, we selected the
ones that obtained the best results for each data set (Figure 2).
We then combined these three models as a classifier committee
that computes the predicted survival outcome for a given patient.
Equation 1 presents how we have weighted the vote for an
individual prediction modelMi. The F1-Score corresponds to the f-
measure attained by the prediction model in the validation set. The
ensemble classification output is then computed from the outcome
(live/decease) with the highest final vote, considering the output of
all individual prediction models (Figure 7).

vote(Mi) =

⌈

1

log10

(

1
F1−Score(Mi)

)

⌉

(1)

3.6 Performance evaluation

The performance of the prediction models was assessed using
the traditional hold-out validation approach (Mitchell, 1997). The
dataset was partitioned into four subsets: 70% was randomly
selected for training the models, 10% for feature selection, another
10% for validating the individual models, and the remaining 10%
as an independent test set for evaluating the performance of the
ensemble. Addressing the model performance in the separated test
partition simulates its application in a prospective independent
patient cohort.
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FIGURE 6

MICALL2, KIAA0141, and SLC29A2 expression impact survival outcomes and biological characteristics in Acute Myeloid Leukemia (AML) patients. (A)

Volcano plots depicting the extent (x-axis) and significance (y-axis) of di�erential gene expression for each gene, comparing high vs. low MICALL2,

KIAA0141, or SLC29A. (B) Gene Set Enrichment Analysis plots for biological processes associated with MICALL2, KIAA0141, or SLC29A2 expression in

AML patients. The top portion of the plot shows the running enrichment scores (ES) for the gene set. The point with the maximum deviation from

zero is defined as the ES for the gene set. The leading-edge subset (the subset of genes with the most significant contribution to the ES) is shown as

a vertical bar accumulating before the peak score for a positive ES or after the peak score for a negative ES. FDR-adjusted p–values (NOM p-value)

and enrichment scores normalized for gene set size (NES) are indicated.

TABLE 5 Supervised machine learning methods used in this study.

Algorithm Description

RF (Breiman, 2001) An ensemble learning method that operates by
training decision trees. For predicting a class, the
output of the random forest is the class predicted by
most trees.

LR (Cramer, 2003) A statistical model that computes the probability of a
sample belonging to some class having the log-odds
for the class be a linear combination of one or more
independent features.

SVM (Boser et al., 1992) A supervised learning method that maps training
samples to points in space, aiming to maximize the
width of the margin that separates the two classes. It
is versatile because different Kernel functions can be
specified for the decision boundary.

TABLE 6 Hyperparameters evaluated in a grid search.

Method Hyperparameters

RF n_estimators={10, 15, 20, 25, 30, 45, 50},
min_samples_leaf={1, 2, 3, 4},max_depth={8, 10,None},
class_weight={balanced, none}

LR C={10−6 , 5.62× 10−5 , 3.166× 10−3 , 1.77× 10−1 , 10},
class_weight={balanced, none}, penalty={L2}, random_state=1

SVM kernel={linear, rbf}, C={10−6 , 10−5 , 10−4 , 10−3 , 10−2}
class_weight={balanced and none}, random_state=1

We have calculated the following measures to assess and
compare the performance obtained by the prediction models. In
the equations below, TP (true positive) is the number of patients
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FIGURE 7

Weighted function for computing the vote of an individual

prediction model Mi. It provides a weighted vote based on the

F1-Score metric for each prediction. The higher the F1-Score, the

higher the weight of the models.

correctly predicted by the model who deceased; FP (false positive)
is the number of patients who survived, but the model incorrectly
predicted to decease; TN (true negative) is the number of patients
correctly predicted by the model who survived; FN (false negative)
is the number of patients who deceased, but the model incorrectly
predicted to survive.

Accuracy (ACC): the percentage of correct predictions.

ACC =
TP + TN

TP + FN + TN + FP

Recall (REC) or Sensitivity: the proportion of true positives
(patients predicted to decease) to the actual positive samples
(patients who deceased) that should have been detected.

Recall =
TP

TP + FN

Precision (PREC): the proportion of true positives (patients
predicted to decease) to the actual positive results (patients who
deceased), including those incorrectly identified by the prediction
model.

Precision =
TP

TP + FP

F1-Score (F1): the harmonic mean between Precision and
Recall. The F1-Score is often used when the dataset is imbalanced.

F1 = 2 ∗
Precision ∗ Recall
Precision+ Recall

Matthews Correlation Coefficient (MCC): provides a
balanced assessment of a model’s performance, considering both
positive and negative cases. The MCC ranges from -1 to +1, where
+1 indicates a perfect prediction, 0 indicates a random prediction,
and -1 indicates total disagreement between themodel’s predictions
and the true labels.

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

AUC: the receiver operating characteristics (ROC) curve is
used to address the success of a prediction model across several
classification thresholds. The area under the ROC curve (AUC)
tests the whole two-dimensional field under the entire ROC curve.
AUC ranges from zero to one, and the higher, the better (Spackman,
1989).

4 Results and discussion

In this section, we detail and analyze all the results obtained.
First, we present the main findings in selecting and analyzing
clinical and genetic data. Then, we reported the results of the
individual prediction models and, finally, the performance of the
outcome prediction computed by the ensemble.

4.1 Genes that impact survival outcomes
and biological characteristics

The protein encoded by MICALL2 potentially regulates
cytoskeleton dynamics, tight junction formation, and neuritis
outgrowth. To the best of our knowledge, no study has analyzed
the biological role of MICALL2 in AML and other leukemias.
Therefore, it could be addressed in future clinical and functional
studies.

The gene KIAA0141, also known as DELE1, could indicate a
patient’s response to drug and radiation therapies (Jia et al., 2014;
Sato et al., 2021). There are results in the literature relating this
gene as a prognosis indicator because it can have a main function
on mitochondrial stress (Guo et al., 2020). Sui et al. (2023) suggest
that DELE1 has an important role in improving therapy protocols
for cancer.

The high expression of SLC29A2, also known as ENT2, suggests
its importance in facilitating hypoxanthine transport, which is
necessary for enhanced DNA synthesis through hypoxanthine
recycling. In conclusion, ENT2 shows potential as a target for
developing therapeutics (Naes et al., 2023). Elevated levels of ENT2
in the blasts at the time of diagnosis of AML were associated with
a lower response to induction therapy (Rodríguez-Macías et al.,
2023). Moreover, higher ENT2 levels were linked to a poor response
to treatment. These findings align with the observation that ENT2
upregulation is associated with advanced stages of various cancer
types, including mantle cell lymphoma, hepatocellular carcinoma,
and colorectal cancer (Pastor-Anglada and Pérez-Torras, 2018).

Among the gene mutations identified as relevant to the model,
the TP53 mutation is the best-known. Several studies show the
relationship between TP53 mutation and therapeutic response
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TABLE 7 Performance achieved by individual models using the three datasets individually.

Dataset Methods F1 AUC ACC PREC REC MCC

CLIN RF 0.6562 0.6222 0.6666 0.6554 0.6666 0.2603

SVM 0.6713 0.6888 0.6666 0.7132 0.6666 0.3670

LR 0.7044 0.6777 0.7083 0.7031 0.7083 0.3651

MUT RF 0.7129 0.7222 0.7083 0.7395 0.7083 0.4303

SVM 0.4807 0.5000 0.6250 0.7656 0.6250 0.0000

LR 0.7129 0.7222 0.7083 0.7395 0.7083 0.4303

EXP RF 0.7803 0.7444 0.7916 0.7986 0.7916 0.5465

SVM 0.6284 0.6111 0.6250 0.6339 0.6250 0.2182

LR 0.6200 0.5888 0.6250 0.6171 0.6250 0.1825

The best results are highlighted in bold.

TABLE 8 Performance obtained by the ensemble of classifiers.

Dataset F1 AUC ACC PREC REC MCC

CLIN+MUT 0.6946 0.6429 0.6786 0.7250 0.6786 0.2582

CLIN+EXP 0.8179 0.8128 0.8214 0.8345 0.8214 0.6512

MUT+EXP 0.8179 0.8128 0.8214 0.8345 0.8214 0.6512

CLIN+MUT+
EXP

0.8907 0.8846 0.8929 0.9107 0.8929 0.8006

Bold values represent the best achieved results.

and prognosis. The TP53 gene is considered the guardian of
genomic stability, as it controls cell cycle progression and apoptosis
in situations of stress or DNA damage, and mutations in this
gene are found in 1/2 of the cancer patients (Kastenhuber and
Lowe, 2017; Monti et al., 2020). Although mutations in TP53 are
less common in AML patients (about 10%), they predict a poor
prognosis (Papaemmanuil et al., 2016; Grob et al., 2022).

Mutations in U2AF1 and SRSF2 are more common
in myelodysplastic syndrome and rare in de novo

AML (Papaemmanuil et al., 2016; Xu et al., 2017), but have
been associated with an unfavorable prognosis in myeloid
neoplasms (Zhu et al., 2021). U2AF1 regulates the pre-mRNA
splicing processes to generate functional mRNAs, and is considered
a key element in the spliceosome (Zhao et al., 2022).

4.2 Prediction models

We have evaluated the nine single outcome prediction models
(each one trained with a different dataset and classification
method), applying the traditional 8:1:1 hold-out validation strategy
(Section 3.4). Specifically, the training set consisted of 216 samples
randomly selected, the validation set was composed of 28 samples,
and the test set also contained 28 samples. It is noteworthy that the
data partitioning for training and testing was kept consistent across
all models.

Table 7 summarizes the performance achieved by each model.
Three stand out as the top performers, each associated with a

distinct dataset (lines highlighted in bold). Notably, all thesemodels
exhibit good results, but the one using genetic expression data
shows particularly promising performance.

The logistic regression model trained with clinical data
achieved a reasonable performance. It can be valuable to healthcare
specialists as it represents the initial data acquired during a patient’s
clinical visit. Consequently, when genetic data are inaccessible,
a clinical outcome prediction model can assist the specialist in
deciding the most appropriate treatment intensity for each patient.
Nevertheless, including genetic data can substantially enhance
predictive performance, as these attributes contribute to improved
class separability.

The models created with genetic mutation data obtained
superior performances compared to those trained with the
clinical model. The logistic regression and random forest
models obtained the same results. Regarding the classification
methods evaluated, the Random Forest and Logistic Regression
achieved the best overall performances. In addition, these
methods have the advantage that their prediction models can be
somehow explained.

4.3 Classification committee

We have combined the three highest-performing prediction
models presented in Table 7 as a classifier committee to compute
the predicted survival outcome for a given patient. The outcome
prediction is computed by the weighted output (detailed in Section
3.4) provided by the individual classifiers, considering all possible
treatment intensities (target, regular, low-intensity, and high-
intensity; Figure 2).

We have evaluated the performance of the committees using
a 9:1 hold-out (incorporating the prior validation set into the
training set). Table 8 presents the results of all ensembles created
by combining the individual prediction models.

The results obtained are promising as most of the performance
measures improved significantly, indicating we can safely use it
as a decision support system to recommend appropriate therapy
protocol for AML patients, with precision higher than 90%. We
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obtained the best overall results by combining the models trained
with the three datasets available.

Regarding clinical data, the ensemble that combined these
data with genetic expression presented a significant improvement
compared to individual models trained in both contexts. These
results suggest that combining these data types leads to substantial
predictive power for survival in AML patients. In the case of
combining genetic mutation and clinical data, a decrease in
predictive ability was observed compared to the individual model
trained only with geneticmutation data. Nevertheless, the ensemble
that combined genetic data exhibited enhanced performance
compared to individual models of this data type.

5 Conclusions

To guide the selection of therapy protocols for patients
with AML, healthcare specialists commonly rely on prognostic
evaluations based on treatment response predictions and clinical
outcomes. The prevailing ELN risk stratification categorizes
patients into favorable, intermediate, and adverse risk groups.
However, this classification tends to be conservative, with most
patients falling into the intermediate risk category. Consequently,
specialists often demand additional examinations, leading to delays
in treatment initiation and potentially compromising the patient’s
clinical condition.

This paper presented a decision support system that
automatically recommends appropriate intensity oncology
therapies based on the clinical outcome prediction for a given
patient. The core of this system is composed of a committee
of classifiers trained with clinical data and gene mutation
and expression data. The proposed ensemble achieved a high
performance close to 0.9 in F1-Score and AUC.

We also conducted an evaluation of individual models trained
solely with specific types of data. Among them, themodel generated
with gene expression data exhibited superior performance and
could independently assist healthcare specialists in determining
the most suitable treatment for individual patients. For further
improvement, specialists could employ the ensemble model
incorporating all data types. In cases where genetic data collection
is unavailable in the clinical setting, the single model trained solely
with clinical data can be employed as an alternative.

The findings presented in this work indicate that we can employ
state-of-the-art machine learning techniques to automatically
process and analyze large volumes of clinical and gene data. These
approaches can effectively support specialists in making well-
informed decisions regarding the most suitable and safe therapy for
individual patients. By significantly reducing the time required for
treatment selection, these techniques can enhance overall patient
outcomes, leading to extended survival and improved quality of life
for individuals afflicted with the disease.

Despite the promising results presented in this study, it is
essential to highlight its main limitations. The amount of public
data available and used is restrictive to train more sophisticated
and accurate machine-learning models. Furthermore, the data
represents the characteristics of a particular regionality. At least
75% of the blood samples are from patients of white race, which

may hinder the generalization power of the decision support system
across different races.

In future work, we aim to assess the performance of the
proposed system in a real-world scenario. Furthermore, we
recommend further investigating the genes selected in the feature
selection stage. This analysis would provide valuable insights
into the biological significance and functional implications of
the selected genes, mainly MICALL2, KIAA0141, and SLC29A2,
potentially revealing novel biomarkers or therapeutic targets
related to AML. Such endeavors would contribute to refining
and validating the proposed system, ultimately enhancing its
application and impact on clinical decision-making processes.
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