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Using synthetic dataset for
semantic segmentation of the
human body in the problem of
extracting anthropometric data

Azat Absadyk*, Olzhas Turar and Darkhan Akhmed-Zaki

Department of Science and Innovation, Astana IT University, Astana, Kazakhstan

Background: The COVID-19 pandemic highlighted the need for accurate virtual

sizing in e-commerce to reduce returns and waste. Existing methods for

extracting anthropometric data from images have limitations. This study aims

to develop a semantic segmentation model trained on synthetic data that can

accurately determine body shape from real images, accounting for clothing.

Methods: A synthetic dataset of over 22,000 images was created using NVIDIA

Omniverse Replicator, featuring human models in various poses, clothing, and

environments. Popular CNN architectures (U-Net, SegNet, DeepLabV3, PSPNet)

with di�erent backboneswere trained on this dataset for semantic segmentation.

Models were evaluated on accuracy, precision, recall, and IoU metrics. The

best performing model was tested on real human subjects and compared to

actual measurements.

Results: U-Net with E�cientNet backbone showed the best performance, with

99.83% training accuracy and 0.977 IoU score. When tested on real images, it

accurately segmented body shape while accounting for clothing. Comparison

with actual measurements on 9 subjects showed average deviations of−0.24 cm

for neck, −0.1 cm for shoulder, 1.15 cm for chest, −0.22 cm for thallium, and

0.17 cm for hip measurements.

Discussion: The synthetic dataset and trainedmodels enable accurate extraction

of anthropometric data from real images while accounting for clothing. This

approach has significant potential for improving virtual fitting and reducing

returns in e-commerce. Future work will focus on refining the algorithm,

particularly for thallium and hip measurements which showed higher variability.

KEYWORDS

synthetic data, human segmentation, anthropometry, CNN, NVIDIA replicator, human

body

1 Introduction

The extraction of anthropometric data has become relevant recently. This surge in
importance is not solely driven by consumer desire for suitably sized products upon
delivery but also by commercial interests in mitigating the wastage of apparel merchandise.
Ignorance concerning one’s bodily dimensions leads to challenges in clothing selection,
thereby increasing the propensity for errors. Standard labels of clothing sizes are not always
the same for various brands (looksize.com, 2020). For example, the M size of one brand
may differ from the M of another brand, necessitating resources such as online size charts
that detail the specifications for numerous brands. Clothes that are incorrectly sized are
returned to the seller, thereby escalating logistical and warehousing costs associated with
the returned merchandise. The returned items do not go back to store shelves but are
thrown into a landfill inmost cases (qz.com, 2016), it can be also recycled though it requires
also more logistics hence the higher associated cost.
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The convenience of online shopping and the availability of
free return policies have resulted in a rise in e-commerce returns.
While many returned items are still in excellent condition, they
cannot be resold due to damage incurred during packaging and
handling. As a result, these items often end up in landfills or
are incinerated. This harms the environment, as it involves using
resources for manufacturing, transportation, and disposal of the
products (Igini, 2023). If consumers had precise knowledge of their
body measurements, it would greatly diminish the need for returns
and subsequently mitigate the environmental impact associated
with them.

Existing neural networks for determining anthropometric data
have different limitations, which complicate their application.
We have created a straightforward algorithm that utilizes two
architectures to calculate body measurements. This algorithm
combines a CNN (Convolutional Neural Network) model for
semantic segmentation and a model for human body posture
analysis. However, when identifying specific body points through
semantic segmentation, the algorithm doesn’t consider the person’s
clothing, which complicates obtaining accurate data. Additionally,
the available training datasets also have a shortage of information
regarding clothing and only focus on determining body contours
along with the garments.

The project’s objectives include the construction of a semantic
segmentation architecture trained on synthetic data that can be
applied to real-world data, which is the main goal of this paper.
Therefore, Section 4.1 describes the creation of a synthetic dataset
that accurately represents a person’s clothing while determining
the actual body silhouette. Furthermore, Section 4.2 details the
training of existing neural networks using the newly developed
dataset. In Section 5, the created architectures are tested using real
images, and the outcomes are compared with architectures trained
on pre-existing data.

2 Related works

In recent years, there has been a growing interest in developing
accurate and efficient methods for extracting anthropometric
measurements from 3D scans and images. Many of these methods
rely on deep learning architectures, which have shown promising
results in accuracy and robustness. The proposed methods vary in
terms of input data types, such as 2D images, 3D point clouds, and
binary silhouettes, and the use of landmark detection or template
fitting algorithms.

Most of the methods use digital image processing,
convolutional neural networks, and machine learning methods
to calculate body size from images (Lin and Wang, 2011; Jiang
et al., 2012; de Souza et al., 2020). A parametric model of the
body is also used to estimate shape parameters from binary
silhouettes or shaded images (Dibra et al., 2016). Additionally,
some also used images from a dataset of more than 4,000 people
(Yan and Kämäräinen, 2021). Meanwhile, there is also a mobile
automatic system for measuring the human body (Xia et al., 2018).
Furthermore, some approaches evaluate the three-dimensional
shape of the human body from two-dimensional images of the
silhouette or images of a person in clothes, using a database of
human body shapes (Chang and Wang, 2015; Song et al., 2016;
Shigeki et al., 2018; Ji et al., 2019) or geodetic surface paths, using

CNN’s deep architecture as a basic method (Yan et al., 2021).
Another paper proposes formula-driven supervised learning
(FDSL), a method that automatically generates image patterns and
their category labels using mathematical formulas, such as fractals,
to create large-scale labeled datasets for pre-training convolutional
neural networks without relying on natural images (Kataoka et al.,
2021).

Several methods use a 3D model and are created using 3D
scanners with amarker (Xiaohui et al., 2018), without bodymarkers
using mathematical definitions and image processing methods
(Leong et al., 2007), or from a single point cloud structured using
a grid (Škorvánková et al., 2022). For example, one proposes a
deep neural network architecture that can accurately extract three-
dimensional anthropometric measurements from frontal scans
(Kaashki et al., 2023), a similar approach to AM-DL, which uses
deep learning (Kaashki et al., 2021).

Several papers suggest new methods for creating synthetic
data, such as using Unity Perception to create annotated datasets
(Borkman et al., 2021). Other articles present synthetic datasets
such as SURREAL (Varol et al., 2017), which includes 6 million
images of people created from motion capture data, and Synscapes
(Wrenninge and Unger, 2018), a dataset for analyzing street scenes
created using photorealistic imaging techniques, or even a synthetic
data generators for human-centered vision (Ebadi et al., 2021,
2022).

Most of the developed architectures work in specially created
environments, such as a uniform background, tight clothing
of a person (Leong et al., 2007; Jiang et al., 2012), and are
designed to produce a degree of obesity that has not even
obtained the desired results (Affuso et al., 2018). The results of
the work can only be used in special conditions. Some use a
three-dimensional body scanner to obtain a three-dimensional
model with further processing in a neural network (Xiaohui
et al., 2018; Kaashki et al., 2021; Škorvánková et al., 2022).
These methods complicate their application in everyday life since
not everyone has three-dimensional scanners. The application of
anthropometric data detection technology was intended to be
simplified and made more accessible. Our method combines the
results of the two architectures to extract body dimensions. It
makes it possible to determine the characteristic points of the neck,
chest, waist, hip, and shoulder width from both the image and
the body.

Existing datasets for semantic human segmentation also do
not consider clothing (Wrenninge and Unger, 2018; Ebadi et al.,
2021). Datasets such as Cityscapes (Cordts et al., 2016), ADE20K
(Zhou et al., 2016), Syncscapes (Wrenninge and Unger, 2018) are
mainly designed for street scene analysis, and COCO (Lin et al.,
2014), PASCAL VOC (Everingham et al., 2009) are used for object
detection and segmentation of several dozen classes in addition
to humans. There are also synthetic datasets for Human-Centric
Computer Vision Models, such as SURREAL (Varol et al., 2017)
and PeopleSansPeople (Ebadi et al., 2021). And there is dataset
from the social network TikTok to determine the silhouette of
a dancing person from a image (Roman, 2023). In the task of
defining anthropometric data, you can use these datasets. But all
these datasets, with semantic segmentation, take into account a
person’s clothes. It is known that when measuring the size of the
human body, clothing is not considered. And for this, we need
a dataset that will take into account a person’s clothing when
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determining the silhouette. Given the complexity of creating such
a set, it was decided to create a synthetic dataset using NVIDIA
Omniverse Replicator.

3 Problem statement

Given an input image X of size H x W (height x width), where
each pixel location (i, j) has a set of features x(i, j) (RGB color
values), need to find:

Ŷ = P (X,Y)

where
X =

{

x(i, j)| x(i, j) ∈ [0, 255] for all 3 channels
}

−input image,
Y =

{

y(i, j)| y(i, j) ∈ {0, 1}
}

−ground truth mask (1 - human
body, 0 - background),
Ŷ =

{

ŷ(i, j)| ŷ(i, j) ∈ {0, 1}
}

−predicted mask (1 - human body,
0 - background).

The function P is represented by a convolutional neural
network (CNN) and is trained by minimizing a loss function L
that measures the discrepancy between the predicted and true
segmentation masks. We have used 2 types of loss functions. First
is the binary cross-entropy loss function summarized on per-pixel
basis:

L =
1

H ∗W

H
∑

i=0

W
∑

j=0

l(y(i, j), ŷ(i, j)),

where:

l(ξ , η) = −
(

ξ ∗ log(η) − (1− ξ ) ∗ log(1− η)
)

, ξ , η ∈ {0, 1}

and the second is IoU loss function:

L(Y , Ŷ) = 1− IoU
(

Y , Ŷ
)

where:

IoU
(

Y , Ŷ
)

=

∣

∣

∣
Y ∩ Ŷ

∣

∣

∣
/

∣

∣

∣
Y ∪ Ŷ + ε

∣

∣

∣

where || −represents the cardinality (i.e., count of pixels in the case
of binary image masks), ∩− represents intersection, ∪−represents
union, ε−a small positive constant such as 1e-15 to ensure
numerical stability.

The model is trained to minimize this loss, which effectively
maximizes the similarity of the outputs to the ground truth labels.

4 Materials and methods

Before delving into the description of the semantic
segmentation method itself, an approach to acquiring
anthropometric data from the image of body shape should
be described. A method of deriving anthropometric measurements
from an image of the body based on a combination of two
pre-trained models was previously developed (Absadyk and Turar,
2020). The first model is a semantic segmentation model based on
PSPNet (Zhao et al., 2016), and the second is OpenPose model

(Cao et al., 2017) that is used to obtain key points of the joints
and face. In this approach, the images of people wearing skinny
and tight clothes are necessary that do not distort anthropometric
parameters. The scheme of combination of models is presented in
Figure 1.

Algorithm for determining the characteristic points from
combined data:

1. Leg length: determined by calculating the average length of the
segments P9P11 and P12P14.

Sleg =

√

(x12 − x14)
2 +

(

y12 − y14
)2

2

+

√

(x9 − x11)
2 +

(

y9 − y11
)2

2
;

2. Thallium length: determined by calculating the smallest distance
of the body’s extreme points at the thallium’s level. The thallium
level is located at the intersection of segments P3P12 and P6P9

Stallium = minx
(

xc, yc, 0
)

−minx
(

xc, yc, 180
)

;

where
(

xc, yc
)

are the coordinates of the intersection point of
the segments, P3P12 and P6P9, and the third argument is the
direction in which the function minx finds the X coordinates of
the closest point of the object’s contour.

3. Arm length: determined by calculating the distance between the
points of intersection of the contour of the body with a straight
line released from 3 and 6 points at a 135 and 45 degree angle,
respectively.

Sshoulder = minx
(

x6, y6, 45
)

−minx
(

x3, y3, 135
)

;

4. Hip length: determined by calculating the distance of the
extreme points of the body at the level of 12 and 9 points.

SHip = minx
(

x12, y12, 0
)

−minx
(

x9, y9, 180
)

;

5. Neck length: determined by calculating the smallest distance of
the extreme points of the body along a straight neck P2P1.

Sneck = Smin (P2P1) ;

6. Chest-level point spacing: First, the closest points to points 3 and
6 in the area P4P3P9 and P7P6P12 accordingly are determined,
then the distance between these points is calculated.

Schest = Smin (P6P7, P6P12) − Smin (P3P4, P3P9) ;

7. Arm length: determined by calculating the length of the
segments P3P5 and P6P8, then find their average value.

Sarm =
(S (P6P8) + S (P3P5))

2
;
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FIGURE 1

The process of combining the results.

Thus, seven significant measurements of the human body have
been identified. However, it is important to note that the true
positions of the key points may not align with the perimeter of the
clothing worn by the individual.

Further, the construction of a semantic segmentation model
that minimizes the error of body shape determination based on the
corresponding metric is described. Proper construction of such a
model first requires the creation of a specifically labeled dataset.
In this case, a synthetic dataset must be created. The most fitting
model of semantic segmentation is then selected by retraining
various models on the dataset and providing further comparisons.

4.1 Development of synthetic data

Utilizing synthetic data offers a significant benefit in that
it allows for precise control over the characteristics of objects
and scenes used in training the model. The NVIDIA Omniverse
Replicator offers tools to introduce variability by randomizing
objects within a scene. Notably, this technology employs ray tracing
for rendering, enabling the generation of highly realistic data. The
NVIDIA Omniverse Replicator comprises a flexible set of APIs
that facilitate the creation of physically accurate synthetic data
to train computer vision networks. This empowers deep learning
engineers and researchers to expedite model training, enhance
performance, and explore new possibilities in model development,
thus overcoming limitations posed by dataset availability and
annotations (NVidia, 2018). In the synthetic dataset, as in any
image segmentation dataset, the input is a realistic image of a
human, and the output is an image with a mask of the area of
interest.

Input requirements:

• Input image orientation: Images in vertical orientation. As of
the third quarter of 2022 around 91 percent reported accessed

the internet via smartphones (Petrosyan, 2020). Therefore, in
this work, images taken on a phone were also focused on,
increasing the possibility of using the algorithm.

• Objects in the image: The main object in the image should
be a person, who should be positioned completely within the
image and in the center. No objects should overlap the person;
objects can be placed behind or near the person. Only one
person should be present in the image. The background can
contain anything except other people.

• Surroundings: Images can be taken inside or outside the
building.

• Posture: the person stands directly in front of the camera,
arms spread apart, legs slightly wider than shoulder level, head
looking forward at the camera.

Output requirements:

• In the output image, only the area of person body should be
outlined by masking pixels. Each pixel belongs only to class of
human (1) or background (0).

To utilize the Replicator, it is necessary to collect three-
dimensional models of all objects involved in creating synthetic
data. In this study, realistic three-dimensional models of seven
distinct body types, each with varying body parameters, were
generated using the open-source Blender software.

A different combination of outerwear, trousers and shoes was
created for different body types. All sorts of furniture and trees
were selected, and walls with different numbers of windows were
modeled. The floor and ceiling were left flat. Pictures were marked
on the wall behind the man. All models shown in Table 1.

For the texture of clothes, floors, and walls from open sources,
images with different textures were collected. HDRI environments
for backgrounds have been imported from Omniverse’s open
library of 3d assets. The number of texture images is shown
in Table 2.
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TABLE 1 3D models parameters.

3D models Number of elements Types Randomization functionsa Examples

Body 7 From thin to fat rep.randomizer.scatter_2d(body_scatter)
rep.modify.pose(rotation)

Outerwear 17 Shirt, sweater,
t-shirt, etc.

rep.create.material_omnipbr(cloth_texture)
custom_randomizer_function()

Pants 6 Jeans, chinos,
shorts, etc.

rep.create.material_omnipbr(cloth _texture)
custom_randomizer_function()

Shoes 8 Boots, shoes,
sneakers, etc.

rep.create.material_omnipbr(cloth _texture)
custom_randomizer_function()

Furniture 28 Sofa, table, chairs,
etc.

rep.randomizer.scatter_2d(furniture_scatter)
modify.pose(rotation)

Walls 4 With 1, 2, 3
windows and
without window

custom_randomizer_function()
rep.create.material_omnipbr(wall_texture)
rep.modify.pose(rotation)

Trees 15 Conifers, pines,
bushes, etc.

rep.randomizer.scatter_2d(tree_scatter)
modify.pose(rotation)

Floor and ceiling 1 Flat floor and
ceiling

rep.create.material_omnipbr(floor_texture)
custom_randomizer_function()

Frames 5 Different pictures in
a frame

rep.randomizer.scatter_2d(frame_scatter)

Lighting 5 Regular lights rep.create.light(temperature, intensity, scale)
rep.randomizer.scatter_2d(light_scatter)

aomni.replicator.core has been imported as rep.

All objects were placed according to the following scheme
below (Figure 2).

Object placement: randomization functions were used to place
objects such as furniture, trees, and frames within the scene.
These objects were scattered using the rep.randomizer.scatter_2d
function, ensuring they did not overlap with the human subject.

Lighting conditions: the lighting conditions were varied by
changing the position, intensity, and temperature of the lights. This

was done using the rep.create.light function, with parameters set to
introduce realistic shadows and highlights.

Texture variability: different textures were applied to the objects
and backgrounds using the rep.create.material_omnipbr function.
A wide range of textures was included, from denim and checkered
fabrics for clothing to parquet and tiled surfaces for floors.

Body types: the dataset included seven distinct body types,
modeled in Blender, ranging from thin to obese. The body types
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TABLE 2 The number of texture images.

Textures Number of elements Types Examples

Cloth 52 Denim, checkered, knitted, polished, etc.

Floor 64 Parquet, carpet, tiles, etc.

Walls 49 Brick, tiles, concrete, etc.

Environment 10 HDRI images of clear,
cloudy day, night, etc.

FIGURE 2

3D objects placement setup.

were assigned random combinations of outerwear, trousers, and
shoes to simulate a variety of real-world clothing scenarios.

Camera setup: the camera’s position and focal length were
randomized within specified bounds to simulate different
perspectives. Focal lengths of 24mm, 30mm, and 35mm were
used, with distances from the camera to the subject adjusted
accordingly to maintain consistent framing.

Image generation: a randomizer specifically for human clothing
was developed, including several types of shoes, trousers, and
clothes. The randomizer’s function was to generate different
combinations of these items. The generation of 500 images required
approximately 12 hours on our device. By utilizing random.seed,
the Replicator was able to repeat the same combination of
random sets of objects for a single seed. The Replicator was
launched twice with the same seed: the first time considering
all objects and clothes, and the second time isolating only
the human body while hiding all other objects for binary
mask. The computational experiments reported in this paper

were conducted on a high-performance workstation with the
following specifications:

• CPU: Intel Core i9-10900K @ 3.7GHz
• RAM: 128GB DDR4 @ 3200MHz
• 2TB NVMe PCIe M.2 Solid State Drive
• GPU: NVIDIA GeForce RTX 3090 with 24 GB of GDDR6X

VRAM

As a result, an input image with all random objects and clothes
with random textures was obtained, along with a silhouette of a
person’s body without considering the clothes. A total of 7,254
images of a person in different clothes, posture and surroundings
were generated, and 7,254 images with semantic segmentation of
the human body, respectively. The size of the image is 600 px
wide and 900 px high. Seven different physiques. The number of
pictures for each of them is shown in Table 3. Image augmentation
technology was used to increase the amount of data. All images have
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TABLE 3 Number of pictures for each body type.

Body types

Number of images 1,000 1,272 1,000 595 1,000 1,250 1,137

Height (cm) 183 176 173 175 179 181 185

FIGURE 3

Modified U-Net with CNN models as an encoder.

been flipped horizontally and rotated. As a result, the number of
images was more than 22,000.

4.2 Modified CNN models

4.2.1 Backbones
Some of the popular CNN architectures, such as ResNet50 and

ResNet101, have been utilized. A residual network that consists of
50 and 101 layers respectively and uses skip connections to bypass
some layers and avoid the problem of vanishing gradients (He et al.,
2016), EfficientNet: A family of neural networks that are designed
to be efficient and scalable (Tan and Le, 2019). and VGG19: A
very deep convolutional network that consists of 19 layers and
uses small filters (3x3) and max-pooling layers to reduce the spatial
dimensions of the feature maps (Sudha and Ganeshbabu, 2020) as
a backbone. They have been trained on ImageNet dataset.

4.2.2 Semantic segmentation models
Based on the input data and the task at hand, some

CNN architectures were considered. The selection of specific
architectures such as U-Net, SegNet, DeepLabV3, and PSPNet
was driven by their demonstrated effectiveness in semantic
segmentation tasks. U-Net was selected for its symmetric encoder-
decoder architecture with skip connections, which facilitates
precise localization by combining high-resolution features from the

encoder with upsampled outputs (Ronneberger et al., 2015). SegNet
was chosen for its efficient use of encoder feature maps to perform
nonlinear upsampling in the decoder, making it particularly
effective for pixel-wise classification tasks (Badrinarayanan et al.,
2017). DeepLabV3 was selected due to its use of atrous convolution,
which allows for larger receptive fields without loss of resolution,
and its spatial pyramid pooling that captures multi-scale contextual
information (Chen et al., 2018). PSPNet was included for its
pyramid pooling module that effectively captures global context
information at different scales (Zhao et al., 2016).

The modifications to architectures were primarily driven by the
need to enhance accuracy. Specifically, the resolution of the output
layer was increased to produce a higher-resolution binary mask,
which is critical for accurately extracting anthropometric data. This
increase in resolution ensures that the finer details of the human
body segmentation are captured more precisely, thereby improving
the accuracy of the anthropometric measurements derived from
these masks. The modifications involved incorporating additional
convolutional layers and bilinear interpolation techniques in the
upsampling process, which enhanced the spatial resolution of
the segmentation maps and led to more detailed and accurate
segmentation outputs.

4.2.2.1 Modified U-Net

U-Net was developed for biomedical image segmentation, we
can use it for binary semantic segmentation tasks. The architecture
stems from the FCN (Roman, 2023). The main idea is to
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FIGURE 4

Modified SegNet with CNN models as an encoder.

supplement a usual contracting network by successive layers, where
pooling operations are replaced by upsampling operators.

The architecture has five blocks of up-convolutional layers,
each followed by a ReLU activation function. The up-convolutional
layers increase the spatial resolution of the feature maps by a
factor of two. Last block has a main input layer (512x152x3)
for concatenation with upsampled layer by 2x2 from output of
previous block (Figure 3).

4.2.2.2 Modified SegNet

SegNet is a trainable segmentation architecture that consists of
an encoder network, a corresponding decoder network followed
by a pixel-wise classification layer (Badrinarayanan et al., 2017).
The architecture has five blocks of up-convolutional layers, each
followed by a ReLU activation function (Figure 4).

4.2.2.3 Modified DeepLabV3

The DeepLabV3 model has the following architecture: Features
are extracted from the backbone network (VGG, EfficientNet,
ResNet). To control the size of the feature map, atrous convolution
is used in the last few blocks of the backbone. Apart from using
Atrous Convolution, DeepLabV3 uses an improved ASPP module
by including batch normalization and image-level features (Chen
et al., 2018).

The ASPP module is a set of parallel dilated convolutions with
6, 12, 18 dilation rates. The output of each convolutional layer is
then concatenated along the channel dimension to create a multi-
scale feature representation. The upsampled by 4x4 feature map
is concatenated with the feature map output by the encoder stage
via a skip connection. 2 Upsampling layers with sizes 4x4 and 2x2
followed by 1x1 convolutional layer and then Sigmoid activation
function (Figure 5).

4.2.2.4 Modified PSPNet

The PSPNet encoder contains the CNN backbone with dilated
convolutions along with the pyramid pooling module. The output
of the backbone is fed into a pyramid pooling module, which
captures contextual information at multiple scales. The pyramid
pooling module consists of four parallel pooling layers, each with
a (1, 1), (2, 2), (4, 4), (8, 8) bin size.

The output of the pyramid pooling module goes through five
blocks of up-convolutional layers that uses bilinear interpolation.
The feature map from last block is processed by a series of
convolutional layers to reduce the number of channels and output
a feature map with one channel as the number of classes to be
segmented (Figure 6).

5 Results and analysis

5.1 Quantitative results

The parameters for training were as follows: Adam optimizer
with learning_rate = 0.001, the loss function is binary-
crossentropy that is typical for binary segmentation tasks. The
dataset was split into two parts using validation_split = 0.2. To
avoid overfitting, we set patience = 5, monitor =′ val_loss′,
epochs = 50, batch_size = 8 (Table 4).

For training, all models were runwith the same parameters. The
highest training accuracy was shown by the U-Net model with the
EfficientNet and DeepLabV3 with the VGG19 backbones (Table 4).
The U-Net with EffisientNet shows less accuracy in training than
DeepLabV3 with VGG19, but the total number of parameters in
DeepLabV3 with VGG19 is more than two times. Despite this,
the difference in accuracy in training is minimal. When validating,
U-Net with EfficeintNet shows greater accuracy than the second
model. For all other indicators, the situation is the same. The U-Net
with EfficientNet as a backbone model is ahead of all other models
in Precision, Recall, and IoU.

5.2 Visual comparisons

All trained models were tested on real data. Surprisingly, all
DeepLabV3 models showed the worst results of all the others. U-
Net and SegNet with EfficientNet as a backbone and all PSPNet
models except the ones with VGG19 as a backbone have good
results (Figure 7).

The visual comparison of the segmentation results reveals key
differences between the models. U-Net model produces highly
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FIGURE 5

Modified DeepLabV3 with CNN models as an encoder.

FIGURE 6

Modified PSPNet with CNN models as an encoder.

accurate boundaries, closely matching the true segmentation, while
others often appear to under-segment the images, missing finer
details. PSPNet with EfficientNet, on the other hand, shows
a tendency to over-segment certain regions, especially in the
legs and body regions. Despite these differences, all five models
perform well in terms of the general quality of segmentation.
Overall, while each model has its strengths and weaknesses, U-
Net and SegNet with EfficientNet provide the most accurate
and consistent results across a variety of real images, even

though SegNet models showed some of the worst results in
validation training.

5.3 Robustness and generalization

For comparison, the models with the best results on the TikTok
Dataset were trained, along with the previously used and initially
pre-trained PSPNet. All the resulting models were tested on real
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TABLE 4 CNNmodels with the best results.

Parameters U-Net with
E�cientNet

SegNet with
E�cientNet

DeepLabV3 with
VGG19

PSPNet with VGG19

Total parameters 9,201,465 7,454,805 21,486,337 29,198,257

Training accuracy 0.998296 0.996924 0.998348 0.997840

Training loss 0.003964 0.007163 0.003772 0.004974

Validation accuracy 0.997578 0.996091 0.997496 0.996516

Validation loss 0.006075 0.009327 0.006598 0.009416

Precision 0.991013 0.973065 0.982789 0.986469

Recall 0.986196 0.986311 0.974841 0.982710

IoU 0.977454 0.960099 0.958478 0.969640

FIGURE 7

Di�erent model tests on real images.

images. As expected, the models trained on our dataset performed
better in terms of determining a person’s true physique. At the
same time, the rest defined the silhouette of a person with clothes.

PSPNet also correctly detects the silhouette of a person with clothes;
the results are not very solid, and there are errors in some areas.
The results of SegNet with EfficientNet are solid and cover more
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FIGURE 8

Models comparison.

than required. This can be seen when overlaying on a real image
(Figure 8).

Results of SegNet and UNet models were compared with
EfficientNet as an encoder trained using IoU loss and Binary-
crossentropy loss (Table 5).

U-Net models with EfficientNet exhibit better accuracy results,
with their values being nearly identical. The primary distinctions lie
in the losses incurred. For models employing an IoU loss, the loss
values are nearly equivalent, whereas for those utilizing a Binary-
crossentropy loss, the loss rates are considerably lower compared to
IoU loss. The resultant model was tested on real images featuring a
man wearing a sweatshirt. The tests demonstrated that the model
takes clothing into account when determining the shape of a
human body.

Extensive testing was conducted on the model using real
human images featuring a variety of clothing types and body
shapes to evaluate the robustness and accuracy of the segmentation
and anthropometric data extraction algorithms of this study.
Specifically, testing was performed on real human subjects,
ensuring diverse representations in terms of clothing overlays and
body types (Figure 9). The performance of the algorithm was
then compared with actual anthropometric measurements. This
comparative analysis involved 9 participants, who provided their
real anthropometric data for validation purposes. To calculate
the measurements, we have used the algorithm for determining
characteristic points from combined data. The detailed results of
this analysis, including the comparative performance metrics, are
presented in the Table 6.

6 Conclusion

Various artificial intelligence technologies are used to obtain
anthropometric data of the body without contact with the body.

However, many of them have limitations or are tailored to
specific conditions, which reduces the feasibility of utilizing these
technologies. Existing datasets are designed to obtain the silhouette
of a person with clothes, which cannot be applied in task. In
this article, a method for creating a dataset to determine the true
silhouette of a person, independent of clothing, is proposed. The
resulting dataset is then applied to several popular architectures.

As a result of the work performed, a training dataset of more
than 22000 pictures with semantic segmentation of the human
body, taking into account clothing, was obtained. The dataset were
used to train popular neural networks of semantic segmentation
with CNN architectures as a backbone. The trained modules are
tested with real data. The accuracy of the data allows the dataset
to be used to determine a person’s true body. Among the models
created, the best result was shown by U-Net with the EfficientNet
basis. Testing on real data showed good results. To summarize the
above, dataset provided in this study can be used to derive human
anthropometric data from real images (Figure 10).

When evaluating the accuracy of the anthropometric data
extraction algorithm, performance was analyzed across various
body measurements, including Neck, Shoulder, Chest, Thallium,
and Hip. The dataset highlights both the strengths and areas
for improvement of the algorithm. The algorithm demonstrates
relatively consistent accuracy in extracting Neck and Shoulder
measurements, indicated by their lower standard deviations and
means close to zero. This suggests a balanced extraction process
without significant bias. However, the Chest measurements, despite
having a positive mean, exhibit higher variability, indicating the
need for better accuracy and consistency.

Notably, Thallium and Hip measurements present the greatest
challenge, showing the highest standard deviations and widest
ranges. This variability points to substantial inconsistencies in
the data extraction process, underscoring the need for refinement
in these areas. To improve the algorithm’s performance, we
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TABLE 5 UNet and SegNet models with E�cientNet as a backbone trained using di�erent loss functions.

Parameters IoU loss used Binary-crossentropy loss used

U-Net with
E�cientNet

SegNet with
E�cientNet

U-Net with
E�cientNet

SegNet with
E�cientNet

Accuracy 0.998740 0.997973 0.998404 0.997124

Precision 0.980982 0.991212 0.991013 0.973065

Recall 0.990318 0.990829 0.986196 0.986311

IoU 0.971663 0.982201 0.977454 0.960099

IoU loss 0.017799 0.028337 0.022545 0.039901

Binary-crossentropy loss 0.018111 0.028633 0.003837 0.006881

FIGURE 9

Results of testing our final model on real human subjects.

TABLE 6 Deviation of algorithm for determining characteristic points from real data (cm).

Person Neck Shoulder Chest Thallium Hip

Person 1 1.54 0.19 4.35 3.82 3.39

Person 2 0.64 -1.4 0.52 3.61 -0.71

Person 3 -2.36 1.3 3.11 4.4 4.43

Person 4 0.17 -2.73 -1.52 -2.58 -1.94

Person 5 -0.51 -2.62 2.35 2.82 4.44

Person 6 -0.94 2.41 3.5 -1.55 4.29

Person 7 -0.35 1.1 -2.15 -5.76 -3.98

Person 8 -0.27 3.02 -1.51 -3.38 -4.29

Person 9 -0.04 -0.34 1.75 -3.42 -4.03

Average -0.235 -0.1 1.15 -0.22 0.17

will focusing on enhancing the extraction methods for Thallium
and Hip measurements, conducting thorough error analysis to
address the causes of high variability, and increasing the diversity
of test cases to ensure robust performance across different
scenarios. Through the implementation of these improvements,
the aim is to achieve more precise and consistent measurements,
thereby enhancing the overall reliability and applicability of
the algorithm.

The practical implications of this study are significant for the
e-commerce and fashion industries. Accurate anthropometric data
extraction can revolutionize virtual fitting rooms, allowing
customers to try on clothes virtually and obtain better
fitting garments, thereby reducing return rates and associated
logistical costs.

A limitation of this work is that while the dataset created
assists in determining the size of a person’s body, it necessitates
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FIGURE 10

Results of testing our final model (UNet with E�cientNet) with PSPNet trained on our dataset.

combining the results of the resulting model with the model
for determining the person’s posture, significantly slowing down
the result acquisition process. To address this issue, the next
phase of the work will explore the development of a new dataset
for identifying anthropometric keypoints from photography.
This set will then be tested on existing CNN architectures for
landmark detection.
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