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The application of artificial intelligence technology in the medical field

has become increasingly prevalent, yet there remains significant room for

exploration in its deep implementation. Within the field of orthopedics, which

integrates closely with AI due to its extensive data requirements, rotator cu�

injuries are a commonly encountered condition in joint motion. One of the

most severe complications following rotator cu� repair surgery is the recurrence

of tears, which has a significant impact on both patients and healthcare

professionals. To address this issue, we utilized the innovative EV-GCN algorithm

to train a predictive model. We collected medical records of 1,631 patients who

underwent rotator cu� repair surgery at a single center over a span of 5 years.

In the end, our model successfully predicted postoperative re-tear before the

surgery using 62 preoperative variables with an accuracy of 96.93%, and achieved

an accuracy of 79.55% on an independent external dataset of 518 cases from

other centers. This model outperforms human doctors in predicting outcomes

with high accuracy. Through this methodology and research, our aim is to

utilize preoperative prediction models to assist in making informed medical

decisions during and after surgery, leading to improved treatment e�ectiveness.

This research method and strategy can be applied to other medical fields, and

the research findings can assist in making healthcare decisions.

KEYWORDS

deep learning, rotator cu� retear, graph convolution network, prediction model, big

data

1 Introduction

Rotator cuff tears (RCTs) are a common cause of shoulder pain and often

leads to dysfunction in the glenohumeral joint (Rachelle and Romi, 2021). They

affect over 40% of patients over the age of 60, resulting in annual surgical

repairs ranging from 30,000 to 75,000 in the USA (Ricchetti et al., 2012). In

addition to pain and dysfunction, Rotator cuff injuries can have negative effects on

mental and social wellbeing (Chepeha and Sheps, 2016). The high prevalence of

this disease results in significant socioeconomic burden and strains on healthcare

insurance due to the associated costs of diagnosis, treatment, and rehabilitation
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(Yamamoto et al., 2010). Arthroscopic rotator cuff repair (ARCR)

of shoulder is an effective and the most common operative

treatment. It alleviates the pain and functional impairments

caused by this disease after surgery and rehabilitation exercises.

However, postoperative complications can significantly impact the

effectiveness of the treatment for this condition. Rotator cuff

retear is a prominent post-arthroscopic rotator cuff repair (ARCR)

complication, with a significant risk of retear ranging from 8.3%

to 27.3% (Fu et al., 2020; Davey et al., 2023; Routledge et al.,

2023; Tsuchiya et al., 2023). Tear recurrence can be influenced

by factors including: (1) inadequate strength of the initial

repair construct, and (2) inappropriate postoperative rehabilitation

causing structural failure of the repair (Bigliani et al., 1992; Neviaser

and Neviaser, 1992; Boileau et al., 2005; Cho et al., 2015). Once

retear occurs, it results in persistent pain and limitedmobility in the

shoulder joint, even more severe than before surgery. Doctors have

only two treatment options: conservative management and revision

surgery. However, medication (i.e., conservative management)

has limited efficacy. A 10-year follow-up study on patients with

postoperative re-tear of ARCR managed conservatively found no

improvement in the average long-term ASES score (79 points,

range 50–95 points) or the average visual analog scale (VAS) pain

score (2.2 points, range 1–4 points) compared to pre-treatment

scores (Paxton et al., 2013). Additionally, revision surgery is

challenging and has a high retear rate (Desmoineaux, 2019).

Reverse shoulder arthroplasty can indeed address the problem,

but it entails substantial trauma and a multitude of complications

(Ernstbrunner et al., 2017). A retrospective study by Jeong et al.

(2022), involving 200 patients, revealed a gradual decline in long-

term functional outcomes of the shoulder joint over time. In cases

of postoperative retear, conservative medication treatment or even

surgical revision fail to yield satisfactory outcomes. Meanwhile,

the patient’s symptoms continue to worsen, significantly impairing

the effectiveness of medical care and giving rise to potential

doctor-patient conflicts. Consequently, our focus has shifted to the

prevention of postoperative re-tear.

In the past decades, artificial intelligence (AI) has made

significant progress and demonstrated immense potential in

addressing a wide range of problems. The medicine field is

currently exploring the clinical applications of AI. AI is one of the

new-age computer technologies that can perform human cognitive

functions by analyzing data. Deep learning is an application of

artificial intelligence, utilizes big data analysis to generate predictive

algorithms (Obermeyer and Emanuel, 2016). When dealing with

complex data problems, and even certain socially relevant data

problems (such as medical issues), it demonstrates excellent

performance (Jordan and Mitchell, 2015). Suzuki et al. (2022)

achieved 99.3% accuracy, comparable to orthopedic surgeons, in

diagnosing radius fracture from plain radiographs using a CNN

model. Mutasa et al. (2020), Bae et al. (2021) and Urakawa et al.

(2019) in their respective studies used DL models to diagnose

femoral neck fracture and intertrochanteric fracture, both of which

were superior to specialist orthopedic surgeons. Deep learning can

also predict osteoporosis and assess fracture risk (Hsieh et al.,

2021; Löffler et al., 2021). Furthermore, researchers have developed

models for image recognition of rotator cuff injuries and calcific

tendinitis (Chiu et al., 2022; Lee et al., 2023). Recent studies

have even established prediction models for femoral head necrosis,

thereby aiding in the formulation of clinical decisions (Shen et al.,

2024). This expands the capabilities of doctors in their practice.

The prospect of artificial intelligence medical models is worthy

of recognition, and its application scope is constantly expanding

(Feng et al., 2022).

The study aims to utilize deep learning algorithms to identify

numerous preoperative variables and construct a postoperative

re-tear prediction model for ARCR. The goal is to predict

the likehood of re-tear before surgery, enabling clinicians to

make informed decisions such as selecting a more secure

fixation method during the operation or implementing a more

stable rehabilitation approach post-operation, thereby significantly

reducing the probability of re-tear. This approach can improve

the treatment effectiveness of ARCR, enhance the doctor-patient

relationship, and optimize the diagnosis and treatment system.

There has been no attempt made to predict the rate of re-

tear after ARCR. First, we performed this experiment under the

assumption that postoperative retear could be predicted using

various preoperative indicators.

2 Materials and methods

2.1 Study subjects and data collection

Subjects were patients who underwent ARCR by four

experienced chief surgeons in our hospital from January 2016

to September 2022. The inclusion criteria are defined as follows:

patients who underwent ARCR (only breakage and repair of the

supraspinatus muscle were included); during the 3–12 months

follow-up period, a subsequent MRI revealed a discontinuity of

the rotator cuff. The exclusion criteria are defined as follows: the

large area of rotator cuff tear requires tendon grafting and superior

capsule reconstruction; the small area of rotator cuff tear does

not require anchor fixation; combined with shoulder fracture or

patients with complex underlying diseases such as head injury

caused by a car accident and heart, liver, lung and other multiple

organ dysfunction etc. (Figure 1).

All data were collected from the electronic medical record

and clinical data records of the Affiliated Lihuili Hospital, Ningbo

University. External data were obtained from East Medical Center.

In this study, research group is defined as patients with rotator

cuff discontinuity occurring within 3–12 months after surgery

(identified through rotator cuff tissue discontinuity observed

during MRI re-examination). The control group was defined as no

difference at 1-year follow-up. A total of 62 preoperative variables

were collected (Table 1).

This retrospective study was approved by the ethics review

board of the Affiliated Lihuili Hospital, Ningbo University

(no. KY2023SL058–01).

2.2 Operative technique and rehabilitation
after ARCR

To ensure consistency, our organization adopts the same

surgical approach and rehabilitation strategy as external verification

institutions. The surgery we perform is arthroscopic rotator
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FIGURE 1

Flow chart of inclusion and exclusion.

cuff repair (ARCR) with double-row fixation and arthroscopic

acromioplasty. This technique is used for all operations. The

procedure consists of the following general steps: (1) After general

anesthesia is achieved, left lateral position, affected upper arm

abduction traction bracket fixed, Routine surgical area disinfection

towel. (2) A small incision is made on the anterior and posterior

sides of the affected shoulder. The arthroscope is then inserted

through a posterolateral approach and the probe is inserted into the

anterior incision to explore the intraarticular tissue. Proliferative

synovium is removed and the long head tendon of the biceps

brachii is severed. (3) Shape the acromion. (4) The arthroscope is

inserted into the subscapular space. A bone bed is created at the

greater tubercle of the humerus. Internal rows consisting of one

to two 4.5mm anchors are inserted and external rows consisting

of one to two 4.75mm anchors are inserted laterally to fix the

ruptured supraspinatus muscle. (5) Close incision after satisfactory

arthroscopic probing.

All patients followed the same recovery strategy. Nonsteroidal

anti-inflammatory drugs (NSAIDs) were given to relieve

inflammation and pain after surgery, patients were advised

to avoid traction and maintain an autonomous position. After 1

month later, we will teach the patients to do rehabilitation exercises,

including stretching exercises in different directions (front, back,

left, right) and wall climbing exercises. NASIDs will be continued if

patients experience significant nighttime pain symptoms that affect

their sleep. Monthly follow-up appointments were scheduled to

monitor patients’ posture and ensure proper functional recovery.

Generally speaking, the pain symptoms will improve significantly

and function will recover significantly after the third month.

2.3 Deep learning prediction via EV-GCN

We implemented the Edge-Variational GCN (EV-GCN)

algorithm using PyCharm in python to extract features from

clinical data (Huang and Chung, 2022). The overview of the

pipeline and the research approach is depicted in Figure 2.

This EV- GCN consists of two hidden layers, each followed by

ReLU activation to increase non-linearity, and then directed to

fusion block and MLP predictor. Phenotypic characteristics

are discrete data, that is, gender, clinical symptoms and

other dichotomous data. Non-phenotypic characteristics

refer to non-discrete data, namely individual laboratory

measures. There was a certain difference in the amount of

data between the two groups, and we used downsampling to

align them.

Construction of adaptive graph: the non-phenotypic features

of patients are utilized as data points, and the similarity of

phenotypic features of two patients is calculated by the PAE

method, which is used as the edge between two data points.

V is a finite set of vertices, where |V| = N, E ⊆ V × V is

a set of edges, and W is the weight of the edge. The learning

function of (xi, xj) is the edge weight wi, j ∈ W between the

i-th and j-th vertices. Using a paired associative encoder (PAE)

with trainable parameters � to model the learning function f: (xi,

xj) → R, so that wi, j = f (xi, xj; �) (where the parameter

� is initialized by He Initialization). By using the above idea

of constructing edges and points to obtain an adaptive graph

(Figure 1), then performing edge dropout, four-layer GC (each

hidden layer has a ReLu function), and Fusion and MLP, the
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TABLE 1 A total 62 types of preoperative descriptive data.

Types of
variables

Variables Range Units

Clinical index Side affected Right/Left NA

Caused by trauma Yes/No NA

Symptom duration 7 d;7–30
d;1–3m;3–
6m;6–12m;1a

NA

Nocturnal pain With/Without NA

Demographics Sex Male/Female NA

Age 16–85 Year

Comorbidities Hypertension With/Without NA

Hyperlipemia With/Without NA

Diabetes mellitus With/Without NA

Smoking history With/Without NA

Drinking history With/Without NA

Laboratory index RBC 3.80–5.10 ∗10∧12/L

HB 115–150 g/L

HCT 35.0–45.0 %

PLT 125–350 ∗10∧9/L

PCT 0.11–0.28 %

TP 65.0–85.0 g/L

ALB 40.0–55.0 g/L

GLB 20.0–40.0 g/L

A/G 1.2–2.4 NA

ALT 7–40 U/L

AST 13–35 U/L

ALP 50–135 U/L

GGT 7–45 U/L

AST:ALT NA NA

TBIL 0.0–23.0 µmol/L

DBIL 0.0–8.0 µmol/L

IBIL 1.7–15.2 µmol/L

K 3.50–5.30 mmol/L

Na 137.0–147.0 mmol/L

Cl 99.0–110.0 mmol/L

Ca 2.11–2.52 mmol/L

P 0.85–1.51 mmol/L

Mg 0.60–1.10 mmol/L

GLU 3.89–6.11 mmol/L

CREA 41.0–81.0 µmol/L

UREA 3.10–8.80 mmol/L

URIC 150–350 µmol/L

Trig 0.56–1.70 mmol/L

(Continued)

TABLE 1 (Continued)

Types of
variables

Variables Range Units

CHOL 2.84–5.69 mmol/L

HDL-C 1.03–1.55 mmol/L

LDL-C 1.55–3.36 mmol/L

Laboratory index APOA1 1.20–1.60 g/L

APOB 0.80–1.20 g/L

APOE 2.0–10.0 mg/dL

APoB/APoA1 NA NA

LPa 0.0–0.30 g/L

LDH 120–250 U/L

CK 40–200 U/L

CHE 3930–10800 U/L

PALB 160–350 mg/L

TBA 0.0–15.0 µmol/L

ADA 0.0–20.0 U/L

GSP 1.15–2.25 mmol/L

B2MG 0.91–2.20 mg/L

AFU 14.3–39.9 U/L

AMY 35–135 U/L

HCY 0.0–20.0 µmol/L

LAC 0.50–2.20 mmol/L

IRON 7.8–32.2 µmol/L

TIBC 45.0–75.0 µmol/L

ABO A/B/AB/O NA

The range of Symptom duration:≤ 7 days; 7 days < duration < 30 days;1 month ≤ duration

< 3 months; 3 months ≤ duration < 6 months; 6 months ≤ duration < 12 months;1 year ≤

duration; Smoking/Drinking history: includes patients who ever suffered or are suffering; NA,

not applicable.

result can be output. After applying the conventional edge dropout,

convolution, fusion operation, an MLP is constructed: xi, xj are

normalized to 0 mean and 1 variance, and the projection network

is used to map these normalized values to the latent space hi ∈

RDh (commonly used Dh = 128). The projection network is a

multi-layer perceptron (MLP) with one hidden layer (the hidden

layer contains batch normalization and dropout operations). The

latent feature formula of xi is hi = � (2) σ (� (1) ∼xi + b), where

σ is the ReLU function (xi is the normalized input). Finally, the

output result is 0 and 1, where 0 means no tearing and 1 means

tearing again.

The ratio of training and test sets is 8:2.10-fold nested

cross-validation was performed using Stratified K Fold,

so there is no explicit validation set. In order to improve

convergence and avoid overfitting, hidden layers are

combined with batch normalization and dropout. The

learning rate was 0.002. Edgedropout was 0.3. Dropout

was 0.2. External independent data sets are validated using

two-fold validation.

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1331853
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Zhang et al. 10.3389/frai.2024.1331853

2.4 Model evaluation metrics and empirical
evidence

We use accuracy, precision, recall, F1 score, loss curve, and

confusionmatrix for evaluating, discriminating, and calibrating the

model performance. The confusion matrix is a two-dimensional

model, where the horizontal axis represents predicted labels, which

are the classifications obtained by the model’s predictions on the

data samples, and the vertical axis represents the true labels,

which refers to the actual classification of the data collected in

this study. By comparing the differences between the true labels

and predicted labels, the confusion matrix is able to visualize

and display the quantities of various classification outcomes. In

addition, the loss function is employed to measure the discrepancy

between the predicted outcomes and ground truth. The progressive

fitting of the loss function indicates that the model performs well

in predicting and comprehending the facts within the dataset.

By examining the dataset characteristics (Tables 2, 3), professional

medical background, and ethical approval, we guarantee utmost

accuracy and soundness of our dataset. The authentic dataset

and loss function serve as crucial criteria and foundations for

determining the model’s adherence to facts.

3 Results

Overall 2,372 individuals were counted and a total of 147,064

data size were collected, 741 were excluded because of the exclusion

criteria and 1,631 were included, of which research group: 208

(35.1% male sex, 61.1% ≥60 years old, 31.7% caused by trauma,

62.5% duration of symptoms≥6 months), control group: 1,423

(35.1% male sex, 51.3% ≥ 60 years old, 20.9% caused by trauma,

60% duration of symptoms≥6 months), 101,122 data size were

included at last (Table 2). The experimental group and the control

group showed no significant differences in basic variables, such

as gender, fraction of elderly people, and fraction of patients with

extended symptom duration, in the independent data set.

A total of 270 external independent data sets were collected

including 22 cases in the research group (31.8% male sex, 22.7%

≥60 years old, 31.8% caused by trauma, 45.5% duration of

symptoms ≥ 6 months) and 248 cases in the control group (35.4%

male sex, 41.1% ≥60 years old, 31.4% caused by trauma, 43.4%

duration of symptoms ≥ 6 months) (Table 3). The independent

data set had a limited number of samples and distinct sample

attributes from the model data set, with lower proportions of

older people and patients with extended symptom duration in

the external data. The 62 preoperative variables included in the

two datasets are shown in Table 1, including 4 clinical indicators,

2 demographic indicators, 5 accompanying symptoms, 51 blood

biochemical indicators, and their normal ranges and units.

Our DL prediction model achieved 96.93% accuracy,97.18%

recall, 99.37% Precision, and 98.26% F1-Score, as verified by ten-

fold cross-validation, and the results of the test set (Table 4) showed

no apparent anomalies.

The confusion matrix of the EV-GCN model is shown in

Figure 3, where the predicted situation is represented by the

horizontal axis and the actual situation is represented by the

vertical axis, normalized by column. This visualization shows that

94.89% of the cases of re-tear after arthroscopic rotator cuff repair

were correctly predicted as re-tear, and 97.18% of the cases of no

difference in follow-up after surgery were correctly predicted as

no re-tear.

The training loss and the validation loss of the model displayed

a consistent drop and a small overfitting respectively in the

loss curve (Figure 4), but they both moved toward convergence

progressively. Furthermore, themodel was verified by external data.

The accuracy rate of prediction is 79.55%, precision is 73.33%, recall

is 1, and F1 score is 83.04%.

4 Discussion

The main finding of this study is that the graph convolution

network (GCN) algorithm can accurately predict rotator cuff

tear recurrence after arthroscopic rotator cuff repair (ARCR)

before surgery. This idea has broader applications beyond other

complications and surgeries, as it also inspires the exploration of

combining medical non-image data with graph neural networks.

The proposed model achieved 96.93% accuracy, which was

validated by independent external data. The findings supported

the original hypothesis. Importantly, this study is the first to

successfully predict postoperative re-tear of the rotator cuff. The

number of arthroscopic rotator cuff repair is still increasing year by

year. The conduct and completion of this study will benefit joint

surgeons, as well as the understanding and treatment of rotator

cuff injuries.

The formulation of inclusion and exclusion criteria in the

experiment is based on clinical practice. As 90% of rotator cuff

injuries involve the supraspinatus muscle, the experiment decided

to focus on this muscle to enhance accuracy. Typically, within

3 months after ARCR, the tendon has not fully reconstructed.

Tears occurring after 12 months are classified as new rotator

cuff injuries rather than postoperative re-tears. Anchor fixation

alone is often inadequate for repairing large, full-thickness rotator

cuff tears. The use of tendon graft or other techniques differs

significantly from anchor fixation. Small, superficial rotator cuff

injuries do not necessitate anchor fixation and cannot be compared

to conventional rotator cuff repair methods, thus leading to

their exclusion.

To assess the performance of the model, we generated the

loss curve of the model, as shown in Figure 4. The curve

gradually converged, and the model generalized well with good

reliability. This indicates that the model could learn the intrinsic

characteristics of the data, but the curve was not fully fitted. We

predicted that increasing the amount of data would make the

model more accurate. According to our analysis, this might be

because (1) GCN node classification would deteriorate due to

different data distributions; (2) node information was aggregated

but not transmitted back, and too much unlabeled information

would affect the performance of the whole network; (3) the amount

of external data was small and unbalanced. We calculated the

sensitivity and specificity values and then constructed the confusion

matrix to analyze the performance of the model, as shown in

Figure 3. In general, a performance above 90% is considered

“excellent” (Hosmer et al., 2013). The results depicted in this figure

demonstrate the model’s strong performance in this classification
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FIGURE 2

Study overview. PAE, pairwise association encoder; ED, edge dropout; ReLu, linear rectification function. Fusion: vertex-wise concatenation. Colors

in the graphs: green and orange - labeled diagnostic values (e.g., healthy or diseased), gray: unlabeled. Ui: predictive uncertainty for subject i.

TABLE 2 Sample characteristics of DL data sets (our hospital).

Total samples (n = 2,372) Eliminated
samples (n =

741)

Total
research
group (n =

286)

Eliminated
research
group (n =

78)

Total control
group (n =

2,086)

Eliminated
control

group (n =

663)

Sample characteristics Partial variables Research group (n = 208) Control
group (n =

1,423)

ALL (n =

1,631)

Surgery after Arthroscopic Rotator Cuff
Repair

Gender: Male 73 (35.1%) 499 (35.1%) 572

Gender: Female 135 (64.9%) 926 (65.1%) 1,061

Age at surgery: ≥60 y 127 (61.1%) 730 (51.3%) 857

Caused by trauma 66 (31.7%) 297 (20.9%) 363

Duration of symptoms:
≥6 months

130 (62.5%) 854 (60%) 984

task, characterized by high discriminability, accuracy, quality,

robustness and generalizability.

At the beginning of the study, we conducted t-tests and

homogeneity of variance tests on the data. The analysis revealed

that only a few characteristics exhibited p < 0.05, indicating

no statistically significant difference between the two groups.

We attempted commonly used artificial intelligence algorithms

such as Bayesian and Random Forest, but the results were

unsatisfactory (see Supplementary material). The complex and

uncertain relationship between nodes and the diversity of medical

data are more suitable for artificial neural networks and other deep

learning algorithms to explore the internal relationships, especially

the Edge-variational GCN used in this study. This study confirms

the great role of EV-GCN construct in clinical computer-aided

diagnosis. Subsequent researchers can try to add Monte-Carlo edge

dropout to the model to estimate the predictive uncertainty related

to the graph topology.

The primary objective of our study was to predict the risk

of re-tear prior to surgery. To achieve this goal, we specifically

selected variables that were both preoperative and comprehensive

in nature. Although previous studies have identified operative

duration, biceps procedure, postoperative UCLA score, number

and size of RCTs as risk factors for re-tear (Le et al., 2014; Diebold

et al., 2017; Lee et al., 2017), we did not collect these data. BMI

was a significant (P < 0.001) risk factor for re-tear after rotator

cuff surgery (Ateschrang et al., 2018), but the BMI data in our

hospital system were incomplete, so we excluded it. Preoperative

imaging also had important reference value (Saccomanno et al.,

2015), but we could not match the data and images for the

large number of cases. Other factors that have been reported to

affect re-tear after ARCR include hyperlipidemia, smoking history,

age, gender, preoperative symptoms, and affected limb (Robinson

et al., 2013; Namdari et al., 2014; Garcia et al., 2017; Park et al.,

2018; França et al., 2021; Kim et al., 2021), but few studies have

systematically examined routine laboratory tests before surgery.

We hypothesized that these data could reflect the patient’s physical

condition over time and influence rotator cuff healing. Therefore,

in order to maximize the acquisition of features, we collected

as many as possible 62 preoperative variables, including clinical

and basic laboratory indicators. Most of these indicators were

based on standard medical tests (Table 1), offering high objectivity

and consistency.

Graph convolutional network (GCN) applies convolution

operations to graphs, utilizing the topological structure and

node features of graphs for information propagation and feature

extraction. Medical data often exhibit complex interrelationships

that are challenging to process directly using simple methods. The

dataset composed of 62 preoperative variables of this model is a

typical example of non-Euclidean data. The EV-GCN algorithm

contains a unique edge-dropout method, which is similar to
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TABLE 3 Sample characteristics of external data.

Sample characteristics (Form
East Medical Center)

Partial variables Research group
(n = 22)

Control group (n
= 248)

ALL (n = 270)

Surgery after Arthroscopic Rotator Cuff Repair Gender: Male 7 (31.8%) 88 (35.4%) 95

Gender: Female 15 (68.1%) 160 (64.5%) 175

Age at surgery:≥60 y 5 (22.7%) 102 (41.1%) 107

Caused by trauma 7 (31.8%) 78 (31.4%) 85

Duration of symptoms:≥6
months

10 (45.5%) 108 (43.4%) 118

TABLE 4 Verification result of EV-GCN deep learning model (our hospital).

Accuracy Precision Recall F1-
score

Fold 1 0.9757 0.993 0.9794 0.9862

Fold 2 0.9709 0.9929 0.9862 0.9896

Fold 3 0.9449 0.9929 0.9595 0.9758

Fold 4 0.9714 0.9931 0.9861 0.9896

Fold 5 0.9705 0.9929 0.9861 0.9895

Fold 6 0.9474 0.9929 0.9658 0.9791

Fold 7 0.9752 0.9797 1.000 0.9897

Fold 8 0.9532 0.9929 0.9659 0.9792

Fold 9 0.9706 0.9931 0.9799 0.9864

Fold 10 0.9196 0.993 0.9346 0.9628

Mean 0.9693 0.9937 0.9718 0.9826

Ps: All data are rounded to four decimal places.

dropout. When the model has too many parameters and not

enough training samples, the trained model is prone to overfitting.

This method will make the model more generalizable, because it

will not rely too much on some local features. It is very helpful for

the construction of medical models with complex relationships and

difficult data collection.

Artificial intelligence technology in the field of rotator

cuff tears is often limited to image recognition, classification,

and diagnosis, with less research focused on postoperative

complications. Recently, Shinohara et al. (2023) attempted to use

machine learning (ML) algorithms to predict postoperative re-

tears of the rotator cuff. Among the five algorithms applied,

the highest prediction rate achieved was only 87%, based on

statistical parameters from 353 collected cases. Cho and Kim (2023)

innovatively used intraoperative arthroscopic images to predict

postoperative re-tears, but the study included only 580 patients

and applied three traditional deep learning (DL) algorithms, with

the highest prediction rate reaching 91%. In contrast, our study

benefits from a large sample size, comprehensive variable range

coverage, systematic and internationally standardized variable

indices, innovative algorithms, and high prediction rates. It has

also undergone external validation, providing valuable assistance in

formulating clinical decisions.

This study has several limitations: (1) MRI images of rotator

cuff injury were not included. Because we were not sure whether

the prediction model could be successfully established. (2) This

was a retrospective single-center study. However, the results of

this study are credible, with a large amount of data and verified

by external data. (3) The number of re-tear cases was small

compared with normal cases. This is because the symptoms of

most patients can be significantly relieved after surgery, and the

situation of re-tear is less. (4) Deep learning techniques, including

graph convolutional networks, are generally uninterpretable due to

the black-box phenomenon, while medical treatment emphasizes

interpretability. (5) Due to technical reasons, we were unable to

construct the ROC curve, which makes the experimental results

less coherent. We demonstrated the correlation between the overall

health status of the body and the postoperative re-tear of the rotator

cuff using 62 preoperative variables, which are non-Euclidean data.

However, the specific clinical relevance still requires further study.

These are exactly what we are going to do next. MRI images can

describe the characteristics of cases from another modality. More

data, a wider range of sources, and more balanced data sets are

helpful to improve the accuracy of the model. Interpretable and

clinically relevant conclusions can also facilitate the application of

deep learning techniques in medical practice.

The application of deep learning technology in medicine

encounters various challenges, such as (1) Low-quality data (2)

Lack of explain ability due to the black box phenomenon (3)

Inadequate integration with existing EHR systems. We addressed

some of these challenges in our research design, but others remain

unresolved. In our future work, we will focus on constructing

multimodal models that integrate data and images. However, we

must also acknowledge the importance of interpretability. In the

healthcare field, which values logic and rigor, the “black box effect”

of artificial intelligence severely limits its development in the

medical domain. This is presently an active challenge in applied

research. In the future, we will investigate potential methods

for improving interpretability: (1) Introducing specific network

layer structures or mechanisms to ensure clear interpretations

of each hidden layer’s outputs on the model’s final predictions.

(2) Visualizing the prediction layer and utilizing attention

mechanisms to visualize regions of interest. (3) Exploring the

design of interpretable attention mechanisms that incorporate

expert knowledge, forcing the model to focus on specific lesion

areas or disease features, and enabling the attention mechanism

to be explained based on medical knowledge. Achieving the

translation of fundamental research will require collaboration

between clinical physicians and computer scientists.

In conclusion, a deep learning GCN algorithm was used to

develop a prediction model for re-tear after ARCR, which was

simple and practical with excellent performance. This model
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FIGURE 3

Confusion matrix of the EV-GCN deep learning model classification (Research group of our hospital).

FIGURE 4

Training and validation loss of the EV-GCN deep learning model (Research group of our hospital).
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enables clinicians to forecast postoperative results and make

informed decisions regarding the adoption of more reliable fixation

methods during surgery, as well as the implementation of a more

stable rehabilitation process in the early postoperative period.

The model has proven effective and holds practical value. By

successfully predicting re-tear after rotator cuff repair, this idea

deserves promotion to broaden its application scope.
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