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One or two things we know
about concept drift—a survey on
monitoring in evolving
environments. Part B: locating
and explaining concept drift

Fabian Hinder*†, Valerie Vaquet*† and Barbara Hammer

Faculty of Technology, Bielefeld University, Bielefeld, North Rhine-Westphalia, Germany

In an increasing number of industrial and technical processes, machine learning-

based systems are being entrusted with supervision tasks. While they have been

successfully utilized in many application areas, they frequently are not able

to generalize to changes in the observed data, which environmental changes

or degrading sensors might cause. These changes, commonly referred to as

concept drift can trigger malfunctions in the used solutions which are safety-

critical in many cases. Thus, detecting and analyzing concept drift is a crucial

step when building reliable and robust machine learning-driven solutions. In

this work, we consider the setting of unsupervised data streams which is highly

relevant for di�erent monitoring and anomaly detection scenarios. In particular,

we focus on the tasks of localizing and explaining concept drift which are crucial

to enable human operators to take appropriate action. Next to providing precise

mathematical definitions of the problem of concept drift localization, we survey

the body of literature on this topic. By performing standardized experiments

on parametric artificial datasets we provide a direct comparison of di�erent

strategies. Thereby, we can systematically analyze the properties of di�erent

schemes and suggest first guidelines for practical applications. Finally, we explore

the emerging topic of explaining concept drift.

KEYWORDS

concept drift, drift detection, drift localization, drift explanation, monitoring,

explainability, survey

1 Introduction

The environment around us is constantly changing. While humans are capable
of navigating an ever-changing environment, these changes pose challenges to many
automated systems (Ditzler et al., 2015). Considering monitoring and control tasks, e.g.,
in critical infrastructure (Vrachimis et al., 2022), manufacturing (Chen and Boning, 2017),
and quality control (Gabbar et al., 2023), in order to work reliably, automatized processes
and supervision algorithms need to be able to detect, react, and adapt to changes (Reppa
et al., 2016).

Formally, these changes can be described as concept drift (or drift for short)—a
change in the data generating distribution (Gama et al., 2014). They can be caused by
changes in the observed process, the environment, or the sensors acquiring the data. When
monitoring a system, for instance in manufacturing or quality control, it is crucial to
detect changes in the observed process as this might indicate faulty productions or general

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1330258
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1330258&domain=pdf&date_stamp=2024-07-19
mailto:fhinder@techfak.uni-bielefeld.de
mailto:vvaquet@techfak.uni-bielefeld.de
https://doi.org/10.3389/frai.2024.1330258
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1330258/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Hinder et al. 10.3389/frai.2024.1330258

malfunctions. In automated processes, on the other hand, it is
important to detect changes in the sensors and the environment
to take appropriate actions, e.g., replacing a faulty sensor or
adapting the system processing the collected data to a changed
scenario (Gama et al., 2004, 2014; Gonçalves et al., 2014).

Most often, we consider drift in stream setups (Ditzler et al.,
2015; Lu et al., 2018), where the underlying data distribution
changes. This requires models to adapt or to inform a human
operator to take appropriate action. This is closely related to
concept evolution in continual learning (Delange et al., 2021),
commonly discussed in deep learning, where concepts might
appear or vanish. Besides, data streams might suffer from
temporarily extreme class imbalances or the availability of features
might change over time. This can trigger the problem of so-called
catastrophic forgetting where a model cannot properly process
samples of a class after updating anymore. Drift is not limited to
data streams but can also occur in time-series (Aminikhanghahi
and Cook, 2017) where the single observations are highly
interdependent (Esling and Agon, 2012). Here, drift mainly occurs
in the form of trends. Commonly its absence is referred to as
stationarity.

Besides the settings where the data samples are collected over
time, considering manufacturing and quality control, frequently
data is collected at different locations and processed in the scheme
of federated learning (Zhang et al., 2021). Here, instead of gathering
all the data at a global server processing is done locally and the
results are then combined to get an overarchingmodel at the server.
Similar to stream learning, in this setting it is necessary to account
for differences or drift in the data collected at different locations
to obtain a robust global model (Liu et al., 2020). Finally, drift
must be considered when performing transfer learning, a strategy
in deep learning (Pan and Yang, 2010). The basic idea is to deal
with limited data by pre-training a model on a similar task using
a more extensive dataset and later fine-tuning it to the goal task
using a limited dataset at hand. In this work, we will focus on data
streams only. However, many of the discussed strategies can be
directly applied to the previously named tasks.

Considering processing drifting data streams there are two
main groups of tasks. One is to keep a valid model performing
some predictive task on the data, e.g., classifying a product into
different categories or estimating a property of interest (online or
stream learning), another goal is tomonitor a system for anomalous

behavior to react appropriately. In this work, we will not consider
online learning, as many surveys are providing a good overview of
this task (Ditzler et al., 2015; Losing et al., 2018; Lu et al., 2018) and
well-established toolboxes exist (Bifet et al., 2010; Montiel et al.,
2018, 2021). Instead, we will focus on the monitoring scenario,
which is very important in many different settings where drift is
expected due to the use of sensor devices or sensitivity to changes
in the environment. In this paper, we will focus on methods that
help human operators understand drift and related phenomena.
As such are not well addressed by loss-based approaches we
will focus on distribution-based or unsupervised methods. The
precise reasoning for this is provided in Section 2.2. We provide
a formal mathematical definition of the main problems, concepts,
and notions and a survey of how far these are addressed by current
technologies. Moreover, we also have a look at the in-depth analysis

techniques like drift localization in data space and the problem of
drift explanation.

The task of monitoring is to observe a system and to provide
all the information necessary to enable human operators or
automatized downstream tasks to take actions that ensure that
the system runs properly. Which information is required depends
on the specific task (Goldenberg and Webb, 2019; Verma, 2021).
However, generally, it can be summarized by addressing the
following questions about the drift (Lu et al., 2018):

The first question in every setting concerns whether (and when)
drift occurs. The task of determining whether or not there is
drift during a given time period is called drift detection (Gama
et al., 2014). In case a drift is detected, additional questions
need to be raised to appropriately react to the change in the
data distribution. A survey explicitly targeting unsupervised drift
detection is provided as the precursor part A (Hinder et al., 2024a)
to this paper. Although this paper is self-contained, we suggest the
interested reader to consult part A as an informative prior read
to ensure that all concepts from the field of drift detection are
introduced in depth.

A second question of interest might concern the severity of
the drift, as this might influence which kind of action needs to be
taken. Usually drift quantification (Lu et al., 2018) can be realized
as an intermediate step in drift detection: many methods for drift
detection estimate the rate of change by some kind of metric and
trigger an alarm if those changes exceed a threshold.

To take appropriate action, it is important to pinpoint the
drift more precisely. While drift detection and quantification deal
with the when by assigning drift-related information to the time
component, i.e., finding change points, or determining the rate
of change, drift localization (and segmentation) (Lu et al., 2018)
focus on the where and assign drift-related information to the data
points or space. Consider for example quality control. There might
already be an algorithm in place screening the data for known
anomalies. However, in case new anomalies in the product occur
it is required to detect those to analyze whether some action is
required, e.g., discarding the item. In this case, it is crucial to
identify the anomalous items, i.e., the drifting data samples, for
further analysis. We will focus on drift localization in Section 3.

In some settings answering the discussed questions is not
sufficient. In some systems, a malfunction, i.e., the drift, causes
a change in several features in all data points collected after the
drift event. For example, this might be the case if a sensor is
degrading and thus yielding changed measurements. In this case,
only using drift localization does not provide much information
about what happened in a comprehendible way. Instead, we need
more detailed information of what exactly happened and how it
can be described. Providing these detailed, complete, and human-
understandable descriptions of ongoing drift is referred to as drift
explanation (Hinder et al., 2023a). Such methods are designed
to support human operators by providing relevant information
on monitoring and adaptation processes. This is relevant as the
complexity of drift can easily surpass the level of information which
is provided by change points or the estimate of the rate of change.
Indeed, drift can manifest in a change in the correlation of several
features alone, making it nearly impossible for humans to observe
without machine aid. In a sense, drift explanations can be seen as
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the explainable AI (XAI) counterpart for drift detection: while usual
XAI explains why a model makes a decision (Gunning et al., 2019;
Molnar, 2020), drift explanations provide an explanation of why a
drift detector alerts for drift. This commonly makes use of various
techniques, including classical XAI. We provide an overview of the
most advanced drift explanation schemes in Section 4.

This paper is structured as follows. First, we provide a
formalization of concept drift (Section 2.1), and position this paper
both in the body of related work in the intersection of the stream
setup and supervised and unsupervised approaches (Section 2.2).
Afterward, we focus on drift localization (Section 3): We first
formalize the task and provide a general scheme most approaches
realize.We then discuss a number of methods and approaches from
the literature and finally analyze the strategies concerning drift
and stream-specific criteria. Before concluding this survey (Section
5), we discuss drift explanation by highlighting some of the most
advanced and interesting contributions (Section 4).

2 Concept drift—defining the setup

Before we look at drift localization and drift explanations in
detail, in this section, we formally define drift and discuss different
setups for working with it.

2.1 A formal model of concept drift

In the classical setup of machine learning, one assumes that
the distribution at training, testing, and application time is always
the same, i.e., we assume that the data generating distribution D is
time-invariant. In this case, a sample of size n is a collection of i.i.d.
random variables X1, . . . ,Xn ∼ D.

As discussed before, the assumption of time-invariant
distributions is violated in many real-world applications, in
particular, when learning on data streams. To resolve this issue
from a purely formal point of view, we incorporate time into our
considerations by allowing every point to follow a potentially
different distribution Xi ∼ Dti that depends on the time point ti of
observation. As it is unlikely to observe two samples at the same
time, i.e., ti 6= tj for all i 6= j, it is common to simply write Di

instead ofDti (Gama et al., 2014). This relates to the classical setup
if all Xi follow the same distribution, i.e., Di = Dj holds for all i, j.
One speaks of concept drift if this assumption is violated, i.e., there
exists i, j such thatDi 6= Dj (Gama et al., 2014).

However, as pointed out by Hinder et al. (2020) this definition
of concept drift depends on the used sample and not on the
underlying process. In particular, when taking two samples from
the same data source over the same period of time using
different sampling frequencies, we might end up with one sample
having concept drift while the other does not. This makes
understanding concept drift a hard problem. To deal with the
issue, it was suggested to take the statistical properties of time into
account (Hinder et al., 2020). To do so we consider a model of
time T rather than a mere index set. We assume that there is a
distribution PT on T that describes the likelihood of observing a
sample at time t, and a collection of distributions Dt for all t ∈ T

albeit, in practice, only a finite number of time points is observed.

Together PT and Dt form what we refer to as a distribution process

(in the literature this is also referred to as drift process).

Definition 1. Let T = [0, 1] and X = Rd. A (post hoc) distribution

process (Dt , PT) from the time domain T to the data space X is a
probability measure PT on T together with a Markov kernel Dt

from T to X , i.e., for all t ∈ T , Dt is a probability measure on X

and for all measurable A ⊂ X the map t 7→ Dt(A) is measurable.
We will just write Dt instead of (Dt , PT) if this does not lead to
confusion.1

Distribution processes are designed to model data streams.
In this case, one usually assumes that the observations are
independent but may follow different distributions. This setup is
not to be confused with time series or stochastic processes which
can be seen as randomly sampling a function from time to data.
In particular, this allows the observations to depend on each other.
Although both setups can be used to describe the same sequence of
data points, there are several subtitle differences in the underlying
mathematics and the interpretation (Hinder et al., 2024b). For
example, a temperature measurement is a stochastic process as
there is only one value for each point in time and the values
of successive measurements depend on each other, a stream of
ballots on the other hand would be more like a distribution process
because the single votes are more or less independent and we are
particularly interested in the overall distribution.

Given a distribution process, we can derive two distributions:
By adding a time-stamp to every sample the data follows what we
will refer to as the holistic distribution D. By collecting all samples
observed during a certain time window W ⊂ T the data follows
the mean distribution DW . Formally the distributions are given by
the following:

Definition 2. Let (Dt , PT) be a distribution process from T to
X . We refer to the distribution D on X × T which is uniquely
determined2 by the property D(A ×W) =

∫
W Dt(A)dPT(t) for all

A ⊂ X , W ⊂ T as the holistic distribution of Dt . Furthermore,
we call a PT non-null set W ⊂ T a time-window and denote by
DW(A) =

∫
W Dt(A)dPT(t | W) = D(A ×W | X ×W) the mean

distribution duringW.

A benefit of distribution processes is that they allow sampling
data. This is in stark contrast to the sample-based setup (Gama
et al., 2014), as we cannot create new data points from old ones.
Drawing new data from a distribution process can be done in
two ways. One option is to draw i.i.d. samples from the holistic
distribution D. These samples are dated data points (X,T) that
can be obtained by the following procedure: First draw the time
of observing X, i.e., T ∼ PT , and then draw X according to Dt

assuming T = t, i.e., X | [T = t] ∼ Dt . Another sampling method
relating to common practical approaches is to take i.i.d. samples

1 All considerations below also work in a very similar way for more general

measure spaces. However, as some formal issues may arise from that, we will

stick with this far simpler special case for the sake of clarity. This also holds

for the restriction of PT to be a probability measure which is usually specified

by term post hoc.

2 Both existence and uniqueness of D are assured by the Fubini-Tonelli

theorem.
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from DW for some time window W. Notice that a collection of
observations that are collected during a time windowW according
to D are exactly distributed according to DW . Hence, both ways to
sample are formal descriptions of practical relevant procedures to
obtain data over time.

We derive a definition for drift in the setup of distribution
processes from the definition above: a distribution process has drift
if the change of deriving a sample from it that has drift in the sense
of Gama et al. (2014) is larger 0, i.e., for a sample X1,X2, . . . there
are i, j such that

PXi

def. Xi
= DTi 6= DTj

def. Xj
= PXj

and such a sample is observed with a chance larger than zero. Due
to measure theoretical reasons the number of samples actually does
not play a role so we can also consider only two samples. Thus, we
obtain the following definition:

Definition 3. Let (Dt , PT) be a distribution process. We say thatDt

has drift iff

PT,S∼PT [DT 6= DS] = P2T({(t, s) ∈ T 2 | Dt 6= Ds}) > 0.

Here P2T denotes the product measure of PT with itself, i.e.,
the measure on T 2 = T × T that is uniquely determined by
P2T(W1 ×W2) = PT(W1)PT(W2).

One may be wondering why this is different from the existence
of s, t ∈ T with Dt 6= Ds. Formally speaking this has to do with
PT null sets. It might happen that the difference only occurs in such
a short amount of time, that we will never see only a single sample
drawn from the other distribution and thus we will never be able to
observe the drift in the data. It is thus a mere artifact of the formal
model, rather than the actual process.

Hinder et al. (2020) provide several other, equivalent
formalizations which relate to scenarios which have been
considered in the literature of concept drift are given: being not
equal to a standard distribution, i.e., PT∼PT [DT 6= P] > 0 for all
distributions P on X ; being not equal to the mean distribution,
i.e., PT∼PT [DT 6= DT ] > 0; different distributions for two
time-windows, i.e., DW 6= DW′ for some W,W′ ⊂ T . One of the
key findings however is the equivalence of drift and data X and
time T being dependent.

Theorem 1. Let (Dt , PT) be a distribution process from T to X and

let (X,T) ∼ D be distributed according to the holistic distribution.

Then Dt has drift if and only if T 6⊥⊥ X are not statistically

independent, i.e., there exist W ⊂ T and A ⊂ X such that P[T ∈

W,X ∈ A] 6= P[T ∈ W]P[X ∈ A].

This concept was pivotal in shaping the development of new
methods, e.g., it was used to reduce the problem of drift detection
to independence X ⊥⊥ T testing without the necessity of using
two windows (Hinder et al., 2020); it was used to describe the
location of drift through temporal homogeneity using conditional
independence X ⊥⊥ T | L(X) where L are the homogeneous
components (Hinder et al., 2021b, 2022b); explaining drift was
reduced to the explanation of models that estimate X 7→ T (Hinder

et al., 2023a); the position of anomalies in critical infrastructure
was identified as those features Xi that have a particularly strong
correlation with time T (Vaquet et al., 2024a,b).

2.2 Concept drift in supervised and
unsupervised setups

In the last section, we provided a definition of drift based on
the data-generating process. Drift is usually further categorized. A
first general distinction is usually drawn based on the way drift
manifests itself in time. While the distribution might completely
change at time t (abrupt drift), there are also slower changes
occurring over an interval of time. In contrast, in incremental

drift, the distribution changes smoothly over time. In gradual drift,
during the period of change, the samples are drawn from both
distributions with different probabilities. Finally, in many real-
world applications, we expect old distributions to reoccur, for
instance, due to seasonalities. This phenomenon is referred to as
reoccurring drift. Notice that some authors refer to abrupt drift as
“concept shift” and only call a continuous change “concept drift”.
If not further specified we consider all the aforementioned kinds of
drift at once.

Besides, one categorizes drift according to how the distribution
changes in the data and label space. Assuming that the data stream
consists of labeled-data-pairs (X,Y) ∈ X ×Y , where Y is the label,
in addition to the changes in the joint distribution of X and Y ,
the marginal and conditional distributions are of interest. Usually,
a change of the posterior Dt(Y | X) is referred to as real drift,
and a change of the marginal Dt(X) is referred to as virtual drift.
Sometimes virtual drift is also called data drift, while real drift is
referred to as concept drift.

As pointed out by Hinder et al. (2023c), from a statistical
point of view, drift in the marginal distribution Dt(X) and
the joint distribution Dt(X,Y) can be modeled in a common
mathematical framework, although the interpretations are of
course different. In particular, in both cases drift is equivalent to
the statistical dependency of time T and (labeled-) data X and
(X,Y), respectively, if the time-enriched representation (holistic
distribution) is considered. Real drift on the other hand is
equivalent to conditional statistical dependence of label Y and time
T given data X, i.e., Y 6⊥⊥ T | X (Hinder et al., 2023c).

Analogous to general machine learning tasks, we can consider
supervised settings, i.e., those that are concerned with conditional
distributions, and unsupervised tasks, i.e., those that are concerned
with the joint or marginal distributions. While in supervised
settings both real and virtual drift might be present, in unsupervised
settings only virtual drift has to be considered.

As briefly discussed before, there are two main goals when
facing drifting data streams. One is to keep an accurate learning

model even if the data stream is drifting, the other is to accurately
detect and describe the drift in the data distribution (monitoring)
for example to initiate adequate actions. These two goals intersect
with two overarching approaches concerning the discussed settings.
While in a supervised setting of drift detection, one is usually
relying on analyzing model-losses as a proxy, i.e., how well a
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FIGURE 1

Display of the drift analysis categorization according to the goal and

the applied strategy.

specific model can reconstruct the data or perform a prediction or
forecasting task, in unsupervised settings one considers the data

distribution directly. Structuring approaches according to these
dimensions, we obtain a categorization shown in Figure 1.

When it comes to automated model adaption, relying onmodel
loss as an indicator is a reasonable choice and a considerable
amount of works and surveys address this issue (Ditzler et al.,
2015; Losing et al., 2018; Lu et al., 2018). Much fewer works focus
on unsupervised distribution-based drift detection which has been
summarized by Gemaque et al. (2020) for model adaption and by
Hinder et al. (2024a) for the monitoring setup.

In contrast to detection, in this work, we will focus on
localizing, analyzing, and explaining drift. That is, we focus on the
monitoring setup with the goal of obtaining knowledge on the drift.
This knowledge might be used in further downstream tasks that
usually involve human operators, e.g., provoke further analysis of
the data or construction works that may benefit from the additional
knowledge on the problem at hand (Vaquet et al., 2024a,b).

It is important to notice that the limitations on performing
drift detection based on prediction losses translate to this setup. As
discussed by Hinder et al. (2023c,b) the connection between model
loss, model adaption, and drift is rather vague and heavily depends
on the used model class and the precise setup, e.g., Hinder et al.
(2023c) give constructive proofs for the fact that there is always
purely virtual drift that affects the decision boundary of the optimal
model and real drift that neither affects the decision boundary nor
the loss of the optimal model under the assumption of finite VC-
dimension. It is thus unclear what information is extracted by a
loss-based approach if any at all. Therefore, relying on a purely loss-
informed approach for explaining drift is usually not reasonable.
Hence, we will focus on unsupervised approaches.

However, notice that unsupervised approaches for analyzing
drift are also interesting when analyzing drift with the goal of model
adaption in mind. Similar to the drift detection case they provide a
full picture of the drift while loss-based approaches tend to filter out
the information that is not covered by the loss (Hinder et al., 2023c).
Since which information is filtered out is independent of whether
that information is relevant to the adaption that needs to take place,
considering unsupervised explanations can be beneficial. There
exist surveys on unsupervised drift detection for model adaption
such as Aminikhanghahi and Cook (2017), Lu et al. (2018), and
Gemaque et al. (2020) which mention unsupervised drift detection
and analysis to some extent but do not provide a broad overview in
a more in-depth analysis of the drift as is our goal. To the best of
our knowledge, no structured survey has been conducted on drift
analysis for this particular task.

3 Drift localization and segmentation

Solely detecting and determining the time point of the drift
is not sufficient in many monitoring settings. In order to take
appropriate action, more questions concerning the drift have to be
answered. In this section, we focus on the where—our goal is to
identify the drifting data points or components in data space.

3.1 Problem setup and challenges

The task of determining where in data space the detected drift
manifests is referred to as drift localization. Informally, the problem
of drift localization can be expressed as “finding those regions in the
data space that are affected by the drift” (Dasu et al., 2006; Lu et al.,
2018). We have illustrated this in Figure 2, the dotted area is the
area of interest. A slightly different angle on this question would
be investigating “whether or not a given data point is affected by
the drift” (Liu et al., 2017; Hinder et al., 2022b). Both questions
are relevant in practical applications. If we know which parts of the
data space are affected by the drift, we know which analysis has to
be redone. On the other hand, if we know which data points are
affected by the drift we can update our dataset more efficiently, i.e.,
we do not need to discard all old data points but only the affected
ones.

Both questions can be raised interchangeably: if we know which
parts of the data space are affected by drift, we can mark all
data points therein as drifting. If, on the other hand, we know
for every data point whether or not it is drifting, we can mark
the corresponding parts of the data space as drifting. However, in
practical applications, identifying the drifting samples is usually
more feasible. In particular, we can consider it as a statistical test
with the H0 hypothesis “The data point x is not affected by drift”.

To summarize, we want to separate those parts of the
dataset/space where the drift manifests from those irrelevant to
the drift. This is challenging as the definition of drift is non-local
in the sense that it makes no statement about the inner workings
of the distribution process. Rather, it simply states that there is
some kind of difference in the distributions over time. Yet, from
a mathematical point of view, there is no obvious way to talk about
the behavior locally, i.e., at a single point. Thus, before we can work
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FIGURE 2

Visualization of distribution consisting of three segments (optimal drift segmentation; borders given by black lines). The two segments on the right

form the minimal drift locus (dotted area). (Left) Sample drawn from distribution color indicates time point of observation, evolving from dark blue to

light green, (right) Time point distribution per segment; green and blue bars show lower and upper segment on the right, petrol bars show left

segment.

on a solution for the task, we first need to specify what we actually
mean. For this purpose, we will make use of the formalization of
drift localization presented by Hinder et al. (2022b).

When discussing drift in the unsupervised setup one usually
imagines something like a Gaussian moving through space, i.e.,
X = Rd and Dt = N (µt , σ ) where µt :T → Rd is
the moving mean of the Gaussian. However, as is well known
Gaussians span the entire space and are thus not suited for
analyzing the local properties of the drift. Instead, we suggest to
approximate the distribution process using a mixture model of
uniform distributions on a grid: denote by L(n)i1 ,...,id

= [i1/2n, (i1 +
1)/2n) × · · · × [id/2

n, (id + 1)/2n) the grid cell starting at
(i1, . . . , id)/2

n with length 1/2n. A grid-based approximation is
then given by

D̂
(n)
t =

∑

i1 ,...,id∈Z

λi1 ,...,id (t)U( L
(n)
i1 ,...,id

)

where λ
(n)
i1 ,...,id

(t) = Dt( L
(n)
i1 ,...,id

) are the time-dependent weights
assigning with which probability a grid cell will be present in the
data at the considered time.

Observe that D̂(n)
t approximates Dt in the weak sense and that

it has drift if and only if at least one weight function λi1 ,...,id (t) is

not constant. IfDt has no drift, then neither does D̂(n)
t the converse

however does only hold for sufficiently large n. In more detail, by
applying a local approximation, the drift that “moves” probability
between the cells is captured as a change of the weights λ

(n)
i1 ,...,id

(t),

while the drift happening inside a cell is not captured by D̂(n)
t . For

example, see Figure 3 for an illustration or considerDt = δt/2m for

X = R,T = [0, 1] then D̂
(n)
t has drift only if n > m.

In some cases, we can choose n such that there is no drift inside
any of the cells L(n)i1 ,...,id

. In this case, the entire drift is encoded in the

weights λ
(n)
i1 ,...,id

(t). The drifting behavior inside the cells can thus be

considered homogeneous. Note that D̂(n)
t = Dt is not necessary

but it suffices that the precise location of a point provides no more
information on the drift than the cell containing it. We will refer

to such sets L ⊂ X as drift segments. Of course, other choices than
grid cells are also possible. Assuming we can cover the data space
by disjoint segments L1, . . . , Ln then the drift can be fully described
by the weight functions λi(t) = Dt(Li).

In drift detection, virtual classifiers (Kifer et al., 2004) use

similar ideas. They are trained to classify the samples in the
reference W−(t) and current window W+(t) as -1 and +1,
respectively. Classifier performance is then used as a drift score

or test statistic. If the classification is perfect, then the sets of all
points classified as -1 or 1 form drift segments, although this is not

necessary. In Figure 3, the classifier may choose L as the upper halve
and then observe the discrepancy presented in the middle diagram.

To give a formally sound definition of drift segments we need
to define how to obtain a distribution process on a sub-space, i.e.,

we need a spatial restriction of the kernel Dt from X to L. Then
L is homogeneous if the resulting distribution process has no drift.

As kernels are not defined point-wise in X we cannot use function

restrictions. Instead, we consider the distribution process (Dt(· |

L),D(· × L | T × L)) which is chosen to yield D(· | T × L) as
holistic distribution. Here, we first restrict to L by intersecting, i.e.,

Dt(· ∩ L). This is not a Markov kernel as it will usually not be a
probability measure. We can normalize by Dt(L) resulting in the

conditional Dt(· | L) which is only defined if Dt(L) 6= 0. Thus, we
alsomodify the sampling probability to assureDt(L) > 0 for almost
all observed t.

Notice, that the restricted distribution process has desirable
properties:

1. It is a distribution process on X concentrated on L, i.e., A ⊂

X \ L is assignedDt(A | L) = 0 PT-a.s.
2. It resembles Dt , i.e., if Dt does admit a density f (x | t) then the

restricted process has the density f (x | t)g(t) for x ∈ L and 0
otherwise.

3. It is compatible with further restrictions, i.e., if we first restrict
to L and then to L′ ⊂ L, then we obtain the same process as by
directly restricting to L′.
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FIGURE 3

Visualization of distribution with three segments, all having drift. (Left) Optimal drift segmentation, time is color coded, black lines mark segment

border. (Middle/right) Time point distribution of segments. First drift moves distribution from upper halve to left below, second from left below to

right below, and third from right below to left below. The upper half is a drift segment (no drift inside), and the lower half is not as the distribution

moves from left to right and back.

We can now formally define the notion of drift segments:

Definition 4. Let (Dt , PT) be a distribution process from T to X .
Let L ⊂ X be a DT non-null set, then the restriction of Dt onto L

is the distribution process with kernel A 7→ Dt(A | L) = Dt(A ∩

L)/Dt(L) and time distribution W 7→ D(W × L | T × L), where
D the holistic distribution of the original distribution process. We
refer to TL = supp(D(· × L)) as the active time of L, where supp
denotes the support of the measure.

A DT non-null set L ⊂ X is called a drift segment if the
restriction ofDt to L has no drift. A drift segment is called maximal
iff it is maximal with respect to set inclusion, i.e., if for every L ⊂ L′

we either have DT (L′ \ L) = 0 or the restriction with respect to L′

has drift.
A collection of drift segments Li, i ∈ N that cover X , i.e.,

∪iLi = X , is called a drift segmentation. If all segments are maximal
then the segmentation is optimal.

The notion of a maximal drift segment comes from the
observation that if L is a drift segment, then every subset L′′ ⊂ L

is a drift segment, too. Thus, maximality enforces that the segments
are of reasonable size.

We will now define drift localization. As it is simpler, we define
the drifting region as the complement of the non-drifting region,
i.e., which part of the distribution has to be “removed” in order to
make the drift disappear. As drift segments are only homogeneous
there can still be drift between the segments, e.g., in Figure 3 there
are three segments, but every single point in the data space is
affected by drift. If we also take the drift between the segments into
account we have to add that t 7→ Dt(L) is constant. Consequently,
we haveD(W×L | T ×L) = PT(W) so we do not need to take active
time into account which then leads to the following definition:

Definition 5. A drift locus is a measurable set L ⊂ X such that
(Dt(· | LC), PT) has no drift and t 7→ Dt(L) is PT-a.s. constant. A
drift locus L is minimal if it is contained in every other drift locus

L′ up to a DT -null set, i.e., DT (L \ L′) = 0. We refer to the task of
finding the minimal drift locus as drift localization.

The notion of minimality in the definition is analogous to the
maximality drifting segment.

The notion of a minimal drift locus has several desirable
properties (Hinder et al., 2022b). Among those is the fact that in
all practically relevant cases, there is a unique minimal drift locus
so the notion of drift localization makes sense from a theoretical
point of view. Furthermore, the minimal drift locus is not empty if
and only if there is drift. In the following, we will discuss how to
obtain a drift localization given data.

3.2 A general scheme for drift localization

As discussed before, the goal of drift localization is to investigate
where the underlying distribution changes. Drift localization is
usually applied in a streaming setting where a stream of data points
is arriving over time. At time t a sample S(t) containing some data
points which are observed during W(t) and thus are generated by
DW(t) becomes available. On an algorithmic level, this resembles
the way drift detectors work. Lu et al. (2018) provided a four-stage
scheme that allows to classify drift detectors in a systematicmanner.
In the following, we describe an adaption of that scheme for drift
localization. We visualized the overall scheme in Figure 4.

3.2.1 Stage 1: acquisition of data
As a first step, we need a strategy for selecting which data points

are to be used for further analysis. Most approaches rely on some
instantiation of sliding window strategies. There are four main
categories that differ in how the reference window is updated, e.g.,
fixed until an event, growing, or sliding along the stream or implicit
as a summary statistic using a model. We refer to Lu et al. (2018)
and Hinder et al. (2024a) for a more detailed description. However,
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FIGURE 4

Visualization of drift localization for a data stream. Given a data

stream, for each time window W(t) a distribution DW(t) generates a

sample S(t). A drift localization algorithm estimates whether x ∈ S(t)

is a�ected by drift or not by performing a four-stage detection

scheme. The illustrated algorithm uses two-windows (stage 1),

tree-histograms (stage 2), leaf-wise total variation norm (stage 3),

and permutation normalization (stage 4).

as we usually require a large amount of data for the localization
task, to the best of our knowledge there are no methods that
make use of an implicit reference window. Similar preprocessing
steps as for drift detection, such as a deep latent space embedding,
are reasonable tools that have been applied successfully in the
literature (Hinder et al., 2023a).

3.2.2 Stage 2: building a descriptor
Just as drift detection, drift localization algorithms split the

data processing into two steps. First, building a descriptor from
data and then analyzing it. In contrast to drift detection, those
usually offer a quite direct connection between locations in data
space and the structure of the descriptor. Commonly used are
binnings, e.g., based on decision trees (Dasu et al., 2006; Hinder
et al., 2021b, 2022b), or k-neighbor based descriptors (Liu et al.,
2017; Hinder et al., 2022b). However, depending on the analysis
algorithm nearly arbitrary machine learning models can be used as
descriptor (Hinder et al., 2022b).

3.2.3 Stage 3: computing dissimilarity
Based on the descriptor a drift score is computed. In contrast

to drift detection, where the score is used to describe the global
amount of drift, in drift localization it measures the amount of
drift in a region of the data space (Dasu et al., 2006; Hinder
et al., 2021b, 2022b) or a single data point (Liu et al., 2017;
Hinder et al., 2022b). In particular, for methods that make use of
region-wise computations, this can be considered as performing
a common drift detection that only takes a small region of the
data space into account (Dasu et al., 2006). Many dissimilarities
used in drift detection are based on the idea, that there is drift if
we can partition the data space in such a way that the number of
samples observed before and after the drift differ significantly for
the different segments. All drift detection algorithms considered
by Hinder et al. (2024a) make use of this idea in one way or
another. Particular direct examples are drift detectors based on
virtual classifiers (Kifer et al., 2004; Hido et al., 2008).

3.2.4 Stage 4: normalization
Similar to drift detection, the obtained dissimilarities are

typically very setup-specific and do not allow a direct conclusion
regarding whether or not a certain sample or region is drifting.
A common strategy is to make use of some kind of bootstrap-
or permutation-based statistical test in order to either find the
parameters under the H0 hypothesis (Liu et al., 2017) or directly
compute a p-value for the point or region (Dasu et al., 2006; Hinder
et al., 2022b).

3.3 Approaches

Although several methods for drift detection exist and some
allow further analysis of the drift, drift localization in the sense
described above is a less popular research question. Most methods
that admit such an option either use it as a subroutine of drift
detection or allow for it as a mere byproduct (Dasu et al., 2006)
rather than an explicit aim for drift analysis technology (Lu et al.,
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2018). The majority of algorithms that allow localization are based
in one way or another on performing drift detection on a local
scale (Dasu et al., 2006; Liu et al., 2017; Hinder et al., 2022b), i.e.,
instead of analyzing the entire dataset at once, only local subspaces
are analyzed. This has the drawback that we usually have less data to
work with. On the other hand, as we are already local in data space
we can make use of far simpler detection schemes.

For example, if we make use of a grid-based binning then the
total variation norm is approximated by counting the samples of
each distribution per bin, taking the difference of those numbers,
and summing up:

̂‖P − Q‖ =

k∑

i=1

∣∣∣∣∣∣
1

m

m∑

j=1

1[Xj ∈ Gi]−
1

n

n∑

j=1

1[Yj ∈ Gi]

∣∣∣∣∣∣
,

where G1, . . . ,Gk ⊂ X , ∪k
i=1Gi = X , Gi ∩ Gj = ∅ for i 6= j

are the grid-cells, X1, . . . ,Xm ∼ P, Y1, . . . ,Yn ∼ Q i.i.d. Similar
estimation strategies can be applied to all sorts of distances (Hinder
et al., 2022c).

Just as in (global) drift detection, the estimates are usually
based on two-window approaches where we first select a split
point and then compare the distributions before and after. As
in drift detection, this split point can be chosen more or less
arbitrarily. However, as the algorithms are usually less robust due
to the small sample size, it can be beneficial to first determine
the actual split point using a suitable drift detector and then
perform the localization. The common next step is to use the
descriptor that relates to locations in data space to perform local
drift detection. Such descriptors only need to count the number of
points in the vicinity of the query point which can be considered
as a probabilistic classification task. This idea was further analyzed
by Hinder et al. (2022b) giving a theoretical justification for the
most approaches available. In particular, it was shown that most
probabilistic classifiers can be used for drift localization.

In the following we will consider four exemplary approaches in
more detail:

3.3.1 kdq-tree
The algorithm is one of the oldest implementations for drift

localization (Dasu et al., 2006). It is a two-window approach (stage
1), designed to work with vectorial data only. The main idea is
to grow a kd-tree-like data structure to obtain a binning (stage
2). More precisely, the trees are obtained by iterating over each
dimension in every recursion step and splitting the area right in
the middle of said dimension as long as enough data is available.
This assures that the volume of every leaf shrinks exponentially with
each recursion. Hence, kdq-trees do not take the data distribution
into account.

Once the tree is grown, it computes the Kullback-Leibler
divergence to compare the number of samples coming from each
window on every leaf which serves as the drift score (stage 3). This
way we obtain a score for every leaf and thus region in the data
space. Then a bootstrap is used to compute the threshold (stage 4)
which also depends on user-defined parameters. If the score of a
leaf exceeds a threshold then the leaf area is considered as drifting.

3.3.2 LDD-DIS
The algorithm (Liu et al., 2017) is a two-window (stage 1),

neighbor-based (stage 2) approach that computes a drift score for
every data point. It is based on the Local Drift Degree which is the
ratio of the number of points in the k-neighborhood query point
categorized by arrival time minus 1 (stage 3). It is 0 if the ratio is
even and deviates if there are far more samples from one window
than the other. By an application of the central limit theorem, the
authors show that under H0 for large k the scores follow a normal
distribution. The parameters are estimated using a permutation
scheme. This distribution is then used for normalization (stage 4).

Notice that the ratio that forms the heart of the LDD is closely
related to the predicted probability of a k-neighbor classifier.

3.3.3 Model-based drift localization
A family of algorithms that make explicit use of machine

learning models has been introduced by Hinder et al. (2022b). The
algorithms can be classified as multiple-window-based approaches
(stage 1), i.e., two windows or more. For simplicity and
comparability, we will consider the two-window case here.

Very similar to virtual classifiers (Kifer et al., 2004; Hido et al.,
2008) and LDD, a probabilistic classifier is trained to predict the
window each sample belongs to (stage 2). The drift score, which
the authors refer to as informativity, is given by the classifier
prediction compared to the prediction of a constant model using
the normalized Kullback-Leibler divergence (stage 3). Informativity
can thus be interpreted as the information gained by providing the
location for predicting time. Informativity takes on values between
0 and 1, with the mean informativity being 0 if and only if there is
no drift, and the informativity at one point is larger than 0 if and
only if that point belongs to the minimal drift locus. This serves
as a theoretical justification for the presented method and other
methods like LDD-DIS or kdq-trees.

Algorithmically, the authors suggest making use of a
permutation test using informativity as test statistic (stage 4). For
some models like k-nearest neighbor, decision trees, or random
forests, the corresponding distribution under H0 can be computed
analytically. Furthermore, due to the supervised training scheme,
model parameters can be determined by cross-validation.

3.3.4 Drift segmentation
As stated in Section 3.1, drift localization can be considered as

a downstream task of drift segmentation (Hinder et al., 2021b) by
checking for each segment whetherDt(L) is constant (stages 3 & 4).
Drift segmentation can be approached using the ideas discussed by
Hinder et al. (2022b), however, instead of performing probabilistic
classification, conditional density estimation is employed (stages
1 & 2), i.e., the model is trained to predict x 7→ PT|X=x. This
way, it is no longer necessary to choose a split point or several
windows. In this sense, drift segmentation relates to “block-based
drift detectors” (Hinder et al., 2024a), i.e., approaches that analyze
the drift structure of an entire block of data as a whole in contrast
to methods that are based on comparing two windows.

Algorithmically, the methods mainly differ in how the
descriptor is constructed (stage 2): drift segmentation can be
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performed using a special decision tree that uses the Kolmogorov–
Smirnov test as split criterion to reduce the dependence of data
and time (Hinder et al., 2021b). Drift segments are then given by
the leaves. This idea was extended to arbitrary segmentation-based
multi-regression models (Hinder et al., 2023a) by applying a suited
preprocessing to T (Izbicki and Lee, 2017; Hinder et al., 2021c).
Furthermore, using any multi-regression model, a segmentation
can be obtained by applying clustering using a model-informed
metric (Hinder et al., 2023a).

3.4 An analysis

So far, we discussed drift localization methodologies on a
conceptual level. In the remainder of this part, we focus on
conducting a numerical analysis and providing guidelines for the
practical usage of these methods. For this purpose, we identified
three main parameters that describe the data stream and the
drift we aim to detect: we investigate the role of the drift

strength, the influence of drift in correlating features, and the data
dimensionality. We will present and discuss our findings in the
remainder of this section.

3.4.1 Experimental setup
Dataset: We use the “uniform” dataset from part A (Hinder

et al., 2024a): a 2-dimensional, synthetic dataset sampled from a
uniform distribution on the unit square. Drift is induced by a shift
along the diagonal, i.e., in x- and y-direction, with different lengths
(intensity). Besides drift intensity, we also consider the total number
of dimensions by adding features sampled from uniform random
noise, random rotations relating to correlated features, and the
number of samples. We assume that we know the time point of drift
and that we are provided with an equal amount of samples before
and after the drift.

For the random rotation we first generate the dataset, center at
0, and then apply a random rotation of various strengths across all
dimensions, i.e., multiply with λO + (1 − λ)I for λ ∈ [0, 1], where
O is a randomly sampled orthogonal matrix (random rotation)
and I is the identity matrix (data is axis aligned). We consider all
combinations of parameters.

Method:3 We consider the kdq-Tree, LDD-DIS, and Model-
Based Drift Localization based on random forests (MB-DL).

Evaluation: We perform a sample-based evaluation aiming at
identifying for each data point whether or not it is affected by drift.
Here, we consider every data point in the overlap of the squares as
non-drifting and every other data point as drifting. To evaluate the
methods we use the ROC-AUC. It measures how well the obtained
drift scores separate the drifting and non-drifting data points. The
score is 1 if the largest score assigned to a non-drifting point is
smaller than the smallest score assigned to a drifting point, it is
0.5 if the alignment is random. Thus, the ROC-AUC provides a
scale-invariant upper bound on the performance of every concrete

3 The experimental code can be found at https://github.com/

FabianHinder/One-or-Two-Things-We-Know-about-Concept-Drift

FIGURE 5

E�ect of axis alignment (λ) on localization performance (intensity:

0.05, samples: 750, dimensions: 5). Graphic shows median (line),

25%–75%-quantile (inner area), min–max-quantile (outer area), and

outliers (circles).

threshold. Furthermore, in contrast to many other scores like F1
or accuracy, the ROC-AUC is not affected by the expected class
imbalance.

3.4.2 Overall results
The overall results of the experiment (see Figures 5–7) show

that the problem of drift localization is a comparably hard one
and still requires additional research. The overall ranking of the
methods in our study places MB-DL at the top, followed by LDD-
DIS, and kdq-Trees. This is consistent with the findings in the
original paper where more complex datasets were analyzed (Hinder
et al., 2022b). For all parameters, kdq-Trees perform only slightly
better than random chance, LDD-DIS barely ever reaches a score
of 0.6 or higher. This, together with the very high variance makes
the analysis comparably hard.

3.4.3 Axis-alignment
As two out of three methods are tree-based we expect the effect

of λ to be significant. As one can see in Figure 5, axis alignment
is one of the most crucial parameters for MB-DL, for the other
two approaches it is nearly irrelevant. For the MB-DL applied
to a window of 150 samples or more, we observe an extreme
decline in performance when we switch from λ = 0 (perfectly
axis-aligned) to λ = 0.5. After that, the performance stays at
a constant, low level. This is to be expected as random forests
use axis-aligned splits and thus face problems when classifications
require taking correlations into account, as for λ > 0. In the
following, we will thus explicitly discuss the cases λ = 0 and
λ = 1 separately.
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FIGURE 6

E�ect of number of samples and dimensionality on localization performance for various choices of λ (intensity: 0.05, samples: 250, dimensions: 5).

Graphic shows median (line), 25%–75%-quantile (inner area), min–max-quantile (outer area), and outliers (circles).

3.4.4 Sample size and dimensions
As is expected all methods profit from larger sample sizes

(see Figure 6). However, the increase in performance of kdq-Tree
is not significant and might be due to random chance. In the
case of MB-DL, the increase for λ = 1 is only moderate and
comparable to LDD-DIS, for λ = 0 the increase in performance
is significant.

Similar results can be found for the number of noise
dimensions. While all methods suffer from high dimensionality,
MB-DL performs moderately for λ = 0, this is to be
expected as the detection scheme is trained in a supervised
fashion and thus can perform feature selection in this case.
Similar effects cannot be observed for kdq-Trees as they do
not optimize the tree structure for the problem at hand, LDD-
DIS which is not capable of feature selection in the first place,
or MB-DL if λ = 1 as in this case feature selection is not
possible.

To conclude, drift localization requires a comparably large
amount of data and high dimensionality poses a problem
in particular if no feature selection is possible. Still, even
in this case, model-based approaches might still be the best
choice.

3.4.5 Drift intensity
Just as in drift detection, the larger the drift the easier the

task becomes. This finding is consistent across all methods as
summarized in Figure 7. Furthermore, we see a nearly linear
relationship between the drift intensity and the increase of
performance. For MB-DL, this is true for λ = 0 and λ = 1, but
for the first, the increase is much steeper.

As the split point has a significant impact on the drift
intensity (Hinder et al., 2024a) we suggest using a drift detector that
estimates the correct split point like ShapeDD (Hinder et al., 2021a)
or Kernel Change-point Detection (Harchaoui and Cappé, 2007) to
increase localization performance.

3.5 Conclusion and guidelines

Investigating the task of drift localization, we provided a formal
definition and classified existing approaches according to the four-
staged scheme suggested by Lu et al. (2018) for drift detection.
Overall, we find that research on drift localization is still very
limited with few approaches existing. In our experiments, we only
reported good results for a few of the methods. Although we only
considered one dataset, the fact that the dataset is very simple
suggests that the problem of drift localization is quite hard. Thus,
further research is needed.

When applying drift localization methods in practical
applications one should pay attention to using a drift detector
that estimates the correct change point. Furthermore, one should
use as much data as possible as the process appears to be rather
data-hungry. Besides, avoiding high dimensional data if possible
is essential. In this case, feature selection might offer a good
solution (Hinder and Hammer, 2023). Finally, when relying
on tree-based methods, it is crucial to design an appropriate
preprocessing if the drift inflicts itself in data correlations.

4 Drift explanations

As stated in the introduction, addressing drift monitoring
involves five main questions: whether, when, how much, where,

and what. The questions on whether, when, and how much are
addressed by drift detection and are discussed in part A (Hinder
et al., 2024a). Drift localization (Section 3) addresses the where.
What remains is the question on what happened, i.e., we would
like to obtain human understandable descriptions of the drift that
enable human operators to perform informed actions. For this, the
information provided by drift detection is usually not sufficient
and that provided by drift localization and segmentation is not
sufficiently condensed to be processed by humans. Therefore, we
will focus on a more advanced analysis of the drift in this section.
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FIGURE 7

E�ect of drift intensity on localization performance for various choices of λ (samples: 250, dimensions: 5). Graphic shows median (line),

25%–75%-quantile (inner area), min–max-quantile (outer area), and outliers (circles).

4.1 Problem and setup

The question of explaining drift, i.e., describing the potentially
complex and high dimensional change of distribution in a human-
understandable fashion, is a relevant problem as it enables an
inspection of the most prominent characteristics of how and where
drift manifests. Hence, it enables human understanding of the
change and thus is a key ingredient for informed decision-making
by human operators.

In contrast to the problems discussed so far, drift explanations
are an inherently ill-defined problem. This is mainly caused by
the fact that explanations are inherently ill-posed as can be seen
by considering the wide range of different explanation schemes,
methods, and frameworks present in the literature. Furthermore,
the choice of a suitable explanation is highly domain and problem-
specific.

Providing a detailed, complete, and understandable description
of ongoing drift requires a large amount of information covering
all relevant aspects. This usually surpasses the level of information
which is required to select change points or to estimate the rate
of change: While drift can be detected based on a single drifting
feature, its explanation might need to address the interplay of all
drifting features.

This leads us to two general insights on the topic: First,
it is not possible to provide a formal definition of what drift
explanations are. Second, a large number of different explanation
schemes—one for every potential use case—is a desirable state
of affairs.

4.2 A general scheme for drift explanations

Even though we cannot provide a formal definition of
drift explanations, we can still analyze approaches using
a similar functional scheme as used for detection and

localization (Section 3.2). Here, the normalization stage is
usually not required.

4.2.1 Stage 1: acquisition of data
As a first step, we again need a strategy for selecting which

data points are to be used for further analysis. Most approaches
rely on some instantiation of sliding window strategies. Similar
preprocessing steps to drift detection and localization, such as a
deep latent space embedding, are reasonable tools that have been
applied successfully in the literature (Hinder et al., 2023a).

4.2.2 Stage 2: building a descriptor
Just as in drift detection and localization, drift explanation

algorithms split the data processing into two steps building
a descriptor from data first and then analyzing it. Similar to
drift localization, those are usually chosen with respect to the
explanation task at hand. Depending on the desired explanation,
a large variety of descriptors is used, but binning approaches are
very common (Pratt and Tschapek, 2003; Webb et al., 2016, 2018).
However, as pointed out by Hinder et al. (2023a) nearly every
machine learning model can be used as descriptors.

4.2.3 Stage 3: computing explanations
In the last stage of the explanation scheme, the descriptor is

analyzed. This is comparable to the computation of dissimilarity
as a simple quantity derived from the descriptor. Indeed, many
methods simply derive numbers such as feature-wise change
intensity or change in correlation (Pratt and Tschapek, 2003; Webb
et al., 2016, 2018; Wang et al., 2020). Here, a further analysis by
means of normalization is not necessary as the data is usually
directly presented to and judged by a human operator. However,
some more advanced explanation methods are available (Hinder
et al., 2023a).
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4.3 Exemplary cases

While explainability has been a major research interest in
recent years (Molnar, 2020; Rohlfing et al., 2021), more complex
explanation methods for drift are still limited. Quite a number
of approaches aim for the detection and quantification of drift
(Lu et al., 2018; Webb et al., 2018), or its visualization (Pratt and
Tschapek, 2003; Webb et al., 2017; Wang et al., 2020). Furthermore,
several methods focus on feature-wise representations of drift
(Pratt and Tschapek, 2003; Webb et al., 2017, 2018; Wang et al.,
2020). However, these methods face challenges if high-dimensional
data or non-semantic features are dealt with. To the best of our
knowledge, there is only one approach that directly targets general
concept drift using more complex XAI methods for explaining
drift (Hinder et al., 2023a).

In the following, we will group the methods based on the
question of whether they focus on feature-wise analysis only, or
allow for the application of more complex XAI technologies.

4.3.1 Feature-based drift explanations
Webb et al. (2017, 2018) make use of the (conditional) drift

magnitude to visualize the intensity and change of correlation of
certain features. For sets of features F, F′ the drift magnitude is
defined as

σ F
D· ,l

(s, t) = ‖DWl(s)(XF)−DWl(t)(XF)‖TV

σ
F|F′

D· ,l
(s, t) =

∫
‖DWl(s)(XF | XF′ )−DWl(t)(XF | XF′ )‖TVdDWl(s)∪Wl(t)(XF′ )

where Wl(t) = (t − l/2, t + l/2) is the time window around t

with length l, DW(XF) is the projection of the distribution process
onto the features F, and DW(XF | XF′ ) is the conditioning of
DW(XF ,XF′ ) on DW(XF′ ). The theoretical properties of the drift
magnitude are analyzed by Hinder et al. (2021a). Notice that the
drift magnitude on consecutive windows also forms the basis for
the Shape Drift Detector (Hinder et al., 2021a).

To estimate the drift magnitude, Webb et al. (2017, 2018) use
sliding windows (stage 1), and grid binning (stage 2) which are
used to compute the total variation norm for different time points
(stage 3). The results of this computation are directly presented to
the user.

ConceptExplorer is a tool presented by Wang et al. (2020). It is
designed for visual inspection of drift, in particular, in time-series
data. The tool contains several analysis and visualization tools:
a drift detection algorithm and an event-log-plot, an automatic
extraction of concepts, a visualization, interaction, feature selection
and relevance tools, and a cross-data source analysis. For drift
detection and feature analysis, standard tools are used. The concept
analysis is mainly performed by making use of a time-binned
correlation matrix.

Pratt and Tschapek (2003) suggest using brushed, parallel

histograms in order to visualize concept drift. The data distribution
for each dimension is displayed using a histogram, correlations are
marked by lines connecting the dimension-wise projections. The
implementation presented by the authors enables user interaction
by allowing for selecting subsets of points, e.g., parts of the
histograms, for which more information is desired.

To visualize drift, the authors use sliding windows (stage 1) for
which histograms are presented side-by-side (stages 2 & 3).

4.3.2 Model-based drift explanations
The notion of model-based drift explanations was coined by

Hinder et al. (2022a, 2023a). Simply put, the fundamental idea
is that drift explanations are supposed to tell us why a drift
detector raised an alarm. As stated by Hinder et al. (2024a) several
approaches explicitly make use of machine learning models as a
descriptor to detect the drift. In these cases, explaining why the
model used by the drift detector obtained its results also provides
us with information on why the drift detector raised an alarm or
not.

In order to obtain sufficiently informative explanations requires
a specific training scheme. As discussed before, for drift detection
frequently detecting a single drifting feature is sufficient. Since this
may be insufficient to provide a complete explanation, relying on
drift localization or segmentation is a more reasonable approach.

Once a model is trained in an appropriate way we can obtain
knowledge on the drift by analyzing it. This can be understood
as follows: if the model contains all the information regarding
the drift, we can analyze it as a proxy for the drift. This again
fits into the three-staged scheme where the model serves as the
descriptor: As visualized in Figure 8, first, data is acquired and a
model describing the data is trained (stage 1&2). In the second step,
the obtained model is explained by a suitable explanation approach
(stage 3).

Explanations can be provided in several ways. We can thus
choose the model and explanation that fit our problem best. In the
original paper, the authors considered the non-exhaustive list of the
following explanation methods (Hinder et al., 2023a):

• Linear models or decision trees belong to the class of
interpretable models which can naturally be understood by
humans (Du et al., 2019;Molnar, 2020). Yet, they usually suffer
problems due to low complexity.

• More complex explanations are provided by discriminative

dimensionality reduction which provides a global overview
of the model behavior using model-enriched dimensionality
reduction techniques (Venna et al., 2010; Schulz et al., 2020;
Yang et al., 2020).

• Global feature importance and relevance techniques like
permutation feature importance, feature importance, and
Shapley-values offer feature-wise explanations (Shapley, 1951;
Breiman, 2001; Nilsson et al., 2007). In contrast to other
methods, those usually come with formal descriptions and
guarantees on what they can and cannot do (Hinder and
Hammer, 2023). Such are useful for various setups with
semantic features, in particular sensor networks (Hinder et al.,
2023a; Vaquet et al., 2024b).

• Local feature importance techniques like Saliency
Maps (Simonyan et al., 2013) or Local Interpretable
Model-agnostic Explanations (LIME) (Ribeiro et al., 2016)
offer feature-wise analysis on a single instance basis. This
can provide more information on the single instance and
offers insights into the change of correlations, however, it also
requires finding samples that are relevant enough to provide
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FIGURE 8

Model-based drift explanation strategy: In the first step a model for drift localization or drift segmentation is trained. Afterward, the obtained model is

analyzed by means of an explanation method to gain insight into the drift.

additional insight if analyzed. There are technique for finding
such samples based on informed clustering (Hinder et al.,
2023a).

• Contrasting explanations and counterfactuals offer
explanations in terms of contrasting sample pairs (Looveren
and Klaise, 2019; Molnar, 2020; Yang et al., 2021). In contrast
to local feature-wise explanations, those do not only show
which features are affected but also how they are affected.
Thus, the user is directly confronted with the effect of the
drift in exemplary cases. The drawbacks of this approach are
that it only works well with abrupt drift, is computationally
expensive, and there are usually no guarantees that valid
explanations are found.

A further advantage of model-based explanations is that the
connection of drift-related problems like drift detection and
localization to explanation and analysis techniques can also be
used to increase performance. For example, this connection is
not only used to transfer ideas of feature relevance theory in
order to obtain drift explanations but also to perform feature
selection for drift detection which resulted in significant increases
in accuracy (Hinder and Hammer, 2023).

There do exist works prior to Hinder et al. (2023a) that make
use of a similar schemes. However, those approaches are hand-
tailored for a specific setup rather than a general framework. Yang
et al. (2021) use a combination of an auto-encoder and a distance-
based outlier detection in the latent space for drift detection. Drift
explanations are provided by counterfactuals of the outlier detector.
Yang et al. (2020) detect drift using a Gaussian mixture model in a
loss-based fashion. Then, the authors use a discriminative version
of t-SNE to create an embedding.

4.4 Conclusion and guidelines

Focusing on drift explanations, we identified another research
gap, as much of the work in this area is still very basic.
Much more work is needed to provide user-friendly explanations
across different domains and settings. Additionally, evaluations
in the form of user studies will be required to evaluate future
approaches. Regarding the discussed methodologies, model-based
explanations seem the most promising as the framework is very
flexible combining model-based localization and segmentation
methods with a range of established explanation schemes. The
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latter can be chosen to fit the real-world scenario that needs to
be targeted.

5 Conclusion

In this work, we provided a definition and categorization
of drift localization in an unsupervised setting. Furthermore, we
categorized state-of-the-art approaches and analyzed them based
on a four-staged general scheme we proposed. In addition, we
briefly considered drift explanations and showcased some works
targeting this task.

Next to providing an overview of existing work, we analyzed
the different underlying strategies to contribute guidelines on how
to choose methodologies based on the attributes of the setup and
the expected drift mechanism. Finally, we found that more research
focusing on the localization and explanation tasks is needed.
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