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The well-known Greulich and Pyle (GP) method of bone age assessment (BAA)

relies on comparing a hand X-ray against templates of discrete maturity classes

collected in an atlas. Automated methods have recently shown great success

with BAA, especially using deep learning. In this perspective, we first review the

success and limitations of various automated BAA methods. We then o�er a

novel hypothesis: When networks predict bone age that is not aligned with a

GP reference class, it is not simply statistical error (although there is that as well);

they are picking up nuances in the hand X-ray that lie “outside that class.” In

other words, trained networks predict distributions around classes. This raises a

natural question: How can we further understand the reasons for a prediction

to deviate from the nominal class age? We claim that segmental aging, that is,

ratings based on characteristic bone groups can be used to qualify predictions.

This so-called segmental GP method has excellent properties: It can not only

help identify di�erential maturity in the hand but also provide a systematic way

to extend the use of the current GP atlas to various other populations.

KEYWORDS

bone aging, Greulich and Pyle (GP), computer vision, RSNA image share,

personalizability

1 Introduction

The Greulich and Pyle (GP) method of bone age rating (Greulich and Pyle, 1959)

has a considerable history of use in not only manual rating but also automated analysis of

X-rays. GP relies on “matching” a given X-ray against a reference X-rays of different ages;

these templates comprise the GP atlas. Early attempts at automated systems included semi-

automated methods, such as HANDX (Michael and Nelson, 1989), and fully-automated

ones (Pietka et al., 1991; Hill and Pynsent, 1994; Sato et al., 1999). Bone age assessment

(BAA) has recently been greatly advanced by the availability of the Radiological Society of

North America (RSNA) dataset, which consists of a large number of X-rays which have

been rated manually by multiple raters. The 2017 RSNA Pediatric Bone Age Machine

Learning Challenge (Halabi et al., 2019) stimulated several deep learning methods, which

have shown great success on the RSNA data (Chu et al., 2018; Larson et al., 2018; Halabi

et al., 2019; Siegel, 2019;Wu et al., 2019; Alblwi et al., 2021; Liu et al., 2022; Beheshtian et al.,

2023). In terms of performance, the RSNA challenge reported mean absolute deviation
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(MAD) >4.27 months, with a median of 5.99 months, among 48

submissions (Halabi et al., 2019). This question continues to attract

attention, in part, in an attempt to improve the prediction accuracy

of networks.

1.1 The segmental decomposition of the
hand

One approach is to seek improvements using better networks

and computations. On the other hand, a number of authors

have begun to extend the GP method itself beyond its classical

presentation.

A particularly fruitful point of view is to divide the hand into

functional groups of bones, and we term these hand “segments.”

For instance, the radius, ulna, the carpals, and short bones

(metacarpals and phalanges) can be considered as important hand

segments (Oza et al., 2023). The idea behind such a decomposition

of the hand into segments is to group bones that are likely to grow

uniformly together, and importantly, observe any inter-segmental

differences in maturity. Bone age is determined not only from the

full hand but also taking into account segmental age differences, if

any. That is, segments are independently rated and compared with

the whole hand rating.

A number of studies have attempted to rate not only the

full hand but also segments (Simu and Lal, 2017; Chapke, 2023;

Jung et al., 2023; Oza et al., 2023). The motivation in the study

mentioned in the reference Simu and Lal (2017) and Jung et al.

(2023) appears to be largely computational, that is, to extract

relevant portions of the image from an irrelevant background.

Our analysis in this article follows the study mentioned in the

reference Chapke (2023) closely; please see further details therein.

Figure 1 illustrates automated segmental rating. Chapke (2023)

describes a DenseNet architecture that combines segmental and

full-hand predictions to obtain an MAD for 6.7–6.9 months for

boys and 7.4–7.6 months for girls. Jung et al. (2023) employ

a different segmentation: phalanges, metacarpals, and carpals

using an Xception model that they obtain an ensemble MAD of

5.69.

We argue here that the methodology of segmental GP runs

much deeper than computational concerns alone. While segments

do provide independent assesments of BAA, they can also be

used to identify when (and why) a hand is likely to deviate

from the reference atlas. When the bones of the hand are

differentially matured, a classical GP rating is difficult to apply.

Here, we will show that the segmental GP rating is particularly

useful in such a scenario. For instance, in the study mentioned

in the reference, Oza et al. (2023) we show that the hand

segments contribute different weights to an overall age assessment;

a more accurate rating is obtained when this is taken into

account.

We, therefore, present a novel perspective comparing these

two lines of reasoning. We proceed first from a careful assessment

of the achievements on the RSNA data so far. Our discussion

hinges on the question of rater variability relative to the BAA

and how it can be mitigated. In particular, we suggest that

the methods employed hitherto are already close to the limits

achievable for lowering MAD. Next, we show that it is possible

to use segmental GP methods to analyze network predictions in

greater detail.

1.2 Can computer vision unambiguously
remove rater variability?

1.2.1 Is automating GP a classification or
regression problem?

In the GP framework, an independent rater always assigns a

bone age corresponding to one of the reference classes. Naively,

one might therefore be tempted to say that BAA machine learning

is a classification problem. On the other hand, when two or more

raters age an X-ray, they often differ in their assessment. A common

way of accounting for this “inter-rater variability” is to average

over multiple ratings. This effectively introduces an uncertainty

in the age assessment, in the sense that the final, averaged age

rating may not coincide with any of the reference GP classes. For

instance, suppose it is ambiguous which of two nearby reference

ages, 120 or 132 months, should an X-ray be assigned to? Each

rater is expected to rate an X-ray to one of these classes; however,

due to inter-rater disagreement, an average rating will lie between

120 and 132, say, 126 months. Correspondingly, the ground truth

label during machine learning training is 126 months. Training

on such labels is expected to recover this intermediate, average

rating. BAA machine learning has hitherto been treated as a

regression problem; the training objective is to obtain the smallest

MAD between predicted and true labels over the entire training

dataset.

1.2.2 Interpreting machine learned BAA
In light of the above discussion, it is important to reflect

on what is the underlying expectation from an automated BAA

system? There are two possibilities.

On one hand, averaging is an excellent means of overcoming

rater variability. That is, if given sufficient raters, idiosyncratic

variation is reasonably well accounted for. Multiple human ratings

are, however, difficult to obtain in practice. It is thus attractive

to supplement clinical ratings with automated, AI methods of

prediction.

On the other hand, a natural question is to ask if “objective”

methods—such as machine learning and computer vision—can

give us an answer which disambiguates between raters? In other

words, can automated bone aging overcome inter-rater variability?

That is, can one find a genuine, “true” label that is discovered in

some objective manner?

While the former expectation is reasonable, the latter cannot be

satisfied. In other words, regression-based BAA is better thought of

as an attempt to reproduce what multiple human raters would come

up with rather than adjudicating among discrepant ratings. In fact,

we show below that some of the best performing AI methods—

the so-called ensembles-of-networks—are themselves constructed

as averages over multiple (model) ratings.

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2024.1326488
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Chapke et al. 10.3389/frai.2024.1326488

FIGURE 1

Segmental rating on the RSNA image, 1547.png, a male hand rated to be 10.5 years (126 months) of age. Network prediction using the full hand

image was 10.2 years (122.6 months). Each segment is boxed, and its predicted age is marked alongside. Notice the discrepancy in the segmental

predictions—between 112 and 136 months—suggestive of a marked di�erential maturity in the hand. In Oza et al. (2023), manual segmental ratings

were: short bones: 10.5 years (126 months); radius and ulna: 10 years (120 months); carpals: 10 years (120 months). Notice the carpals prediction

matches the manual rating, the short bones are somewhat underestimated by the network, and the radius and ulna are relatively advanced.

1.2.3 Regression for optimal MAD
The reason why regression using MAD as a loss metric cannot

resolve rater variability has to do not only with the way in

which multiple machine learning models are combined toward a

prediction but also with the physiology of bone development itself.

The following simple argument illustrates this paradox.

Any trained automated system will have learnt to reproduce

a rater-averaged bone age; this does not resolve rater discrepancy,

it reproduces it. On the other hand, suppose that we expect the

trained algorithm to pick out one of 120 or 132 months, regardless

of the specific prediction choice, MAD would be 6 months (since

the ground truth label is 126). In other words, a machine learning

system trained to reduce loss (on “noisy labels,” as it were) is

faced with two incompatible choices: either rater variation is

embedded into the solution by design—which, in turn, throws the

baby out with the bathwater—or we are forced to accommodate

someminimumMAD, which represents the difference between the

machine prediction and an (ideal) reference rating.

Such a threshold can be obtained on theoretical grounds by

estimating a Bayes decision boundary with respect to the reference

ages in the respective GP atlases. It is expected to be 3.8 months

in boys and 4.2 months in girls for the standard GP atlas; see

Supplementary Data for details. Regression learning cannot be

expected to reduce MADmuch lower than this minimum.

1.2.4 Modeling via ensembles
A well-known technique employed in training deep learning

models is to use ensembles of models in prediction. Ensembles

are essentially different models trained on the same data. There

are numerous techniques for creating ensemble models, utilizing

not only different network architectures and their hyperparameters

but also multiple partitions of the data or combinations thereof.

Each of the ensemble models is used to provide their respective

predictions on (new, test) data which are averaged together into

a joint prediction. Ensembling works by reducing the variance of

the final output. It is thus possible to reduce MAD using ensemble

learning by training multiple networks on the data and considering

the ensembleMAD; this can be expected to be somewhat lower than

the MAD of (any of) the contributing networks. Ensemble rating is

thus best interpreted as a committee of AI raters (networks), some
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of which are likely to predict one class, and others are likely to

predict a nearby class.

In our example above, manual rating was expected to place

the X-ray between 120 and 132. Figure 2 shows how three separate

networks, each trained on the full RSNA data, perform on all the

(validation) X-rays of male children aged 120 months. Notice that

each of the networks mark the X-rays to somewhat different ages,

as evidenced by the difference in their corresponding empirical

cumulative distribution functions (ecdf ’s). The predicted age

probability density is centered roughly close to 120 months, as

is to be expected. More to the point, the predicted ages range

between 108 and 132 months. In other words, predictions are more

or less centered on the correct (ground label) age class but range

between one class below and above. This distribution is a central

feature of all models and their predictions. Each network of an

ensemble effectively specializes on different domains of the data;

the resultant network average is a rating with low variance. In

other words, the ensemble average is a sober, reliable estimate:

The collective decision of a number of raters is a consensus score.

Ensemble network rating does not solve a disambiguation problem,

as one might have initially assumed; instead it simulates multiple

rating.

Pan et al. (2019) have considered ensembling of 48

heterogeneous models of 2017 RSNA Pediatric Bone Age

Machine Learning Challenge. The authors explored ensembles

comprising up to 10 models and observed that ensembles with

less correlation between the models yielded better results when

evaluated using MAD. They also noted that combining the best

individual models produced slightly better outcomes compared

with searching through all feasible ensembles. The ensembling

of machine learning models led to an improvement in the

generalization error from 4.55 to 3.79 months, surpassing the

performance of a single model. As we note above, these numbers

are already close to the theoretical estimates, thusmachine learning

models trained on RSNA data cannot be expected to improve MAD

much lower.

1.3 The segmental and ensemble methods
are di�erent strategies

The preceding analysis illustrates a uniform cohort of data, such

as images of all labeled 120months of age, when looked through the

prism of deep learning models refracts them along a continuum.

Images that are otherwise considered equivalent in the sense that

they all belong to the same class do have subtle variations; it is

quite possible that machine learning is picking up on these. After

all, one can be readily convinced that Greulich and Pyle attempts

to meaningfully discretize the maturity progression of the hand:

Images are spread out in distributions centered on reference ages,

and a label such as 120 is merely a convenience denoting the central

tendency of that density.

The segmental method approaches this problem differently. It

recognizes that the important equation to answer is not only what

the “right” label for an image is. Instead, it asks: “What are the

variations in a hand that contribute to an average rating, and which

are features that deviate from themean?” In the Figure 1 considered

above, network rating was predicted to be 122.57 months for an

image with GP rating of 126 months; notice, however, that the

segment-wise predictions all differ. This can thus be interpreted

as saying that the hand contains maturity features that have a

central tendency lying between the GP reference plates at 120 and

132 months. Closer (segmental) examination reveals the degree to

which bones are differentially advanced relative to that reference.

1.3.1 The concordance curve
We now introduce some useful terminologies that make it

considerably easier to discuss the accuracy of network predictions.

Most images in the RSNA dataset align with one or the other

GP reference class, we call these “concordant” images. There are

some images, however, that do not align, and this constitutes the

“discordant” set. The RSNA training set consists of 6,833 male and

5,778 female radiographs; among the male files, there are 5,909

concordant 924 discordant files, while the female class contains

4,882 concordant images and 896 discordant images.

Suppose that a network prediction needs to select among

discrete classes, such as 108, 120, and 132; this can be done based

on their relative closeness. Network predictions of a GP class (on,

say, images concordant with 120 months) can be described by

the corresponding ecdf, as shown in Figure 2. We term this the

“concordance curve” of that class. The position of a new prediction

on this curve enables us to decide whether is 120 a good label for

this image. A clinician may decide, for example, that a deviation

within one standard deviation of 120 is not large enough to probe

further. On the other hand, when the discordance is large, it might

be helpful to ask: What is the underlying cause in terms of a

differential maturity of the hand?

2 Discussion and outlook

In this perspective, we have argued an intriguing, attractive

property of machine learning that it reproduces BAA distributions.

While the initial RSNA challenge was motivated by a reduction

in MAD (Halabi et al., 2019) over the population, any application

to the individual suffers from the same statistical caveats that

all epidemiological studies do. It is fortuitous that convolutional

neural networks pick up on a rich feature set embedded in the

X-ray. Thus, when network predictions on two X-rays with the

same GP label differ, this is not simply a chance occurrence; there

is reasoning hidden deep in the feature set of the hand that the

network is able to tell the two apart. The segmental GPmethod is an

attempt to exploit this feature set fully. The novel tool we introduce

for this purpose is the concordance curve.When two concordant X-

rays differ in prediction, they are first identified by their location on

the concordance curve. Next, segmental ratings are obtained, and

these reveal the underlying differences in maturity in the hand. In

this manner, automated BAA is a muchmore general methodology,

capable of telescoping down to far greater resolution than

ordinary GP.

Thus, at its simplest, the segmental GP is an excellent ensemble

method (Jung et al., 2023), especially since each of the hand

segments represent uncorrelated data. It is, however, much more

than that: it is GP adapted to reveal maturity differences in different
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FIGURE 2

Empirical cumulative distribution functions for bone age predicted from three models on all validation X-rays of age 120 months (boys). Model

architectures include two ResNet’s (50 and 152) and one DenseNet161, each trained on the full RSNA training data (sex: male); see Chapke (2023) for

the general methodology of model construction. Note that each model is evaluated on validation set of X-rays labeled with age 120 months (n = 42).

Among the three models, predictions from each network di�er slightly in estimates of age. The ensemble ecdf is overlaid in bold; ensemble

predictions are observed to align with the average of the three models.

parts of a hand. This provides a vocabulary for raters that might

disagree in their overall age assessment, to compare what are the

specific locations they do (not) agree on. We claim that this places

the clinician firmly in control of decision processes. “Interpretable

AI” has become an emergent challenge that is often observed as

threatening the adoption of digital health solutions. Segmental GP,

by allowing the clinician to investigate the underlying rationale for

a prediction, thus places them firmly “in-the-loop.” We believe that

this will greatly improve confidence in the technology.

We are confident that the segmental GP method is the new way

forward for automated, AI-based BAA.
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