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Covert tobacco advertisements often raise regulatory measures. This paper
presents that artificial intelligence, particularly deep learning, has great potential
for detecting hidden advertising and allows unbiased, reproducible, and fair
quantification of tobacco-related media content. We propose an integrated text
and image processing model based on deep learning, generative methods, and
human reinforcement, which can detect smoking cases in both textual and visual
formats, even with little available training data. Our model can achieve 74%
accuracy for images and 98% for text. Furthermore, our system integrates the
possibility of expert intervention in the form of human reinforcement. Using the
pre-trained multimodal, image, and text processing models available through
deep learning makes it possible to detect smoking in di�erent media even with
few training data.
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1 Introduction

The WHO currently estimates that smoking causes around 8 million deaths a day. It

is the leading cause of death from a wide range of diseases, for example, heart attacks,

obstructive pulmonary disease, respiratory diseases, and cancers. 15% of people aged 15

years and over smoke in the OECD countries and 17% in the European Union (Economic

Co-operation and Development, 2023). Moreover, of the 8 million daily deaths, 15%

result from passive smoking (World Health Organization, 2022). The studies (Pechmann

and Shih, 1996; Chapman and Davis, 1997) below highlight the influence of smoking

portrayal in movies and the effectiveness of health communication models. However,

quantifying media influence is complex. For internet media like social sites, precise ad

statistics are unavailable. Furthermore, calculating incited and unmarked ads poses a

significant difficulty as well. Therefore, accurate knowledge of the smoking-related content

appearing in individual services can be an effective tool in reducing the popularity of

smoking. Methods for identifying content include continuous monitoring of advertising
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intensity (Kong et al., 2022), structured data generated by

questionnaires (Fielding et al., 2004), and AI-based solutions that

can effectively support these goals. The authors of the article

“Machine learning applications in tobacco research” (Fu et al.,

2023) point out in their review that artificial intelligence is a

powerful tool that can advance tobacco control research and

policy-making. Therefore, researchers are encouraged to explore

further possibilities.

Nonetheless, these methods are highly data-intensive. In the

case of image processing, an excellent example of this is the popular

ResNet (He et al., 2016) image processing network, which was

trained on the ImageNet dataset (Deng et al., 2009) containing

14,197,122 images. Regarding text processing, we can mention

the popular and pioneering BERT network (Devlin et al., 2018b)

trained by the Toronto BookCorpus (Zhu et al., 2015) was trained

by the 4.5 GB of Toronto BookCorpus. Generative text processing

models such as GPT (Radford et al., 2018) are even larger and were

trained with significantly more data than BERT. For instance, the

training set of GPT 3.0 was the Common Crawl dataset (https://

commoncrawl.org/), which has a size of 570 GB.

The effective tools for identifying the content of natural

language texts are topic modeling (Blei et al., 2003) and the

embedding of words (Mikolov et al., 2013; Pennington et al.,

2014; Bojanowski et al., 2017), tokens, sentences (Reimers and

Gurevych, 2019), or characters (Clark et al., 2022) clustering

(Arthur and Vassilvitskii, 2007). For a more precise identification

of the content elements of the texts, we can use the named-entity

recognition (Ali et al., 2022) techniques. In image processing, we

can highlight classification and object detection to detect smoking.

The most popular image processing models are VGG (Simonyan

and Zisserman, 2014), ResNet (He et al., 2016), Xception (Chollet,

2017), EfficientNet (Tan and Le, 2019), Inception (Szegedy

et al., 2016), and YOLO (Redmon et al., 2016). There also

are architectures such as CAMFFNet (Lin et al., 2022) that are

proposed for detecting smoking-related diseases. The development

of multimodal models also is gaining increasing focus (Liu et al.,

2019, 2022), which can use texts and images to solve the tasks at the

same time. Formovies, scene recognition is particularly challenging

compared to images (Rao et al., 2020). Scene recognition is also

linked to sensitive events such as fire, smoke, or other disaster

detection systems (Gagliardi et al., 2021), but there are attempts to

investigate point-of-sale and tobacco marketing practices (Bianco

et al., 2021) as well.

We concluded that there is currently no publicly available

specific smoking-related dataset that would be sufficient to

train a complex model from scratch. Hence, we propose

a multimodal architecture that uses pre-trained image and

language models to detect smoking-related content in text

and images. By combining image processing networks with

multimodal architectures and language models, we leverage

textual and image data simultaneously. This offers a data-

efficient and robust solution that can be further improved

with expert input. This paper demonstrates the remarkable

potential of artificial intelligence, especially deep learning, for the

detection of covert advertising, alongside its capacity to provide

unbiased, replicable, and equitable quantification of tobacco-

related media content.

2 Methods

2.1 Model architecture

As illustrated in Figure 1 by a schematic flow diagram, our

solution relies on pre-trained language and image processing

models and can handle both textual and image data.

The first step of our pipeline is to define the incoming

data format because need to direct the data to the appropriate

model for its format. The video recordings are analyzed with

multimodal and image processing models, while the texts are

analyzed with a large language model. In the case of video

recordings, we applied the CLIP-ViT-B-32 multilingual (Reimers

and Gurevych, 2020; Radford et al., 2021) model. The model

has been developed for over 50 languages with a special

training technique (Reimers and Gurevych, 2020). The model

supports Hungarian, which was our target language. We use

the CLIP-ViT-B-32 model as a filter. After filtering, to achieve

more accurate results, we recommend using the pre-trained

EfficientNet B5 model, which we fine-tuned with smoking images

for the classification task. To process texts, we use name entity

recognition to identify smoking-related terms. For this purpose,

we have integrated into our architecture an XLM-RoBERTa

model (Conneau et al., 2019) that is pre-trained, multilingual,

and also supports the Hungarian language, which is important

to us.

2.2 Format check

The first step in processing is deciding whether the model has

to process video recordings or text data. Since there are many

formats for videos and texts, we chose the simple solution of

only supporting mp4 and txt file formats. The mp4 is a popular

video format, and practically all other video recording formats

can be converted to mp4. We consider txt files utf8-encoded raw

text files that are ideally free of various metadata. It is important

to emphasize that here we ignore the text cleaning processes

required to prepare raw text files. The reason is that we did

not deal with faulty or txt files requiring further cleaning during

the trial.

2.3 Processing of videos and images

The next step in the processing of video footage is to break

it down into frames by sampling every second. The ViT image

encoder of the CLIP-ViT-B-32 model was trained by its creators for

various image sizes. For this, they used the ImageNet (Deng et al.,

2009) dataset in which the images have an average size of 469×387

pixels. The developers of CLIP-ViT-B-32 do not recommend an

exact size for the image encoder. The model specification only

specifies a minimum size of 224×224. In the case of EfficientNetB5,

the developers have optimized an image size of 224×224. For

these reasons, we have taken this image size as a reference and

transformed the images sampled from the video recordings to this

image size.
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FIGURE 1

Schematic flow diagram of the architecture.

2.4 Multimodal filtering

The images sampled from the video recordings were filtered

using the CLIP-ViT-B-32 multilingual v1 model. The pre-trained

CLIP-ViT-B-32 multilingual v1 model consists of two main

components from a ViT (Dosovitskiy et al., 2020) image processing

model and a DistilBERT-based (Sanh et al., 2019) multilingual

language model. We convert into a 512-long embedded vector

(Mikolov et al., 2013) the images and texts with CLIP-ViT-B-32.

The embedded vectors for texts and images can be compared

based on their content meaning if we measure cosine similarities

between the vectors. The cosine similarity is a value falling in

the interval [-1,1], and the similarity of two vectors will be

larger the closer their cosine similarity is to 1. Since we aimed

to find smoking-related images, we defined a smoking-related

term. We converted it to a vector and measured it against

the embedded vectors generated from the video images. The

term we chose was the word “smoking.” We can use more

complex expressions, which could complicate the measurement

results interpretation.
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FIGURE 2

The cosine similarity of the images obtained from the video recording in chronological order. (The video footage used for the illustration was
selected from the YouTube-8M Abu-El-Haija et al., 2016 dataset.)

FIGURE 3

The images are in an orderly manner based on the cosine similarity values. (The video footage used for the illustration was selected from the
YouTube-8M Abu-El-Haija et al., 2016 dataset.)
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The cosine similarity of the vectors produced by embedding

the images always results in a scalar value compared to the vector

created from our expression related to “smoking.” However, the

decision limit between the distances measured between the vectors

produced by the CLIP-ViT-B-32 model is not always clear. Namely,

even in the case of images with meanings other than “smoking,”

we get a value that is not too distant. We had to understand

the distribution of the smoking images to eliminate this kind of

blurring of the decision boundary. To this end, we examined the

characteristics of the distribution of the images. It is clear from

Figure 2 that because the images with a semantic meaning closer

to smoking appear randomly in a video recording, it is difficult

to grasp the series of images that can be useful for us. Figure 2

is actually a function whose vertical axis has the cosine similarity

values belonging to the individual images.

At the same time, the horizontal axis shows the position of

the images in the video. To solve this problem, we introduced

the following procedure. If we put the cosine similarity values

in ascending order, we get a function that describes the ordered

evolution of the cosine similarity values.

The ordered function generated from Figure 2 can be seen in

Figure 3. As shown in Figures 2, 3, we found that if we take the

similarity value of the images sampled from the given sample to

the word “smoking,” their average results in a cutting line, and we

can use it as a filter.

Furthermore, considering the specifics of the video recordings,

we consider that the average can be corrected with a constant value.

In this mean, the constant value can thus also be defined as the

hyperparameter of the model. We chose the 0 default value for

the correction constant because of more apparent measurements.

Because the choice of the best constant value may differ depending

on the recording type and may distort the exact measurement

results. We show the complete process of multimodal filtering in

Algorithm 1 of Supplementary material.

2.5 Fine-tuned image classification

After filtering the image set with a multimodal model, we

applied an image processing model to classify the remaining images

further to improve accuracy. Among the publicly available datasets

on smoking, we have used the “smoker and non-smoker” (Khan,

2020) for augmented (Shorten and Khoshgoftaar, 2019) fine-

tuning. We selected the following models for the task. EfficientNet,

Inception, ResNet, VGG, andXception. The EfficientNet B5 version

was the best, with an accuracy of 93.75%. Supplementary Table 1

contains our detailed measurement results concerning all models.

2.6 Processing of text

In the case of detecting smoking terms in texts, we approached

the problem as a NER task and focused on the Hungarian language.

Since we could not find a train and validation dataset containing

annotated smoking phrases available in Hungarian, therefore, to

generate the annotated data, we used the generational capabilities of

ChatGPT, the smoking-related words of the Hungarian synonyms

TABLE 1 Examples of Hungarian synonyms for smoking in English.

Cigarette King deck

Smokes Cigar

Pipe Coffin nail

Spangles Like the factory chimney

Tobacco Cigarette end

TABLE 2 A three elements example prompt for ChatGPT.

Generate a short text about smoking.

The text strictly contains the following words in the different sentences:

smoking, tobacco, and cigar.

and antonyms dictionary (Viola, 2012), and prompt engineering.

Accordingly, we selected words related to smoking from the

synonyms and antonyms dictionary and asked ChatGPT to suggest

further smoking-related terms besides words from the Hungarian

dictionary.

Finally, we combined the synonyms and the expressions

generated by ChatGPT into a single dictionary. A simplified

English sample from the dictionary can be viewed in

Table 1, and a complete Hungarian dictionary is contained in

Supplementary Table 5.

We created blocks of a maximum of five elements from

the words in our dictionary. Each block contained a random

combination of a maximum of five words. The blocks are disjoint,

so they do not contain the same words. This mixing step was done

10 times. This means that, in one iteration, we could form eight

blocks of 5-element disjunct random blocks from our 43-word

dictionary. By doing all these 10 times, we produced 80 blocks.

However, due to the 10 repetitions, the 80 blocks were no longer

disjoint. In other words, if we string all the blocks together, we

get a dictionary in which every synonym for smoking appears a

maximum of 10 times.

We made a prompt template to which, by attaching each block,

we instructed ChatGPT to generate texts containing the specified

expressions. Since ChatGPT uses the Hungarian language well, the

generated texts contained our selected words by the rules of the

Hungarian language, with the correct conjugation. An example of

our prompts is illustrated in Table 2.

We did not specify how long texts should be generated by

ChatGPT or that every word of a 5-element block should be

included in the generated text. When we experimented with

ChatGPT generating fixed-length texts, it failed. Therefore, we have

removed the requirement for this. Using this method, we created

a smoking-related corpus consisting of 80 paragraphs, 49,000

characters, and 7,160 words. An English example of a generated text

is presented in Table 3, and there are more Hungarian examples in

Section 2 of Supplementary Tables 6–16.

To find the best model according to the possibilities of

our computing environment and the support of the Hungarian

language, we tested the following models: XLM RoBERTa base

and large, DistilBERT base cased, huBERT base (Nemeskey, 2021),

BERT base multilingual (Devlin et al., 2018a), and Sentence-BERT
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TABLE 3 An example paragraph generated by from the prompt of Table 2.

Smoking is a widespread and addictive habit that involves inhaling

and exhaling the smoke produced by burning tobacco. Whether it’s

a hand-rolled cigar or a manufactured cigarette, the act of

smoking revolves around the consumption of tobacco. Despite the well-known

health risks, many individuals continue to engage in smoking due

to its addictive nature. The allure of a cigar or

a cigarette can be strong, making it challenging for people

to quit smoking even when they are aware of its

detrimental effects. Education and support are crucial in helping individuals

break free from the cycle of smoking and its associated

harms.

(Reimers and Gurevych, 2019). The best model was the XLM

RoBERTa large one, which achieved 98% accuracy and 96% F1-

score on the validation dataset and an F1-score of 91% with an

accuracy of 98% on the test dataset.

2.7 Human reinforcement

In the architecture we have outlined, the last step in dealing with

the lack of data is to ensure the system’s continuous development

capability. For this, we have integrated human confirmation into

our pipeline. The essence is that our system’s hyperparameter

should be adjustable and optimizable during operation and that

the data generated during detection can be fed back for further

fine-tuning.

The hyperparameter of our solution is the cut line used in

multimodal filtering. Its value is a default value. Therefore, its value

is not immutable. After the expert has reviewed the results of the

data generated during the processing process, the hyperparameter

can be modified. Which can optimize the performance of the

model.

The tagged images and annotated texts from the processed

video recordings and texts are transferred to permanent storage in

the last step of the process. This dynamically growing dataset can

be further validated with additional human support, and possible

errors can be filtered. So, False positives and False negatives can be

fed back into the training datasets.

In our architecture, we consider both the modifiability of the

hyperparameter and the collection, verifiability, and feedback of

the processed data in the training process as tools that provide

the possibility of human reinforcement in order to further increase

performance.

3 Results

We collected video materials to test the image processing part

of our architecture. The source of the video materials was the

video-sharing site YouTube. Taking into account the legal rules

regarding the usability of YouTube videos, we have collected five

pieces short advertising films from the Malboro and Philip Morris

companies. We ensured not to download videos longer than 2

min because longer videos, such as movies, would have required

a special approach and additional pre-processing. Furthermore, we

downloaded the videos at 240 p resolution and divided them into

frames by sampling every second. Each frame was transformed to

a size of 224×224 pixels. We manually annotated all videos. The

downloaded videos averaged 64 s and contained an average of 13 s

of smoking.

With the multimodal filtering technique, we discarded the

images that did not contain smoking. Multimodal filtering found

25 s of smoking on average in the recording. The accuracy of the

identified images was 62%. The multimodal filtering could filter out

more than half of the 64-s, on average, videos.We alsomeasured the

performance of the fine-tuned EfficientNet B5 model by itself. The

model detected an average of 28 s of smoking with 60% accuracy.

We found that the predictions of the two constructions were

sufficiently diverse to connect them using the boosting ensemble

(Dietterich, 2000) solution. By connecting the two models, the

average duration of perceived smoking became 12 s with 4 s on

average error and 74% accuracy. The ensemble solution was the best

approach since the original videos contained an average of 13 s of

smoking.We deleted the videos after themeasurements and did not

use them anywhere for any other purpose. Supplementary Table 2

contains the exact quantitative results broken down into test videos.

We created training and validation datasets from Hungarian

synonyms for smoking using ChatGPT. Samples of generated data

are provided in Section 2 of the Supplementary material. From the

data, we created a learning and validation data set in proportions

of 80 and 20%. We trained our chosen large language models

until their accuracy on the validation dataset did not increase for

at least 10 epochs. The XLM-RoBERTa model achieved the best

performance on the validation dataset with an F1-score of 96 and

98% accuracy. For the final measurement, we created test data from

an online text related to smoking by manual annotation (Health

Promotion Center, 2023). The text of the entire test data is included

in Section 3 in the Supplementary material. The fine-tuned XLM-

RoBERTa model achieved 98% accuracy and 0.91 F1 score on the

test dataset. The measurement results of the chosen models can

be viewed in more detail in Supplementary Tables 3, 4, where, in

addition to the accuracy and F1-score values, the recall, precision,

and cross-entropy loss values can also be found.

4 Conclusions

Multimodal and image classification models are powerful

for classification tasks. In return, however, they are complex

and require substantial training data, which can reduce their

explainability and usability. In turn, our solution showed that

pre-trained multimodal and image classification models exist that

allow smoking detection even with limited data and in the matter

of low-resource languages if we use the potential of human

reinforcement, generative, and ensemble methods. In addition,

we see further development opportunities if our approach is

supplemented with an object detector, which can determine the

time of occurrence of objects and their position. Moreover, with
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the expected optimization of the automatic generation of images in

the future and the growth of the available computing power, our

method used for texts can work in the case of images.
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