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In the field of veterinary medicine, the detection of parasite eggs in the fecal

samples of livestock animals represents one of the most challenging tasks,

since their spread and di�usion may lead to severe clinical disease. Nowadays,

the scanning procedure is typically performed by physicians with professional

microscopes and requires a significant amount of time, domain knowledge,

and resources. The Kubic FLOTAC Microscope (KFM) is a compact, low-cost,

portable digital microscope that can autonomously analyze fecal specimens for

parasites and hosts in both field and laboratory settings. It has been shown to

acquire images that are comparable to those obtained with traditional optical

microscopes, and it can complete the scanning and imaging process in just

a few minutes, freeing up the operator’s time for other tasks. To promote

research in this area, the first AI-KFM challenge was organized, which focused

on the detection of gastrointestinal nematodes (GINs) in cattle using RGB

images. The challenge aimed to provide a standardized experimental protocol

with a large number of samples collected in a well-known environment and

a set of scores for the approaches submitted by the competitors. This paper

describes the process of generating and structuring the challenge dataset and

the approaches submitted by the competitors, as well as the lessons learned

throughout this journey.

KEYWORDS

microscope, FLOTAC, semantic segmentation, object detection, veterinary, parasite

eggs

1 Introduction

Grazing ruminants are exposed to gastrointestinal parasites, which can have very

different implications on the host in terms of type and intensity of pathogenic effect

and on the control practices required (Maurizio et al., 2023). Among all, gastrointestinal

nematode infections are a common constraint in pasture-based herds and can cause a

decrease in animal health, productivity, and farm profitability (Vande Velde et al., 2018).
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Knowledge about the presence and distribution of helminth

infections is therefore crucial to plan effective parasite control

programmes (Charlier et al., 2020). Thus, detecting, identifying,

and quantifying the presence and spread of intestinal parasite

infection is a crucial, but non-trivial task, usually performed

with non-invasive tools, such as the microscopic examination of

fecal samples, and, in particular, with techniques of fecal egg

count (FEC). However, the manual count of parasite eggs requires

relatively costly microscopes and a highly trained observer, who

has to stay focused on the task for several hours, often resulting

in count errors that lead to the prescription and use of inadequate

dosage of drugs (Peña-Espinoza, 2018). Moreover, one of the most

relevant problems regarding the standard approach for animal

infection diagnosis is the apparatus (e.g., FLOTAC, Mini-FLOTAC,

etc.) transport, which could take up to several hours from farm

to laboratories, causing huge issues in terms of working time

(Bosco et al., 2018). This is compounded if the samples obtained

from farming reveal to be wrongly collected once analyzed with

an optic microscope in a laboratory and, consequently, forcing a

return to the farming for a new collection (Sabatini et al., 2023).

As a consequence, these aspects have made clear the necessity of

research and development of automatic systems for the localization,

identification, and FEC. Artificial Intelligence (AI) based solutions

have been gaining promising performance for these kinds of tasks,

where a key role is played by Deep Learning (DL) approaches,

such as Convolutional Neural Networks (CNNs) (Slusarewicz et al.,

2016; Elghryani et al., 2020; Nagamori et al., 2020), thanks to their

ability to learn the best data representation for the specific problem

to be solved.

The Kubic FLOTAC Microscope (KFM) (Cringoli et al., 2021)

represents a compact, low-cost, versatile, and portable digital

microscope designed to autonomously analyze fecal specimens

prepared with FLOTAC or Mini-FLOTAC (Cringoli et al., 2010,

2017), in both field and laboratory settings, for different parasites

and hosts. Having been proven to acquire images comparable to

the view provided by traditional optical microscopes, it is able to

autonomously scan and acquire images from a FLOTAC or Mini-

FLOTAC in a few minutes, allowing the operator to focus on a

different task. Based on the KFM, the University of Naples Federico

II organized the AI-KFM challenge, an international online

competition hosted on Kaggle in which participants were asked to

compete in fecal egg detection of gastrointestinal nematodes (GINs)

in cattle, considering RGB images. The aim of the challenge was

to support the research community by providing a standardized

common experimental protocol, as well as a large number of

samples collected in a well-known environment and a set of scores

for competitors’ approaches already available, so that a new solution

for automatic FEC can be found and improved in a faster way.

Each competitor could focus on different parts of the detector

system pipeline in order to provide the best solution possible,

for instance on the pre-processing step, in order to understand

which could be the best transformation to enhance the researched

features, or on the egg detector itself. In particular, the purpose

is to advance the development of fully-automatic solutions for

parasite eggs detection, providing a free-to-use and broad dataset,

available from the beginning of 2022. This dataset comprises

images derived from real-world samples, specifically cattle fecal

samples processed using FLOTAC apparatuses, that include varying

concentrations of eggs and diverse levels of contamination. While

other datasets, such as Chula-ParasiteEgg-11 (Palasuwan et al.,

2022), have been proposed in the literature, our competition

dataset represents a unique case study. Unlike Chula-ParasiteEgg-

11, which features images deliberately focused on individual eggs

by operators, our dataset allows for analysis directly in the field

without requiring a laboratory setting or operator intervention.

This characteristic ensures a more realistic representation of what

an automatic egg detector encounters during a scan session, where

images may contain hundreds of eggs or none at all. Furthermore,

the Chula-ParasiteEgg-11 dataset includes eggs captured under

varying conditions, using different apparatuses, light settings, and

focus points. In contrast, our dataset for the AI-KFM challenge

is specifically designed to train models optimized for the Kubic

FLOTAC Microscope, thereby leveraging all the advantages of

this tool.

The provided dataset for the challenge, combined with the

selection of reliable devices from the FLOTAC family, the

capability to conduct on-field scan sessions, and the adoption

of state-of-the-art deep learning models, has enabled us to

develop an optimized system for the Kubic FLOTAC Microscope.

This system significantly simplifies the work of researchers and

veterinarians, surpassing the efficiency of current state-of-the-

art solutions. Additionally, to establish the competition as a

standardized experimental platform, we continue to welcome new

solutions. This ongoing acceptance fosters collaboration within the

research community and offers a real-world scenario for testing

new methodologies.

In this paper, we provide a comprehensive overview of the

first AI-KFM challenge, focusing on the various aspects that were

covered during the competition. We describe in detail the process

of generating and structuring the dataset, also providing insights

into the challenges and limitations that we faced during this process

and how we overcame them. Moreover, we describe the different

approaches that were submitted by the participants, detailing the

methodologies and techniques that were employed. Finally, we

reflect on the lessons learned throughout this journey, highlighting

the key takeaways from the competition and the implications

for future research in this field. We discuss the importance of

collaboration and standardization in promoting advancements in

object detection in veterinary medicine, and how the AI-KFM

challenge has contributed to this effort. To sum up, this paper

provides a comprehensive overview of the AI-KFM challenge

and its significance for advancing the field of object detection in

veterinary medicine.

The structure of the paper is organized as follows: Section 2

describes the existing solutions in the literature; Section 3 details

the AI-KFM challenge; Section 4 summarizes the methodologies

implemented by the participants; Section 5 shows the obtained

results; Section 6 will contain a brief discussion of the results

obtained with their implications, finally Section 7 provides

some conclusions.

2 Related works

Several manual and automatic FEC techniques already exist.

Table 1 summarizes the limitations of the most used ones,
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TABLE 1 List of the most used existing solutions for manual and automatic fecal egg count, reporting for each a brief description, possible hosts and

parasites, strengths and the main limitations.

System Principle Hosts Parasites Advantages Limitations

FECPAKG2

(Tyson et al., 2020)

High-throughput

technological

system for on-field

sample processing

Ruminants, humans GINs, soil-transmitted

helminths (STH)

Automated

detection and

count, remote

parasite detection

and data online

management

Low sensitivity and

accuracy

Parasight system

(Slusarewicz et al., 2016)

Based on a

fluorescent egg

staining and a

smartphone to

capture images

Horses Strongyles, parascaris

equorum

2.5 min test time,

less variables and

more accurate than

McMaster

technique

Validated only on horses

Lab-on-disk platform

(Sukas et al., 2019)

Based on a

combined

gravitational and

centrifugal rotation

Humans, pigs STH, schistosoma

mansoni, ascaris suum

High quality of

images, permitting

a good

identification and

count

High cost, limited use on

field

Automated robotic system

(Lu et al., 2018)

Based on an

automated X-Y

stage, autofocus and

scan provided by

LabVIEW GUI

Monkey, dogs, cattle,

sheep

Trichuris spp,

Toxocara spp,

Strongyles,

Isospora spp,

Eimeria spp

Inexpensive,

compact, possibility

to use

fluorescence

Compatible with

McMaster only, not

validated

Automated Diagnosis of

Intestinal Parasites (DAPI)

(Inácio et al., 2020)

Based on a

motorized system

and using a digital

camera and

machine learning

software

Dogs Ancylostoma spp,

Toxocara spp,

Trichuris spp,

Giardia spp

Automated

detection of eggs

through machine

learning software

High cost, not portable,

not validated

Telenostic System

(Elghryani et al., 2020)

Automated digital

microscope with a

10×x lense using

machine learning

software

Cattle GINs High level of

agreement between

the prototype and

manual systems of

FEC

Validated only on cattle, 40

min analysis

VETSCAN IMAGYST

(Nagamori et al., 2020)

Composed of a

digital slide scanner

and machine

learning software

Dogs, cats Ancylostomidae,

Toxocara spp,

Trichuris spp,

Taeniidae

The system allows

detection and count

of eggs within 15

min

High cost, not portable,

validated on dogs/cats only

highlighting the need for more reliable approaches. Indeed, while

solutions such as the Parasight System and VETSCAN IMAGYST

have shown better performance thanmost competitors (Scare et al.,

2017; Cain et al., 2020; Nagamori et al., 2020, 2021), they are

only validated on a restricted range of hosts and are therefore

limited in their applicability. On the other hand, solutions such

as the Lab-on-disk Platform and DAPI offer high-quality images

and good identification accuracy, but their high cost and lack of

portability make them unsuitable for on-field use, which prevents

the scanning process from being started directly after sample

collection, thereby increasing analysis times (Sukas et al., 2019;

Inácio et al., 2021).

As reported in several comparative papers (Bosco et al.,

2014; Godber et al., 2015; de Castro et al., 2017; Cools

et al., 2019) the FLOTAC and Mini-FLOTAC systems

outperform different competitors, such as McMaster,

Wisconsin, Kato-Katz and FECPAK in FEC accuracy and

sensitivity.

In literature, several works cover the problem of detecting

automatically parasite eggs in samples for FEC and introduce

the corresponding solutions, each one with different approaches

and techniques.

Most studies rely on private datasets independently extracted

by research groups (Naing et al., 2022; Kumar et al., 2023a;

Suwannaphong et al., 2023), utilizing various state-of-the-

art Convolutional Neural Networks (CNNs) such as AlexNet

(Krizhevsky et al., 2012), ResNet (He et al., 2016), and YOLO

(Redmon et al., 2016). Notably, the work by Mayo et al. (2022)

is unique in adopting a workflow that integrates a Generative

Adversarial Network (GAN) alongside a standard object detector

(Faster R-CNN). Additionally, several solutions introduced after

the conclusion of the AI-KFM Challenge employ the Chula-

ParasiteEgg-11 dataset from Palasuwan et al. (2022), which includes

11 classes of parasite eggs. Studies such as those by Pedraza

et al. (2022), Ruiz-Santaquiteria et al. (2022), Wang et al. (2022),

AlDahoul et al. (2023), and Rajasekar et al. (2023) utilize this

dataset with a broad range of deep learning models, primarily

leveraging CNNs.

Moreover, given the advancements provided by data

processing algorithms in conjunction with the models themselves,
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incorporating such algorithms into the data elaboration workflow

should be considered essential.

This integration is a complex and time-consuming task.

Various automatic or semi-automatic solutions have been

developed, but each has limitations that hinder widespread

adoption. These limitations range from apparatus quality

to the capability of executing processes immediately after

sample collection. Most automatic systems require significant

computational resources, leading to solutions that necessitate

specialized hardware designed for laboratory use. Consequently,

veterinary researchers are often required to transport samples from

animal farms to laboratories and wait for extended periods before

analysis can commence, increasing the risk of data degradation

during transit.

In order to remedy these limitations, the University of Naples

Federico II provides the KFM, an extremely portable and user-

friendly microscope designed to be adopted by any kind of operator

for on-field analyses, in order to retrieve a dataset which can be

adopted for automatic models for parasite eggs detection, which

can be later integrated in the KFM ecosystem, making it the ideal

solution for the task described so far.

3 AI-KFM 2022 challenge

Given these premises, the University of Naples Federico

II proposed the AI-KFM 2022 Challenge1 whose aim was to

make competitors build an algorithm for the automatic detection

and count of parasite eggs. In particular, during the challenge,

competitors had to design and develop a system composed of a

pre-processing pipeline for a previously collected dataset, and a

model that can be used with a dynamic test set and for different

tasks since the purpose was to define an architecture protocol

and to obtain robust models. The solution had to be submitted

on the dedicated Kaggle page, where also inferences results are

still available.

However, before understanding how the KFM itself and the

challenge dataset are composed, it is needed to focus on apparatuses

adopted to extract it, which are the ones the KFM was built on: the

FLOTAC and the Mini-FLOTAC.

3.1 FLOTAC and Mini-FLOTAC

The FLOTAC family apparatuses, which are FLOTAC, Mini-

FLOTAC and Fill-FLOTAC, constitute the heart of the system,

representing fecal sample collectors. The FLOTAC apparatus

consists of a cylindrical device made of polycarbonate amorphous

thermoplastic, chosen for its excellent light transmission,

robustness to washing and re-use, resistance to high heat, and high

dimensional stability. Figure 1 illustrates the physical components

of the device, which include the base, translation disc, and reading

disc. The FLOTAC contains two 5-ml flotation chambers that are

specifically designed for optimal and accurate examination of large

fecal sample suspensions.

1 AI-KFM 2022 Challenge: https://sites.google.com/view/ai-kfm2022/.

FIGURE 1

Physical components of the FLOTAC apparatus. The core device is

composed of a reading disc, a translation disc and a base. Arrows

indicate the flotation chambers.

In addition to the FLOTAC device itself, several accessories are

also provided to ensure proper functioning of the apparatus during

centrifugation and examination with microscope, as depicted

in Figure 2. These accessories include the microscope adapter,

centrifuge adapter, screw, key and bottom.

There are two versions of the FLOTAC: the FLOTAC-100,

which allows a maximummagnification of 100x, and the FLOTAC-

400, which allows a maximum magnification of 400x. FLOTAC-

400 is an enhanced version of the FLOTAC-100, since it allows

microscopic diagnosis at greater magnification, a crucial aspect

for the detection of intestinal protozoa. The FLOTAC-100 version,

however, is still suggested for both helminth eggs and larvae

diagnosis and teaching purposes, as the reading disc is thicker and

more robust than the FLOTAC-400 one and the flotation chambers

can be filled more easily. Structural differences between the two

apparatuses can be seen in Figure 3.

As the name suggests, the Mini-FLOTAC is an evolution of the

FLOTAC apparatus, from which it differs in its slimmer shape and

the absence of the translation disc. This new compositionmakes the

Mini-FLOTAC easier to carry and assemble while, given its size, the

total flotation chamber capacity is only 2 ml, 1 ml for each chamber,

with a maximum allowed magnification of 400×. Besides the key

which enables the Mini-FLOTAC assembly, the Mini-FLOTAC kit

includes also a device called Fill-FLOTAC, which is a disposable

sampling device composed of a container, a collector, and a filter.

Its components, along with the Mini-FLOTAC apparatus and its

key, are shown in Figure 4.
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FIGURE 2

Accessories of the FLOTAC apparatus. These include microscope adapter, centrifuge adapter, screw, key and bottom.

FIGURE 3

Structure of FLOTAC-100 apparatus and of FLOTAC-400 apparatus.

FIGURE 4

Fill-FLOTAC components, Mini-FLOTAC components and Mini-FLOTAC key.
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It is important to note that the quality of data collected is heavily

reliant on the correct preparation of the FLOTAC devices, which

involves a protocol consisting of 11 steps (depicted in Figure 5). The

process begins with a tube of final sample obtained by filtering and

centrifuging a homogeneous solution of water and fecal sample,

removing the supernatant, and mixing the remaining sediment

with a flotation solution. The resulting solution is then poured

uniformly into the two 5 ml flotation chambers of the FLOTAC.

The apparatus is then sealed and subjected to centrifugation,

causing the parasite eggs shields to float and become easily

analyzable.

The FLOTAC technique has the drawback of requiring a

centrifuge, which limits the KFM’s ability to function on-site.

However, this problem can be overcome by using the Mini-

FLOTAC, which does not require centrifugation, as reported in

Barda et al. (2013). By using the Fill-FLOTAC that comes with

the Mini-FLOTAC, some standard FLOTAC steps can be replaced.

Figure 6 shows the operating steps of the Mini-FLOTAC, which

only require seven steps and do not require a centrifuge.

3.2 The microscope structure

Performing an analysis of FLOTAC and Mini-FLOTAC

apparatuses by a human operator with an optical microscope can

be a time-consuming and arduous process. Furthermore, due to

the distance between farms and laboratories, any errors in the

application of the FLOTAC technique may only be discovered

during the analysis in the laboratory, requiring the operator to

discard the sample and return to the farm to collect another one.

Therefore, it has become imperative to develop an automatic

and portable tool for fecal egg count that can be easily used

on-site to save time and energy. To meet these requirements,

the Kubic FLOTAC Microscope, or KFM, was designed

and constructed.

The KFM is made up of a combination of electro-mechanical

components that allow for both manual and automatic scans of the

FLOTAC/Mini-FLOTAC reading discs. The firmware of the KFM

enables three-axial camera movements, remote interactions, and

retrieval of scans. External agents such as the KFM web interface

and a smartphone application can be used to connect to the KFM

hardware, and the KFM AI server can process scans for parasite

egg detection. The FLOTAC/Mini-FLOTAC apparatus is placed

on the KFM slide-out tray and then inserted into the device. The

tray is then withdrawn inside, and 3D landmarks are automatically

set on the upper-left corners of the two flotation chambers. This

ensures that the scan process starts from a standard and well-

known position. Essentially, the KFM is an XYZ-motorized stage

for microscopy. The KFM 3D mechanical design was created using

FreeCAD and Design Spark Mechanical, and a diagram of the

design is shown in Figure 7.

The optical component of the KFM includes an LED

light with a condenser for brightness adjustments and a

digital camera that allows for adjustable magnifications of

100×, 200×, and 300×, with a maximum resolution of 8

MPixels (3,264 × 2,448 pixels) and an image size of 1,024

× 768 (0.8 MP). The three-axis positioning system of the

motorized stage is unique, utilizing open-loop stepper motors and

precision translation stages to achieve precise motion control in

three dimensions.

3.3 Dataset

The dataset consists of images acquired by the KFM, showing

example of GINs. Each FLOTAC/Mini-FLOTAC sample generates

very high-resolution images, split in hundreds of overlapping

patches, and saved in .jpeg or .png format, resulting in thousands

of images made available for the competition, unpublished and

not provided to other people before. Each patch may or may not

contain parasites’ eggs. For training data, participants are also

provided with region of interest (ROI) files containing, for each

image, the coordinates of the bounding box of parasites within it,

as identified and segmented by an expert operator. Test data is

provided without the ROI files. Training and test datasets belong

to different acquisition samples (i.e. different FLOTAC and/or

Mini-FLOTAC devices).

The dataset consists of images coming from 11 different

FLOTAC/Mini-FLOTAC, of which seven have been used for the

Training set and four for the Test set. Each acquisition in the

Training set has two folders:

• Images: containing the images belonging to the same

acquisition. Images in this folder can be considered as patches

(partially overlapping) extracted from a bigger image;

• Masks: containing the coordinates of the boxes surrounding

the eggs, saved as .roi files. Each .roi file, reports the

four coordinates of the box as four-elements vector

Xmin,Ymin,Xmax,Ymax.

The whole dataset is currently available in the Data section of

the Kaggle competition page.2

The challenge allowed competitors to make their models

inferences on different test sets, which were available in different

periods of time. In particular, the test happened at these two

different moments:

• During the first period of the competition (day 1 up to 2

day to the deadline), a test sample (images coming from a

single FLOTAC and/or Mini-FLOTAC device) is available for

participants to test the performance of their models (Test 1);

• On the last day, a new test dataset (with images coming from

more than one FLOTAC and/or Mini-FLOTAC device) is

released (Test 2).

The aim of dividing the test set into two different moments is to

test the generalization ability of the submitted models. This is very

important as, despite KFM having an extremely low intra-operator

variability, the preparation of the sample can affect the acquired

image quality. Both these datasets are available on the Data section

of the AI-KFM 2022 Challenge Kaggle page.

A subset of the test data has been used for the public

leaderboard (i.e., a leaderboard that is updated in real-time

2 AI-KFM 2022 Dataset: https://www.kaggle.com/competitions/ai-kfm-

2022/data/.
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FIGURE 5

The 11 operating steps of the FLOTAC device.

FIGURE 6

The seven operating steps of the Mini-FLOTAC device.

FIGURE 7

FreeCAD and Design Spark Mechanical CADs of the KFM (A) external view and (B) internal view and (C) schematic diagram showing mechanical,

electronic and optical systems of the KFM.

as soon as a participant submits a prediction file), while the

remaining part will be only used for the private leaderboard

(that is made available at the competition end). During

the first period, 100% of the data have been used for

the public leaderboard, while during the second period

(the last day), only 5% of the data has been used for the

public leaderboard. Teams will be allowed a maximum of 1

submission per day. This means that they will have a single

submission on the last day to submit a prediction for the real

test set.

3.4 Tracks

The available tracks for this competition were two, where the

first was mandatory and the second was optional. In particular, the

first one (Track 1) consists of the detection of parasites’ eggs, while

the second track evaluates the inference time on the test set. For

both tracks, the participants were asked to submit a Unix executable

or a Python code. The submission would be used to reproduce the

obtained results and to measure inference speed under the same

workload conditions in Track 2.
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3.5 Performance evaluation

The performance of the competition for eggs detection (Track

1) is evaluated on the F1-Score at different intersection over union

(IoU) thresholds. The IoU of a proposed set of object pixels and of

a set of true object pixels is calculated as in Equation 1:

IoU (A,B) =
A ∩ B

A ∪ B
(1)

The metric sweeps over a range of IoU thresholds, at each point

calculating an F1-Score. The threshold values range from 0.5 to

0.95 with a step size of 0.05: (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8,

0.85, 0.9, 0.95). In other words, at a threshold of 0.5, a predicted

object is considered a “hit” if its intersection over union with a

ground truth object is >0.5. At each threshold value t, the F1-Score

value is calculated based on the number of true positives (TP), false

negatives (FN), and false positives (FP) resulting from comparing

the predicted object to all ground truth objects as in Equation 2:

F1 (t) =
2TP

2TP + FN + FP
(2)

A true positive is counted when a single predicted object

matches a ground truth object with an IoU above the threshold. A

false positive indicates a predicted object had no associated ground

truth object. A false negative indicates a ground truth object had no

associated predicted object. The average F1-Score (F
avg
1 ) of a single

image is then calculated as the mean of the above F1-Score values

at each IoU threshold, as shown in the Equation 3:

F
avg
1 =

1

|thresholds|

∑

t

F1 (t) (3)

It is worth pointing out that we used a standard performance

metric for object detection tasks in biomedical domain (Hicks et al.,

2022; Rainio et al., 2024), especially for the detection of parasite

eggs, where both precision and recall are crucial factors. Indeed, the

F1-Score is their harmonic average. This makes the metric widely

used in different works proposed in the literature (Kumar et al.,

2023b), focusing on the same tasks.

Lastly, the score returned by the competitionmetric is themean

taken over the individual average F1-Scores of each image in the

test dataset.

The performance of the competition for Track 2 is computed

in terms of minutes to process a single acquisition, consisting of

several patches, according to the following formula in Equation 4:

score = 2 ∗
F1 ∗ Tn

F1 + Tn
(4)

where Tn is the min–max normalized execution time (median value

over 10 repetitions) between all the participants.

4 Proposed methods

Obtaining a large dataset of images containing parasite eggs

shields is quite time-consuming but easy and straightforward, since

there are several steps which may take some time but are either

common to the standard analysis process, like the FLOTAC/Mini-

FLOTAC preparation, or almost completely autonomous, like the

KFM scan.

A dataset obtained with this procedure is the one adopted

by AI-KFM 2022 Challenge competitors in order to design and

develop a robust and efficient processing, training and inference

pipeline. Some of these solutions will be detailed in this section.

In particular, a total of three teams participated in this first-year

competition, out of which: (i) only two successfully submitted the

prediction for both test-set moments and (ii) only one took part to

both tracks.

The participants proposed AI-based solutions, exploiting

CNNs for the automatic extraction of the features related to the

task to be solved. The first methodology is proposed by the PAttern

Recognition Applied SardInia TEam (PARASITE), coming from

the University of Cagliari and the University of Sassari, and it

consists of a system composed of a Mask R-CNN and a post-

processing filter for false positives removal. The second approach

has been implemented by MIVIA Lab, from the University of

Salerno and it consists of a system composed of a U-Net and a post-

processing filter for bounding boxes extraction. Unfortunately,

the members of the third team, that is Saksham_Aggarwal, did

not provide the details about their solution, taking part in the

competition without preparing the submission for Test 2. As a

consequence, we will only describe the methodology implemented

by PARASITE and MIVIA Lab.

4.1 PARASITE submission

The problem of automatic detection and the consequent count

of gastrointestinal parasite eggs through microscopic examination

of fecal samples can be addressed as a segmentation problem. The

solution submitted by the PARASITE team of the University of

Cagliari and the University of Sassari is based on the fine-tuning

of famous CNN proposed in the field of object segmentation and

detection for medical imaging.

4.1.1 Adopted architecture: Mask R-CNN
In particular, the submitted solution is based on Mask R-CNN

(He et al., 2017), a CNN-based framework that allows instance

segmentation, which is object detection followed by semantic

segmentation that allows understanding of which pixels belong to

the object. In this work, it was used the Python implementation that

is freely downloadable from Abdulla (2017).

Mask Region-based CNN (R-CNN) is an extension of Faster

R-CNN (Ren et al., 2017) and it adopts a two-stage procedure, as

shown in Figure 8. To estimate the position of bounding boxes, the

first stage uses a fully convolutional network called Region Proposal

Network (RPN) followed by a RoI align layer to detect multiple,

scaled or overlapped objects in an image. In the second stage, the

RoI misalignments in the RoIAlign layer are corrected and then a

classification, a bounding box regression, and the extraction of a

binary mask are performed in parallel. The bounding boxes and

the segmentation masks of the objects present in an image are
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detected at the pixel level and a class label is assigned to them.

The proposed solution is based on a pre-trained model on the

MS COCO dataset; the fine-tuning was done on the AI-KFM 2022

training set (Figure 9).

In particular, the selected model for the submission is trained

on a subset of the available training set (80%) and validated on the

remaining subset (20%) for 100 epochs with a learning rate of 10−3

and early stopping after 20 epochs in case of improvements lack.

Data augmentation includes random horizontal and vertical

flips, translation operation of maximum 20 pixels and crops up to

0.2% of the whole image.

4.1.2 Post-processing
Since the neural network incorrectly classifies air bubbles

and other details as parasites, resulting in many false positives

(Figure 10), the outputs obtained from the network are post-

processed to reduce false positives. In particular, since the parasites

have a double edge, while the air bubbles do not have these

characteristics, a threshold on the number of pixels that constitute

the edges of the object can be significant in discriminating true

positives and false positives.

Each identified item with a chance of being parasites higher

than 93% is then post-processed using a Canny edge detector (lower

threshold: 10, upper threshold: 50), and samples with a proportion

of white pixels larger than 12% have been selected. The final scheme

of the solution proposed by the PARASITE team is shown in

Figure 11.

The model obtained with this architecture has been compared

to a fine-tuned YOLOv5 model, which had similar performances

but did not benefit from the post-processing step, thanks to which

the original model was capable of filtering false positives.

4.2 MIVIA Lab submission

The solution proposed by MIVIA Lab, according to the team

argument about its design and proposal, was conditioned by the

limited amount of data provided, since it is not based on a typical

Single-Shot Detector (SSD) architecture, but on a U-Net, since it

is one of the most adopted architectures for Medical Imaging tasks

with little data available (Liu et al., 2020). Although U-Net is born

for segmentation, it has been also used for the detection (Dai et al.,

2015; Rajchl et al., 2016). A naive approach could be to create

the semantic mask to use for training the network directly from

the bounding boxes. Anyway, it would prevent the network from

focusing only on the regions of interest (corresponding to the pixels

of the object).

Given the limited amount of data to train the system, and

inspired by Dai et al. (2015), the proposed solution is a U-

Net trained by using segmentation masks automatically generated

starting from bounding boxes by exploiting the morphological

properties of objects to be detected.

The architecture of the proposed system is shown in Figure 12.

At training phase, the segmentation masks are automatically

generated and then augmented 4.2.1 before training U-Net 4.2.2. At

operating phase, the trained network is employed and a connected

component analysis is performed to obtain the bounding boxes.

4.2.1 Data preparation
Given the bounding boxes, the segmentation masks should

be extracted in order to feed the network during the training

phase. Even if a wide literature exists (Rajchl et al., 2016; Gröger

et al., 2022), including thresholding, region-based, clustering,

and NN, a common approach is pixel clustering (Zaitoun

and Aqel, 2015). Indeed, it groups pixels based on the object

shape, thus it is thought for situations in which objects

have well-defined shapes. Furthermore, in order to deal with

the fact that clustering may not guarantee the creation of

continuous areas, mathematical morphology operators were

adopted (Dougherty, 2018).

In more detail, the K-means clustering algorithm has been

adopted. Through an iterative process, starting from the original

bounding box (Figure 13A), it groups the image pixels into K

classes based on their attributes (texture, intensity, etc.). The goal

is the minimization of the total intra-group variance. In the end,

the centroid or midpoint of each group and the distance map

are released by the algorithm (Figure 13B). The final result is

obtained by running the algorithm 50 times with different random

initialization, setting ǫ = 1.0 and a maximum number of iterations

to 10. Subsequently, thresholding (binary + Otsu) is applied on

the distance map to obtain a segmentation mask (Figure 13C).

The patches are further processed by applying mathematical

morphology operations to refine the images (Figure 13D): (i)

opening, to remove spurious objects resulting in false positives, (ii)

closing, to make the regions continuous. The size of the structuring

element is determined based on an analysis of the bounding box

sizes, which reported a minimum dimension of 40 × 40 pixels.

Consequently, a circular structuring element with a diameter of 19

pixels is used.

In order to increase the size of the dataset, standard data

augmentation techniques have been performed. Inspired by

Suwannaphong et al. (2021), vertical and horizontal flippings were

adopted. Indeed, rotation transformation has been discarded since

many cells are on the edge of the images, and applying rotation and

cropping would have eliminated such samples while using padding

would have created artifacts. For the same reason, also the shifting

operation is discarded.

4.2.2 Adopted architecture: U-Net
Each image is resized before feeding the network with zero-

order spline interpolation. A vanilla version of U-Net with a

resolution of 572×572, has been used. U-Net is an encoder-decoder

architecture, that introduces the skip connections between the

contracting section (encoder) and the expansion section (decoder)

so as to recover the spatial information lost due to pooling levels.

They allow to maintain a high resolution of the output without

increasing the complexity of the network and, therefore, have the

main advantage to perform well even in presence of a small amount

of training data (Liu et al., 2020).

For the training, the adopted cost function is boundary loss.

The main advantage behind this choice is that it allows for

mitigating the difficulties encountered during training caused by

the high imbalance between foreground and background pixels.

Indeed, boundary loss uses a distance metric based on contours

and not on regions (Kervadec et al., 2019). The chosen optimizer
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FIGURE 8

The PARASITE solution is based on an R-CNN Mask architecture. Mask R-CNN produces three outputs: a class label, a bounding-box o�set, and an

object mask for each candidate item.

FIGURE 9

Fine-tuning of on a Mask R-CNN pre-trained model using the AI-KFM 2022 training set.
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FIGURE 10

Output of the fine-tuned R-CNN Mask model. The system produces false positives in the presence of air bubbles.

FIGURE 11

Complete method of the PARASITE team: the system includes a post-processing phase based on edge detection to avoid false positives.

is Ranger (Wright, 2019). It combines Rectified Adam (RAdam)

with LookAhead optimizer to work faster and more stable on loss

surface. The optimization algorithm was run for 1,000 epochs with

a linear learning rate {10−2, 10−5}.

4.2.3 Post-processing
During the operating phase, the mask obtained from the U-Net

is used to extract the bounding boxes of the connected components,

using 8-connectivity, which is a standard approach in medical

imaging (Salvi et al., 2021).

5 Results

In this section, results regarding both the KFM hardware

and the competitors solutions performances will be detailed and

evaluated. Both these metrics should be considered in order

to obtain an estimation of the quality and the work time the

KFM system, composed of the scan process and the inference

process, has.

In this evaluation, the accuracy of the FLOTAC itself is

not taken into account, given the already proven accuracy and

reliability of the apparatus, reported in the Related work section,
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FIGURE 12

Training and operative phases. Data preparation, to get the segmentation mask from the bounding box and augment the data. U-Net Training, to

obtain the model to be used at the operating phase in order to compute the eggs segmentation mask. Post-processing, to return the bounding

boxes given the segmentation mask.

and given the fact that the KFM system itself has been built upon

the FLOTAC apparatus, therefore considering other apparatuses is

not useful for the KFM system evaluation.

5.1 KFM hardware performances

When the KFM hardware has been tested for the first time,

given the limitations of the first components adopted and the not-

optimized version of the firmware, the KFM scan process resulted

not so promising. Indeed, from the device loading to the generation

of the .zip file containing all the scan images it took more than

40 min, way longer than the typical time needed by an expert

to manually scan the flotation chambers of the FLOTAC with an

optical microscope.

However, after several hardware and software fixes, currently

the whole process, for both chambers, takes <15 min, in line with

the time required when done manually.

Apart from the time performances, the KFM system shows

great robustness to adverse conditions, given the fact that the

system is closed inside a steel and plastic shell, and the integrated

battery enables its usage without being plugged, with an autonomy

of 8 h of continuous scanning.

5.2 Competitors submissions
performances

The test set adopted for this challenge changed during the

competition period. Indeed, initially, a dataset available for the

challenge until two days before the end is provided, but then

a bigger one is used to test the generalization ability of the

methodologies proposed by the teams. Table 2 reports the results of

systems provided by the participants. For the sake of completeness,

we show the performance of the Saksham_Aggarwal team, even

if the members did not complete the challenge, making their

participation not valid. When the first test set is used, the

PARASITE solution exceeds the MIVIA Lab solution by a margin

of ∼0.06. This trend did not change when a different set of data is

considered for the evaluation, since the first solution outperforms

the second one by∼0.09. Interestingly, as expected, the two models

show signs of overfitting, since the F1-Scores for both solutions

dropped when used to make predictions on the second test set.

However, given the large difference between the first and the second

test set in terms of size, with the second bigger than the first one, a

drop in performances was expected.

The PARASITE solution achieves an inference rate of

2.5 images per second, processing images at a resolution of

1,600 × 1,200 pixels. This performance was measured on a
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FIGURE 13

The generation of the segmentation mask for each cell, starting from the patch included in the bounding boxes, converted in grayscale (A), is based

on the following steps: (B) k-means clustering, (C) thresholding, (D) mathematical morphology.

TABLE 2 AI-KFM 2022 Challenge F1-Scores and execution times (in terms

of images per second).

Team Test 1 Test 2 Time

PARASITE 0.7923 0.6275 2.5

Saksham_Aggarwal 0.7736 – –

MIVIA Lab 0.7330 0.5137 –

workstation equipped with an NVIDIA RTX 3090 GPU, an

Intel(R) Core(TM) i7-10700KF CPU, and 32 GB of DDR4 RAM.

The approach utilizes a Mask R-CNN model comprising ×64

million parameters.

Although the MIVIA Lab team did not participate in Track

2, their submitted solution incorporated a U-Net model with

an input size of 572 × 572 pixels and ×28 million parameters.

Predictions results on some images from the test set can be seen

in Figures 14–17.

6 Discussion

The hardware provided by the KFM system is an inexpensive

(∼600e) but efficient solution which can be brought and used

directly in livestock farmings, both by researchers and by inexpert

operators, given its ease to use. This component is then enhanced

thanks to an automatic detection system, which core will be based

on the results obtained in the first AI-KFMChallenge, which can be

intended to serve as a standardized common experimental protocol

in the context of automatic detection, classification and count of

parasites eggs. This challenge provided researchers with more than

2,500 images acquired by using a KFM equipped with FLOTAC and

Mini-FLOTAC devices. Three teams took part to the challenge, but

only two performed all the stages required to be part of the final

score, therefore these two systems will be sources of inspiration for

the KFM final model.

These two solutions are not so far from already existing

approaches considered in the current literature as state-of-the-

art for parasite egg segmentation. For instance, Mask R-CNN (as

the one used by the PARASITE team) is an architecture already

adopted for the detection and segmentation of an egg of a specific

parasite (Caenorhabditis elegans nematode) (Fudickar et al., 2021).

This solution has been proven to be reliable since it reaches a

value of 0.958 in F1-Score. Similarly, U-Net is one of the most

common architectures adopted for biomedical segmentation and,

in particular, for parasites segmentation, as reported in several

papers (Górriz et al., 2018; Mirzaei et al., 2022).

What makes the solutions in this paper different from those

reported in the literature is the processing pipeline, intended

to process images to locate the parasite eggs. Indeed, the two

submitted solutions adopt two different data processing approaches

able to increase the overall performance. In particular, in the first

solution, thanks to the air bubbles filtering, there is a decrease in

false positives and, consequently, an increase in precision and,

therefore, in F1-Score. In the second solution, a mathematical

morphology on threshold masks obtained after k-means

clustering is adopted in order to remove spurious false positives,

resulting in a precision increase as well and, therefore, in an

F1-Score increase.

Unfortunately, neither the adoption of these networks nor

these pre-processing approaches make the system reach F1-Score

values comparable to the ones obtained with systems reported

in the papers cited before (Bosco et al., 2014; Godber et al.,

2015; de Castro et al., 2017; Cools et al., 2019). In any case,

given the improvement brought by the pre-processing pipeline,

a future solution could involve a different network but the

same pipeline.

As noted in the previous section, the results, while promising,

indicate that significant work remains to achieve a fully reliable

model for the KFM system. Importantly, the provided dataset

closely mirrors real-world conditions, capturing the actual

environment that the KFM’s camera will encounter, including dirt

and focus imperfections. This realistic representation enhances the

robustness of the proposed models compared to state-of-the-art

solutions, which typically rely on clean datasets that depict idealized

and less plausible sample conditions.

As the PARASITE won the first edition of the AI-KFM

challenge, the team had the opportunity to show their solution

during the International Conference on Image Analysis

and Processing (ICIAP) 2021 conference. Thanks to these

contributions, it is clear that post-processing steps are crucial

in order to obtain better and more reliable detection results.

Also, despite the small number of submissions received in

this first edition, we are satisfied by the overall experience

matured organizing and leading the competition. All the

data and results, as well as the current leaderboard, will

be kept online, to support researchers and practitioners in

the field.
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FIGURE 14

Test set image where models from PARASITE and MIVIA Lab have similar performances. The first image is the ground truth (A), the second one is the

inference with the PARASITE solution (B), the third one is the inference with the MIVIA Lab solution (C).

FIGURE 15

Test set image where PARASITE model makes an extra correct prediction. The first image is the ground truth (A), the second one is the inference with

the PARASITE solution (B), the third one is the inference with the MIVIA Lab solution (C).

FIGURE 16

Test set image where only the PARASITE model is capable of recognizing parasite eggs. The first image is the ground truth (A), the second one is the

inference with the PARASITE solution (B), the third one is the inference with the MIVIA Lab solution (C).

7 Conclusions

In this paper, we detailed the materials and methods

used to establish the first AI-KFM Challenge, beginning

with the apparatuses from the FLOTAC family and the

Kubic FLOTAC Microscope. These tools enabled us to

automatically generate a dataset of samples from real on-

field acquisitions.

Utilizing these resources, we provided a realistic and extensive

dataset for both competitors and researchers interested in training

models for parasite egg detection. Existing datasets are either

private or do not accurately represent field conditions, as they often

contain images with a single, centrally-focused egg. In contrast, our

dataset includes images that reflect the variability of autonomous

scan processes, where eggs may be occluded, out of focus, or located

at the image edges.

Furthermore, we established a baseline as a reference point for

researchers developing models for this challenging task.

Building on these initial results, future work will involve further

exploration of new architectures for the detection system and the

development of advanced pre-processing techniques to enhance

sample images.
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FIGURE 17

Test set image where only the MIVIA Lab model is capable of recognizing at least a parasite egg. The first image is the ground truth (A), the second

one is the inference with the PARASITE solution (B), the third one is the inference with the MIVIA Lab solution (C).

Given all these considerations, we are already planning the

next edition of the AI-KFM challenge, in which participants will

compete on images containing different parasites in different

hosts, collected by using heterogeneous devices, including

commercial ones.

The best submissions from the first and the next editions will

be deepened in order to understand what is the best processing and

prediction pipeline for KFM automatic parasite eggs detection from

samples scans.

Moreover, new datasets with new classes coming from

different parasites (Fasciola, Paramphistoma, Strongyloides, etc.)

are currently being generated in order to build more capable and

useful prediction models, therefore the KFM system will become

compatible with more and more use cases.

Finally, one improvement which is planned to include is

the capability of the system to detect parasite eggs without an

Internet connection, by bringing the CNN inside an optimized

version of the KFM hardware, so that the system becomes

an embedded AI board which works in any condition and in

any place.
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