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Oral cancer ranks sixteenth amongst types of cancer by number of deaths.

Many oral cancers are developed from potentially malignant disorders such as

oral leukoplakia, whose most frequent predictor is the presence of epithelial

dysplasia. Immunohistochemical staining using cell proliferation biomarkers

such as ki67 is a complementary technique to improve the diagnosis and

prognosis of oral leukoplakia. The cell counting of these images was traditionally

done manually, which is time-consuming and not very reproducible due to

intra- and inter-observer variability. The software presently available is not

suitable for this task. This article presents the OralImmunoAnalyser software

(registered by the University of Santiago de Compostela–USC), which combines

automatic image processing with a friendly graphical user interface that allows

investigators to oversee and easily correct the automatically recognized cells

before quantification. OralImmunoAnalyser is able to count the number of cells

in three staining levels and each epithelial layer. Operating in the daily work of

the Odontology Faculty, it registered a sensitivity of 64.4% and specificity of 93%

for automatic cell detection, with an accuracy of 79.8% for cell classification.

Although expert supervision is needed before quantification, OIA reduces the

expert analysis time by 56.5% compared to manual counting, avoiding mistakes

because the user can check the cells counted. Hence, the SUS questionnaire

reported a mean score of 80.9, which means that the system was perceived

from good to excellent. OralImmunoAnalyser is accurate, trustworthy, and

easy to use in daily practice in biomedical labs. The software, for Windows

and Linux, with the images used in this study, can be downloaded from

https://citius.usc.es/transferencia/software/oralimmunoanalyser for research

purposes upon acceptance.
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image processing, immunohistochemical image, machine learning, oral cancer, oral

potentially malignant disorders, software
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1 Introduction

Oral cancer represents the sixteenth most deadly type of

cancer worldwide and represents a serious and growing public

health problem (IARC-OMS, 2020). A significant part of oral

cancers develop from potentially malignant disorders such as oral

leukoplakia (Warnakulasuriya et al., 2020). So, its identification

and intervention predictor of malignant transformation in

premalignant stages could be key in reducing mortality, morbidity,

and the cost of treatment associated with oral cancer (Humayun

and Prasad, 2011). One of the main predictors of malignant

transformation of oral leukoplakia is the presence of epithelial

dysplasia (Warnakulasuriya, 2001; Reibel, 2003; Gandara-Vila et al.,

2018). However, this diagnosis is based on a static image and it has

been shown that there is great inter- and intra-examiner variability

when evaluating the presence or absence of dysplasia, as well as

its degree (Warnakulasuriya, 2001; Kujan et al., 2007). Clinical and

histopathological analysis by the exclusion of other disorders is the

conventional diagnosis of oral leukoplakia (Warnakulasuriya et al.,

2007; van der Waal, 2009). Machine learning was used in clinical

images to predict the high risk of dysplasia and evolution to cancer

(Ferrer-Sánchez et al., 2022).

However, changes at the molecular level occur before this

histological evaluation (Mehrotra et al., 2005), so the use of

immunohistochemical staining that reveals the expression of

the cell proliferation biomarkers, such as ki67, could be a

complementary technique to improve diagnosis and prognosis

(Reibel, 2003). Some studies show that the expression of ki67

staining could be used to estimate the degree of dysplasia in

oral leukoplakia and the risk of malignant transformation in oral

potentially malignant disorders.

The cell counting of these immunohistochemical images

is classically carried out visually and manually with the help

of devices designed for this purpose. These manual counting

techniques are very time-consuming, and the experts only count

a reduced number of cells (normally 100). Besides, there is a

high intra- and inter-observer variability in the results obtained,

which hinders its reproducibility (Seidal et al., 2001). These

limitations could be alleviated by using image analysis software

(Mungle et al., 2017). The development of computerized methods

to analyze biopsies in order to make diagnostic and prognostic

assessments, mainly based on cell morphology and architecture,

is an open challenge (Irshad et al., 2014). The Aperio system1

(Morais et al., 2019) is a commercial solution, which has been

used in the immunohistochemical study of oral lesions, and

offers solutions for slide glass scanning and automatic analysis

of immunohistochemical staining. ImageJ (Rueden et al., 2017)

is a freely accessible software that has also been used in

the immunohistochemical study of oral lesions (Park et al.,

2020). It provides utilities to create macros or plugins, but this

process requires specialized knowledge of computer language and

programming skills. Other works propose automatic algorithms to

analyze the image, normally counting cells or other measures (Lu

et al., 2018). In general, the available alternatives to analyze the

immunohistochemical samples (Paravani et al., 2010) have some

1 https://www.leicabiosystems.com/

of the following drawbacks: (1) they usually have a high cost and

low flexibility to face artifacts in the images or differences among

samples, and (2) they do not allow the expert supervision before

the quantification. In previous works, we developed software tools

that combine the automatic processing of the image with a friendly

graphical user interface (GUI) to review the recognition process

before image quantification in other problems. STERapp (Mbaidin

et al., 2021) performs stereological analysis from histological images

of fish gonads to estimate their fecundity. CystAnalyser (Cordido

et al., 2020) studies histological images of cystic liver and kidney in

order to provide their cystic index, number of cysts and cyst profile

according to their size. Both pieces of software use sophisticated

algorithms of image analysis andmachine learning to automatically

recognize and classify the objects of interest in the image. When

the automatic recognition provided is not suitable for experts, due

to the inherent complexity of microscopic images, they provide

a friendly GUI, that allows the experts to review the recognition

before measuring and counting them.

This paper proposes the software OralImmunoAnalyser, which

quantitatively estimates the immunohistochemical expression of

the molecular marker ki67 in oral leukoplakia. This software is

intended to fulfill the following requirements: (1) provide a friendly

GUI to interactively work with the images and draw the region

of analysis; (2) use advanced image analysis and machine learning

algorithms to automatically detect and classify cells in the images;

(3) estimate automatically various statistical measures and counts

in the images, calculating the positivity in the basal, medium and

superior layers of the epithelium; (4) allow data sharing among

researchers and to review the results at any time; and (5) be fast

enough to analyze images in real-time.

The paper is organized as follows. Section 2 describes the

materials used to obtain the immunohistochemical images. Section

3 describes: (1) the architecture and functionality provided by

OralImmunoAnalyser; (2) the image analysis andmachine learning

algorithms used by the software to detect and classify the cells; and

(3) the algorithm to calculate the three epithelial layers. Section 4

discusses the results. Finally, Section 5 summarizes the main

conclusions and proposals for future work.

2 Materials

The tissue samples analyzed correspond to patients from the

Department of Oral Medicine, Oral Surgery and Implantology

of the University of Santiago de Compostela, where they were

diagnosed, clinically and histologically, with oral leukoplakia. The

participants consent to the use of their clinical, histological, and

photographic data, treated anonymously, in the present study.

This study has the approval of the Santiago-Lugo Research Ethics

Committee, with registration code 2020/470.

The histological samples were analyzed at the Pathological

Anatomy Service of the Complejo Hospitalario Universitario

de Santiago de Compostela. Surgical specimens were fixed in

10% buffered formalin for a maximum of 24 h, and embedded

in paraffin. After the study with the usual hematoxylin-eosin

techniques, new sections of different degrees of epithelial dysplasia

were made for the immunohistochemical study using monoclonal

mouse anti-human ki67 antigen (clone MIB-1) (Dako, Denmark),
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following the manufacturer’s recommended instructions. Cells

labeled by the antibody show a nuclear staining pattern in a brown

color. Once the area with the highest number of stained cells

has been selected, a photograph was acquired using an Olympus

BX51 microscope connected to an Olympus Camera DP70, using

a magnification of 20X but the same can be made with a major

magnification. The size of the acquired images is 4, 080 × 3, 072

pixels. This image was archived in TIF format.

3 Methods

OralImmnunoAnalyser (OIA) is a desktop application that

runs on a general-purpose computer on the Linux and Windows

operating systems. It has been written in the C++ programming

language using the GTK+ (GIMP Tool Kit) library2 to develop the

GUI and the OpenCV library3 to develop the automatic algorithms

to process the images. Figure 1 shows the GUI of OIA with a typical

immunohistochemical image loaded, processed, and reviewed by

the expert, and with the lateral panel displayed.

3.1 System architecture

The architecture of OralImmunoAnalyser is modular and

extensible, being composed of the classical three layers: (1) the

GUI layer interacts with the user with editing tools, including

modules to draw and manage objects, set preferences or interact

with the software; (2) the logic application layer contains modules

to detect the cells, classify them, train the classifier and calculate the

statistical results; and (3) the persistent layer to store all the data

needed and calculated by the software, including modules to save

the overlays on the image and the statistical results. The overlays

on the image, which contain the analysis supervised by the experts,

are stored in the popular text format XML (Extensible Markup

Language). The statistical results, calculated from the overlays, are

stored in the known text format CSV (Comma-Separated Values),

which is portable, and can be imported from other spreadsheet

software for further use.

3.2 Funcionality of OralImmunoAnalyser

Figure 2 shows a flowchart with the main functionality of OIA,

which is accessible from its GUI. A typical working session for

a user should have the following actions: (1) open a microscopic

image; (2) draw manually the region of interest (ROI) for the

analysis using the editing tools; (3) detect automatically the cells

into the ROI; (4) classify automatically the cells detected; (5) go to

expert’s supervision, as described below; (6) save the overlays drawn

on the image into XML files; (7) export the statistical measures

and counts to CSV files; and (8) every time the user can do the

following optional functionality: set preferences, set calibration

and diameters, save joined results of a set of images, and train

the classifier.

2 https://www.gtk.org/

3 https://opencv.org/

Once the image is loaded, a freehand region must manually

be drawn using the edition tools, in which the user wants to do

the count. After drawing and selecting the ROI, the buttons of the

lateral panel can be used to automatically detect the cells in the

ROI (the two algorithms included are described below). Next, the

classifier can be run in order to label each detected cell as “highly

stained,” “low stained,” and “no-stained.” This automatic analysis

may be not perfect due to the complexity of this type of image, so

the expert supervises the detection and classification results using

the editing tools in the following ways: (1) deleting a set of detected

cells; (2) changing the category of the detected cells; and (3) adding

new cells specifying their category labels.

Once the detection and classification of cells are reviewed, the

expert must mark with the mouse a point on the image indicating

to the software where is the basal part of the ROI in the study. This

step is necessary to do the count for the basal, medial, and superior

areas of the ROI, otherwise, the count is only done globally. The

overlays of the analysis must be saved into the XML file in order

to review or export joined results in a future time. Given the basal

point and the ROI under study, some geometrical computations

can be done to divide the ROI into three areas: basal, medial, and

superior. The areas calculated can be visualized by clicking the

button Areas in the lateral panel (see Section 3.5 for a detailed

description).

The working preferences of OIA can be set going to the menu

File → Set preferences, in which you can set: (1) the working

directories for images, overlays, and results; (2) the width of points

and lines; (3) the color of the overlays for each cell category; and

(4) the color of the basal point. The user preferences can be saved

permanently for the next sessions. OralImmunoAnalyser allows

setting the spatial calibration, which is the relation between pixels

in the image and real values (microns), or working in pixels units.

If the calibration is set, the results are provided in real measures

instead of pixels. The user must provide OIA the minimum and

maximum diameter of the cells to detect for an optimal operation

of the automatic algorithms, which can be set by writing in the

Preferences dialog or graphically by drawing a straight line with

the editing tools of the lateral panel. The preferences can be stored

for future working sessions. OralImmunoAnalyser allows to export

joined results of a set of images going to the menu Analysis →

XML Files, which opens a dialog screen to select the XML files

and the output CSV file. To do this task, the images had to be

analyzed, supervised by the expert, and saved as overlays in XML

files (one per image). OralImmunoAnalyser also allows training the

classifier by going to the menu Analysis→ Train classifier. More

details of this functionality can be read in the user guide, provided

as Supplementary material.

3.3 Image analysis algorithms for cell
detection

To detect the cells in the image, it is split into pixels belonging

to objects that must be detected (in our case cells) and pixels

belonging to the background. This process is a simplification of

the image representation called segmentation, a very hot topic in

computer vision (Sonka et al., 2007). Since the area of cells is
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FIGURE 1

Screenshot of the software OralImmunoAnalyser. In the region of analysis (defined by the blue line), the color of the dots shows the category of the

cells: yellow (highly stained), pink (low stained), and blue (no-stained).

FIGURE 2

Flowchart containing the main tasks of OralImmunoAnalyser.
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not relevant to our objectives, the segmented regions are managed

as points by the software. The segmentation process employs the

following properties of the image: (1) pixels of an object are

similar with respect to some property in the image, such as color,

grey level, texture, etc.; and (2) adjacent regions, e.g., object and

background, are significantly different for some image property.

The first paradigm developed the region detection algorithms

(RDA) and the second the edge detection algorithms (EDA). Both

approaches are closely related because the boundaries of a region

are the edges surrounding the region.

Our RDA approach is a combination of image processing

techniques that encloses the following stages: (1) detect the highly

stained regions in the image; (2) split highly stained regions

when some cells are joined; and (3) detect low-stained and no-

stained cells. We use the color space Lab, also known as CIELAB,

to process the image due to: (a) its better perceptual linearity,

compared to the color space RGB of image acquisition; and (b)

its robustness to illuminance variances (Cernadas et al., 2017). Let

Iin be the RGB immunohistochemical image, dmin and dmax the

minimum and maximum diameters of the cells to be detected,

and TP the user option. The value of TP can be set in the lateral

panel by clicking the HIGH, LOW or WS button after the label

Detect cells (RDA). Algorithm 1 summarizes the proposed RDA

and Figure 3 shows visual examples of intermediate stages in the

image processing.

1 Algorithm: PTP=RDA(Iin, dmin, dmax ,TP)

Data: Iin: original RGB image; dmin/dmax: min./max.

cell diameter; TP: user option

Result: PTP: set of cells detected

2 Llab ← Lab image of Iin

3 IL, Ib ← L and b channels Ilab

4 Igrey ← IL · Ib normalized to range [0,255]

5 t1, t2, t3 ←Otsu3Thres(Igrey)

6 Ibin ← 255 if Iin(x, y) < t1 and 0 otherwise

7 I4 ← kmeans(Ilab, 4, Ibin)

8 if TP = HIGH then

9 Iclu1 ← 255 if I4(x, y) = 1 and 0 otherwise

10 ID ← normalize to [0,255] the image

transformDistance(Iclu1)

11 t′1, t
′
2, t
′
3 ← Otsu3Thres(ID)

12 Io ← 255 if ID(x, y) > t′3 and 0 otherwise

13 else if TP = LOW then

14 Iclu2 ← 255 if I4(x, y) = 2 and 0 otherwise

15 Io ← close filter of Iclu2 using masksize 3

16 else if TP =WS then

17 Iclu3 ← 255 if I4(x, y) = 3 and 0 otherwise

18 Io ← close filter of Iclu3 using masksize 3

19 end

20 {ri} ←suzuki(Io); {di} ← {diameter(ri)}

21 PTP ← {pi |dmin < di < dmax} // pi: mass center of ri

Algorithm 1. RDA to detect cells in immunohistochemical images.

As mentioned, the original RGB image Iin is converted to

the Lab color space giving the image Ilab. Then the channels L

and b of Ilab are multiplied and the product is normalized to the

range [0,255], giving the image Igrey. The L channel of the Lab

image represents the image intensity and the b channel the image

yellowness. Themultiplication of both channels gives an image with

the lowest levels in the more stained regions (Igrey in Figure 3).

Thresholding is applied on Igrey in order to create the binary image

Ibin. The selection of the optimal threshold is critical, and it is

commonly selected by trial and error in much of the available

software, such as ImageJ. We select this value from the statistical

properties of each image using the multi-level Otsu’s method (Otsu,

1979), implemented by the Otsu3Thres function in Algorithm 1.

The optimal threshold considered was the lowest value t1 of the

three calculated by Otsu3Thres(Igrey). The binary image Ibin (see

Figure 3), containing white in the more stained pixels and black

in the remaining pixels, is calculated thresholding the image Igrey
using t1 (in this case, t1 = 69) and taking the values less than

t1 as white. Black and white pixels in the Ibin image represent

background and highly stained cells, respectively.

Afterward, k-means clustering (Duda et al., 2000), implemented

by the kmeans function in Algorithm 1, is used to group the

pixels in the color image Ilab according to color similarity into four

clusters. The Ibin image is used as a seed for the cluster prototypes,

representing the two extremes that must be discriminated. The

application of k-means returns the image I4 whose pixels are labeled

by their cluster (four labels in our case), shown in Figure 3. The 0-th

cluster represents the background and includes pixels in Ilab with a

color similar to the pixels in Ilab that are black in Ibin. Analogously,

the 1st cluster represents the highly stained regions and contains

pixels in Ilab with color similar to the pixels in Ilab that are white

in Ibin. Finally, the 2nd and 3rd clusters may represent low or non-

stained regions, including pixels with intermediate color values in

Ilab that are less similar to the seed pixels (both black and white).

The binary images Iclu1 (highly stained regions) and Iclu2, Iclu3 (low

and non-stained regions), are created with values 1 in the pixels

of the corresponding cluster and 0 in the remaining pixels. Each

cluster is associated with a different button in the GUI and to a

value of the user option TP in RDA: Iclu1 with TP=HIGH, Iclu2
with TP=LOW and Iclu3 with TP=WS. These binary images are

the IO images in Figure 3 for TP=LOW and TP=WS options, after

applying a closemorphological filter withmask size three to remove

small holes.

Since the highly stained cells are frequently joined, we apply the

distance transform algorithm (function transformDistance

in Algorithm 1) to the image Iclu1, which provides the derived

representation of the binary image, where the value of each pixel

is replaced by its distance to the nearest background pixel. This

resulting image ID (shown in Figure 3) is normalized to the

range [0,255] and thresholded using the highest value provided by

Otsu3Thres(ID) t′3 (in this example t′3=101). The Io image for

TP=HIGH is 255 if ID(x, y) > t′3 and 0 otherwise (see Figure 3).

The contours of the cells, or external regions, are extracted from the

thresholded image Io (see Figure 3) using the algorithm proposed

in Suzuki and Be (1985), implemented by function suzuki in

Algorithm 1. A detected contour ri is considered a true cell if its

diameter di is between the minimum and the maximum diameter
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FIGURE 3

Examples of the automatic processing of immunohistochemical images using the proposed RDA for di�erent types of processing (see Algorithm 1 for

the meaning of Iin, Igrey , Ibin, I4, and IO). The Iout images show the cells detected overlapped to the original images for each option TP and the cell

detection of all options merged (lower right image IOut).

specified by the user, i.e., dmin < di < dmax. In this case, the

detected cell is the centroid (mass center) of the region. Finally, the

setsPHIGH ,PLOW andPWS forTP=HIGH,TP=LOWandTP=WS,

respectively, are the sets of cells (represented as points) detected

applying the Suzuki algorithm that verify dmin < di < dmax.

The EDA approach included in the software is the multi-scale

Canny filter, proposed by Mbaidin et al. (2023), used also in the

Govocitos and STERapp software (Pintor et al., 2016; Mbaidin

et al., 2021) to recognize oocytes in histological images of fish

gonads. In the current work, we use only a Canny filter tuned

with a Gaussian smoothing width σ = 4. The thresholds of the

hysteresis process are automatically calculated from the statistical

image characteristics using rates of 0.3 and 0.7 for the lower and

higher thresholds, respectively.
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The RDA approach is accessible from the lateral panel of the

GUI in the label Detect cells (RDA), which encloses the three toggle

buttonsHIGH, LOW andWS to show the point setsPHIGH ,PLOW

and PWS, respectively. The EDA approach is also accessible from

the label Detect cells (EDA) of the lateral panel. The visualization

of the detected cells is accumulated, applying an overlapping test

to remove cells detected by different approaches. Two detected

points are considered as two different cells if their distance is

superior to the minimum diameter provided by the user, i.e., the

final set P of detected cells is P ← {pi ∈ PTP, pj ∈ PTP ,TP ∈

{HIGH, LOW,WS,EDA}| distance(pi, pj) > dmin}. A set of cells

can be added or removed by clicking the previous toggle buttons.

Finally, only the detected cells inside the region of analysis provided

by the user are visualized in the software. The Iout image in Figure 3

shows the set of cells P overlapped to the original image inside

the region of analysis drawn by the user. In this example, 96.25%

of cells were correctly detected. The color of points means the

cell staining level provided by the classifier (Run button after the

label Classifier).

3.4 Machine learning model for cell
classification

Once the cells are detected on the image, a supervised machine

learning model is used to predict their categories, defined by their

stain levels: highly stained cell, low stained cell, and cell without

staining. In order to perform this prediction, the model must be

trained, i.e., it must learn from a collection of examples (cells) to

predict their categories. Each cell is represented by a set of numeric

characteristics calculated in the following way: (1) a square region

centered in the cell, of size the minimum diameter, is extracted

from the original Ilab image; and (2) the average value of the three

channels L, a and b of the Ilab image over this region is calculated.

In the training, the model learns to predict the cell category using

these three average values over the cell square for all the cells in the

collection. The model used by OralImmnunoAnalyser to predict

the cell category is the support vector machine (SVM) with radial

basis function (RBF) kernel because it is one of the best-performing

machine learning models for classification (Fernández-Delgado

et al., 2014). Specifically, OIA uses the LibSVM implementation

(Chang and Lin, 2011) of SVM, accessed through its C++ binding.

Although the first version included a pre-trained SVM, the current

version allows SVM training. The module Training panel, through

the submenu Classification → Train classifier allows the user to

set the XML files (generated previously by OIA) that will be used

to train the SVM classifier. These files must contain the cells

recognized for a collection of images, alongside their category.

The collection of images should be representative enough for the

classification problem and must contain cells of all the categories.

For the training, a maximum number of 1,000 cells is randomly

selected from the XML files provided by the user, with similar

numbers of cells for each category whenever possible (a minimum

number of 10 cells is required for a category to be included in

the training). OralImmunoAnalyser performs the tuning of the

two hyper-parameters of the SVM (regularization λ and RBF

kernel spread σ ) using the grid-search method. The performance

is evaluated by the Cohen kappa statistic (Carletta, 1996), which

measures the agreement between the true and predicted category

excluding the agreement by chance. kappa (in %) is defined by

Equation 1:

kappa = 100
pa − pe

s− pe
, pa =

C
∑

i=1

Nii, s =

C
∑

i=1

C
∑

j=1

Nij (1)

pe =
1

N2

C
∑

i=1





C
∑

j=1

Nij









C
∑

j=1

Nji





where Nij is the number of cells of category i and that are assigned

by the SVM to category j, C = 3 is the number of categories

and N is the number of cells. The values of λ and σ used are:

λ = {22i−7}10i=1 and σ = {2−(i+1)/2}0i=−15. For each combination

of hyper-parameter values, the SVM is trained using the K-fold

cross-validation methodology with K = 4, so that K − 1 =

3 folds are used to train the SVM, and the remaining fold is

used to calculate the kappa of the trained SVM. The training

and prediction are performed K times, rotating the folds each

time (i.e., in the first trial folds 1–3 are used for training and

fold 4 for testing; the second trial uses folds 2–4 to train, and

fold 1 to test; and so on) and averaging kappa over the K-

test folds. The process is repeated for all the combinations of

hyper-parameter values, and the one that achieves the highest

average kappa is selected. Finally, the SVM is trained over the

whole collection of cells, using the selected combination of hyper-

parameter values, and then it is ready to predict the category for

new cells.

3.5 Calculation of epithelial strata regions

Once the image is analyzed (drawing the region of analysis,

detecting and classifying the cells in that region), we want to

count the cells for each staining level in each epithelial strata.

OralImmnunoAnalyser considers three layers: basal, medium, and

superior. Let CR be the set of points (xi, yi) that define the

region of analysis drawn by the user, and let Pb = (xp, yp) be

a point marked by the user to indicate the side of the region

CR where the basal layer is located (outside CR). The algorithm

to calculate the layer regions, illustrated in the upper panel of

Figure 4, includes the following steps: (1) calculate the minimum

enclosing rectangle R of the region CR defined by the points A, B,

C, and D; (2) calculate the distance between Pb to each segment

of the rectangle (line segments AB, BC, CD and DA) in order to

determine the closest segment to Pb; (3) let, for example, AB be

the closest segment, then we take the sides of rectangle that are

perpendicular and adjacent to AB, in our example are BC and DA;

(4) divide the line segments BC and DA into three equal parts,

corresponding to the basal, medial and superior layers; (5) create

the list of adjacent rectangle vertices, in our example (A,B,C,D),

and calculate the four points of the contour CR that are closest

to these four vertices, saving the indices of these points in the

contour CR; (6) create the subregions basal Rb, media Rm and

superior Rs and copy the contour points CR to the subregions;

and (7) generate the boundary points among subregions taking

a set of NL lines Li, with i = 1, . . . ,NL, parallel to the line

segment BC between the line segments AB and CD. For each line
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FIGURE 4

Calculation of the epithelial strata regions: scheme (upper) and screenshot of OIA with an example (lower).

Li, calculate its two cross points, pc1i and pc2i in the upper panel

of Figure 4, with contour CR. Then, calculate the two points, p1i
and p2i, of Li that divide the segment between pc1i and pc2i in

three pieces of equal length. The points p1i and p2i are added

to the contours of the subregions basal Rb (only p1i), media Rm
(between p1i and pi2) and superior Rs (only pi2). The right panel
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TABLE 1 Sensitivity (Se), specificity (Sp), and average precision (AP) in % of the two versions of OralImmunoAnalyser working in the lab to detect the cells.

Version #Images #Cells Se Sp AP Acc. Kappa

First 15 805.3 41.55 99.89 41.16 77.0 –

Current 26 1206.0 64.38 92.98 60.69 79.8 60.23

Average accuracy (Acc) and kappa for cell classification into three categories (highly stained, low stained, and without stain).

of Figure 4 shows overlapped an example of the three epithelial

layers calculated.

4 Results and discussion

OralImmunoAnalyser was installed in the Odontology Faculty

of the University of Santiago de Compostela (Spain) in February

2019 in order to evaluate the software operating in a real

environment. The first version included only the edge detection

algorithm (EDA) to detect the cells and a pre-trained SVM classifier

using a reduced number of cells annotated by the experts. The

current (second) version includes both cell detection approaches

(EDA and RDA) and it allows the classifier to be trained by the

user at any time using the GUI. The experts use OIA in their daily

work to do the analysis of the images, for which they were required

to detect and classify the cells in the images. Their operations

using OIA were logged into XML files for later statistical evaluation

of the automatic image analysis and machine learning algorithms

incorporated in the software. First, we describe the statistical

measures to evaluate their performance and summarize the results

achieved from different points of view: automatic detection and

classification of cells and performance analysis of the global system.

4.1 Statistical analysis

To evaluate the cell detection algorithms, we define a true

positive (TP) hit when a cell is correctly detected and a false positive

(FP) whenever the user manually deletes the cell using the GUI. A

cell is considered a false negative (FN) if the user manually adds

it. Once the TP, FP, and FN values are counted for an image, the

sensitivity (Se), specificity (Sp), and average precision (AP), in %,

are calculated as:

Se = 100
TP

FN + TP
, Sp = 100

TP

FP + TP
(2)

AP = 100
TP

TP + FP + FN

The performance of the SVM model in the prediction of the

cell category C ∈{highly stained, low stained, and without stain} is

evaluated using the Cohen kappa, defined in Equation (2) above,

and the accuracy (in %), whose value is 100 multiplied by the

number of cells correctly classified by the classifier and divided by

the total number of cells. The sensitivity and specificity of each

category are also calculated considering that: (1) the TP is the

number of cells of category Ci correctly classified by the SVM into

the category Ci; (2) the FP is the number of cells classified into

category Ci, but whose true category label is other; and (3) the FN

is the number of cells of true category Ci that the classified assigned

to other categories.

4.2 Detection and classification of cells

The first version of OIA was used to analyze 15 images

distributed into four cases of leukoplakia without dysplasia,

three of mild dysplasia, two of severe, three carcinomas in situ,

two infiltrating carcinomas, and one verrucous carcinoma, based

on the latest classification recommended by the World Health

Organization (El-Naggar et al., 2017). The current version was

used to analyze 26 images distributed into 24 that did not present

epithelial dysplasia, one case of mild dysplasia, and one case of

moderate dysplasia. In both versions, our purpose was to test the

software with a wide variability among the immunohistochemical

images, due to the differences in epithelial thickness depending on

the oral anatomical location, the sample collection, processing and

storage, the presence of epithelial dysplasia in different degrees, etc.

Table 1 shows the results achieved for the two versions of

OIA, obtained from the analysis of the XML files. The average

number of cells in each image was ∼1,000. The inclusion of

the region-based approach (RDA algorithm) increases the average

precision from 41.2% of the first version up to 60.7% to the

current version and also increases sensitivity from 41.5% up to

64.4%. That means that, on average, 60.7% of cells in the image

are correctly detected and the remaining 39.3% of cells had to

be supervised by an expert (adding or deleting cells). Thus, the

specificity is much higher than the sensitivity, which means that

the experts needed to add cells and delete a small number of

cells. The classification accuracy remains more or less constant

for both versions, achieving a value of 79.8% with the current

version and a kappa value of 60.23%. In order to analyze the

influence of the high variability among the immunohistochemical

images on the system performance, Figure 5 shows the boxplots of

sensitivity, specificity, and average precision for the detection of

cells, and the accuracy of the cell classification. The boxes enclose

the data between the 25th and 75th percentiles, the red line is the

median and the black whiskers extend the extreme data points.

The sensitivity box is the largest one (about 20 points), so it is

more affected by the image variability than the other measures,

existing important differences among images in the proportion of

cells that are not detected and must be added by the users. The

specificity box is much smaller, so it varies less among images,

and its median is much higher. The average precision box is also

small, but its median is even lower than sensitivity. Finally, the

accuracy box is also very small, so it is not very sensitive to the

image variability.

In relation to the cell classification, the current version of OIA

classifies correctly the 79.8% of the cells with a kappa of 60.23%.
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FIGURE 5

Boxplots of sensitivity (Se), specificity (Sp), average precision (AP), and classification accuracy (Acc) for the images analyzed using the current version

of OIA.

More detailed views are in Table 2, which shows the confusion

matrix for the category prediction (the value in row i and column

j is 100Nij/N, where Nij and N are the same as in Equation 2

above). The diagonal numbers (in bold) give the percentage of

cells correctly classified for each category, and the sum of the

diagonal gives the classification accuracy. The best performance

is provided for cells without staining achieving a high sensitivity

(96.9%) and specificity (80.7%) and the worst results are for the

low stained cells (sensitivity 42.6% and specificity 62.9%), because

the system confuses cells with low and no staining. The reason is

that the background staining, which is produced by a defect in the

processing of the sample, is very similar to low-intensity brown,

and the experts label the cells on these parts as “without stain”.

During training, the classifier learns to predict “without stain” for

cells with this brown color, and therefore it wrongly classifies cells

that are low stained as “without stain”. For cells highly stained,

the system has a high specificity (94%) with moderate sensitivity

(67.1%), i.e., some highly stained cells are classified as low or

without staining, duemainly to artifacts, but very few low stained or

without stain cells are classified as “highly stained” (0.7 and 0.08%,

respectively).

The assessment of ki67 in breast cancer (Nielsen et al.,

2020) recommends labeling the cells as positive and negative.

If, in our system, highly stained cells were considered positive

and low stained and without stained cells were considered

negative, the results in Table 2 would achieve an accuracy

of 93.6% and a kappa of 75.66%, maintaining the sensitivity

and specificity for the positive cells and with a sensitivity

and specificity of 98.92 and 93.66% respectively for the

negative cells. The consideration of two levels of staining

instead of three clearly improves the performance of the

cell classification.

TABLE 2 Confusion matrix (in %) for cell category prediction (highly

stained, low stained, and without stain) for the current version of

OralInmunoAnalyser.

Predicted category

Highly Low Without Se Sp

True

category

Highly 12.14 3.60 2.36 67.07 93.96

Low 0.70 9.15 11.64 42.54 62.69

Without 0.08 1.80 58.52 96.89 80.69

The columns Se (Sensitivity) and Sp (Specificity) provide the system sensitivity and specificity

for each class respectively. The diagonal values that are the percentages of cells of each

category correctly classified in bold.

4.3 Analysis performance

We compare OIA with other procedures to quantify the

immunohistochemical images of oral tissue. The comparison can

be made from different points of view: the quality of statistical

information provided by the analysis, the expert’s analysis time, and

the expert’s perception.

Once the region of interest is delineated on the image, OIA

analyses the positivity for ki67 biomarker4 of that region and

exports to CSV files the following information: (1) percentage of

positive cells; (2) percentage of cells for each staining intensity

(high, low, and no stained cells); and (3) distribution of the

positivity in the basal, medium, and superior layers of epithelium.

These measurements allow clinicians to compare the positivity of

ki67 among layers and to study its relationship with the degree of

4 Positive cells are those stained of brown color independently of its

intensity.
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epithelial dysplasia. The clinical practice is implemented in OIA

by: (1) analysing the nuclear expression of ki67; and (2) dividing

the epithelial thickness into three thirds (layers). This allows

comparison of the cell proliferation among epithelium layers,

similar to the analysis of epithelial dysplasia (mild-moderate-

severe), where architectural and cytological changes are analyzed

layer by layer. The basal expression of ki67 can be related to

a physiological proliferative activity. In cases of dysplasia, the

expression of this biomarker increases and canmanifest beyond the

basal third.

The OIA software is reliable and precise because it allows

to review of the detection and classification of cells before the

counting. It is also easy to use and install. Another advantage

that the program offers compared to manual quantification is

the possibility of sharing the images and results among different

experts to evaluate each case, reducing the variability among

experts. To the best of our knowledge, there is no other

application that automatically counts the cells of each staining

level into the three epithelial strata: basal, medial, and superior

(see Figure 4). This functionality of OIA allows a global analysis

of the epithelium studied, which is of great importance for

clinical diagnosis using immunohistochemical techniques, but it

is currently not performed in the diary clinical practice due to

its difficulty.

OralImmnunoAnalyser runs on a general-purpose computer

in a reasonable time. The delineation of the region of analysis

and automatic processing takes < 1 min, similar to the Aperio

software. The time required for the analysis is dominated by the

expert’s supervision, which depends on the review needs and the

number of cells counted, being about 10 min for counting 1,000

cells (1 min per 100 cells). This revision guarantees that the results

are accurate and trustworthy. The traditional procedure to count

manually 100 cells in the image takes∼2.3 min. So, OIA represents

a saving of 1.3 min for 100 cells, being 2.3 times faster than

manual counting and allowing to check the cells counted at any

time, which reduces the chances of making human counting errors.

Therefore, OIA reduces the analysis time by 56.5% with respect to

the manual procedure.

The expert’s perception of OIA was evaluated using the

system usability scale (SUS), a free questionnaire to measure the

learning ability and subjectively perceived usability of computer

systems (Bangor et al., 2009; Brooke, 2013). This is a 10-item

questionnaire with a five-point scale ranging from 1 (strongly

disagree) to 5 (strongly agree), providing a final system score

between 0 and 100. The score is calculated by adding up the

positively worded items (1, 3, 5, 7, and 9), subtracting one from

the user responses, and the negatively worded items (2, 4, 6, 8,

and 10), subtracting the user responses from five. Multiplying

the SUS score by 2.5 re-scale the score from 0 to 100. A

comprehensive interpretation of SUS score (Sauro, 2011) is: SUS

< 25 is the worst imaginable system; from 25 to 39 is from

the worst imaginable to poor; from 40 to 52 is from poor to

OK; from 53 to 73 is OK to good; from 74 to 85 is good

to excellent; and above 85 is excellent to the best imaginable

system. A small sample of between 8 and 12 users is enough

to give a good assessment of how people see the software. The

SUS questionnaire to evaluate OIA perception was filled out by

eleven experts achieving a mean score of 80.9, which means that

the system is from good to excellent from the experts’ point

of view.

5 Conclusions and future work

This work presents OralImmunoAnalyser, a new reliable, and

easy-to-use software tool to estimate oral leukoplakia from the

immunohistochemical images of mouth tissues. This software

combines the automatic detection and classification of cells

in the image with a friendly GUI that allows the experts

to review the recognition before the calculation of statistical

results. OralImmunoAnalyser provides the number of positive

(stained) and negative (without staining) cells in the region

of analysis, the percentage of cells for each staining level

(high, low, and no staining), and the distribution of the cell

positivity in different layers of the epithelium (basal, medium,

and superior). The software has been tested by the Odontology

Faculty of the University of Santiago de Compostela since

2019 in its daily practice. The automatic processing of the

images provided the following average performance: (1) the cell

detection module achieved a sensitivity of 64.4%, specificity of

93%, and precision of 60.7%; and (2) the cell classification

in the three staining levels achieved an accuracy of 79.8%.

The time required to analyse each image is dominated by the

need for supervision, requiring about 10 min to count 1,000

cells. So, OIA saves 56.5% of time spent by the traditional

manual counting of cells, avoiding mistakes because the user

can check at any time the cells counted. Despite OIA cannot

operate fully automatically, it can considerably accelerate the

analysis that can be performed in daily clinical practice, being

a major advance over what is currently available. In fact, the

expert’s perception of OIA achieves a mean score of 80.9 in the

SUS questionnaire, which means that the system is from good

to excellent.

The OIA software is simple to use and install and has the

following advantages: (1) it works with a photograph taken under

a microscope and not with a scan of the glass; (2) it allows

monitoring, i.e., to see the cells to be accounted for each category

before image quantification; and (3) it allows to divide the epithelial

strata into three thirds (basal/medium/superior), to compare the

positivity of ki67 among layers and to study its relationship with

the degree of epithelial dysplasia. For these reasons, OIA is superior

to other available tools and its use could be easily implemented in

the daily practice of biomedical labs. In addition, this possibility

of supervision by the expert favors that OIA can be used as a tool

in the teaching-learning process to instruct junior researchers in

cell counting.

Although OIA was validated with histological images

of oral leukoplakia stained for ki67, our preliminary tests

encourage its use with other molecular markers that also stain

the cells with brown, such as p53 or p21. This possibility

opens up new lines of research that we will address in

the future: OIA will facilitate and optimize routinary

immunohistochemical analysis and lead to an ever-increasing

diagnostic accuracy.
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