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Transforming glaucoma
diagnosis: transformers at the
forefront

Farheen Chincholi* and Harald Koestler

Department of Computer Science, Chair of Computer Science 10 (System Simulation),

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

Although the Vision Transformer architecture has become widely accepted as

the standard for image classification tasks, using it for object detection in

computer vision poses significant challenges. This research aims to explore the

potential of extending the Vision Transformer for object detection in medical

imaging, specifically for glaucoma detection, and also includes an examination

of the Detection Transformer for comparative analysis. The analysis involves

assessing the cup-to-disc ratio and identifying signs of vertical thinning of the

neuroretinal rim. A diagnostic threshold is proposed, flagging a cup-to-disc

ratio exceeding 0.6 as a potential indicator of glaucoma. The experimental

results demonstrate a remarkable 90.48% accuracy achieved by the pre-trained

Detection Transformer, while the Vision Transformer exhibits competitive accuracy

at 87.87%. Comparative evaluations leverage a previously untapped dataset

from the Standardized Fundus Glaucoma Dataset available on Kaggle, providing

valuable insights into automated glaucoma detection. The evaluation criteria and

results are comprehensively validated by medical experts specializing in the field

of glaucoma.
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1 Introduction

Glaucoma, a complex and progressive eye disease, stands as a major public health

concern worldwide. It is characterized by the gradual and irreversible deterioration of the

optic nerve, typically associated with elevated intraocular pressure (IOP), although glaucoma

can also develop with normal IOP. This condition eventually leads to a gradual loss of vision

and, if left untreated, can ultimately result in blindness. The impairment typically begins with

peripheral vision loss and, if undetected and untreated, can advance to affect central vision

as well (Wagner et al., 2022).

Glaucoma is often referred to as the “silent thief of sight” because its early stages usually

manifest without noticeable symptoms or pain (National Eye Institute, 2023). Individuals

might remain unaware of the disease until significant vision loss has occurred. Given its

potential for severe vision impairment and the lack of a cure, glaucomamanagement focuses

on early detection, continuous monitoring, and appropriate treatment to slow down or halt

disease progression.

Optic nerve cupping

The optic nerve transmits visual signals from the eye’s retina to the brain (Glaucoma

Research Foundation, 2023). It comprises numerous retinal nerve fibers that converge and

exit through the optic disc situated at the eye’s posterior. The optic disc has a central section

known as the “cup,” typically smaller than the entire optic disc depicted in Figure 1A. In
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individuals with glaucoma, Figure 1B shows that increased eye

pressure and/or reduced blood flow to the optic nerve cause the

degeneration of these nerve fibers. Consequently, the cup enlarges

in relation to the optic disc due to a lack of support. Optic nerve

cupping worsens as the cup-to-disc ratio increases. Both individuals

with and without optic nerve damage exhibit optic nerve cupping,

although those with glaucoma often have a higher cup-to-disc ratio.

A cup-to-disc ratio exceeding six-tenths is generally considered

suspicious for glaucoma. Regular optic nerve photographs enable

monitoring of the cup-to-disc ratio. This assists the doctor in

assessing whether nerve fiber damage is ongoing despite current

treatment and whether treatment adjustments are necessary.

This paper develops deep learning-based screening software for

the detection and location of glaucoma from digital fundus images.

In recent advancements, Vision Transformer (ViT) (Dosovitskiy

et al., 2020) and the Detection Transformer (DETR) (Carion et al.,

2020) models have gained significant traction in the domain of

computer vision. ViT, especially, has demonstrated outstanding

performance in image classification. This study takes a significant

stride by extending the application of ViT to object detection tasks,

particularly focusing on its integration into medical imaging for

the purpose of glaucoma detection. The research zeroes in on

identifying the cup-to-disc (OC to OD) ratio and detecting signs of

vertical thinning in the neuroretinal rim (tOD) as key indicators. If

the cup-to-disc ratio exceeds six-tenths, the condition is flagged as

glaucoma. This approach holds promise for an automated, precise,

and efficient process in glaucoma detection. The prior research

in this field, encompassing classical machine learning and deep

learning, is critically reviewed and discussed in Section 2.

2 Related work

2.1 Classical machine learning methods

In the study on glaucoma diagnosis (An et al., 2019),

the authors developed a machine learning algorithm utilizing

optical coherence tomography (OCT) data and color fundus

images. Convolutional neural networks (CNNs) with various

input types, including fundus images, retinal nerve fiber layer

thickness maps, and ganglion cell complex thickness maps, were

employed. Through data augmentation and dropout, the CNNs

achieved strong performance. To combine CNN model results,

a random forest (RF) was trained to classify disc fundus images

of healthy and glaucomatous eyes. This classification was based

on feature vector representations of each input image, obtained

by removing the second fully connected layer. The combined

approach demonstrated high accuracy, surpassing individual input

methods, with a 10-fold cross-validation area under the receiver

operating characteristic curve (AUC) reaching 0.963.

Praveena and GaneshBabu proposed a K-means clustering-

based approach to automatically extract the optic disc (Praveena

and Ganeshbabu, 2021). The optimal K value in K-means clustering

was determined using hill climbing. The optic cup’s segmented

contour was refined through elliptical and morphological fitting

methods. The cup-to-disc ratio was calculated and compared

with ophthalmologist-provided values for 50 normal and 50

glaucoma patient fundus images. The mean errors for elliptical and

morphological fitting with K-means clustering were 4.5% and 4.1%,

respectively. Adopting fuzzy C-means clustering reduced the mean

errors to 3.83% and 3.52%. Clustering and segmentation using

SWFCMachievedmean error rates of 3.06% and 1.67%. The fundus

images were sourced from Aravind Eye Hospital, Pondicherry.

Civit-Masot et al. (2020) have developed a diagnostic aid

tool aimed at detecting glaucoma using eye fundus images.

The tool is meticulously trained and tested, consisting of two

subsystems operating independently and integrating their results

to enhance glaucoma detection. In the first subsystem, a blend

of machine learning and segmentation techniques is employed

to autonomously detect the optic disc and cup. These detections

are then combined, and their physical and positional features

are extracted. On the other hand, the second subsystem employs

transfer learning techniques on a pre-trained convolutional neural

network (CNN) to detect glaucoma by analyzing the complete

eye fundus images. The outcomes from both subsystems are

amalgamated to differentiate positive cases of glaucoma and

enhance the final detection results. The research demonstrates

that this integrated system attains a superior classification rate

compared to previous works, achieving an impressive area under

the curve (AUC) of 0.91.

2.2 Deep learning methods

Chen et al. (2015) presented early work utilizing deep

convolutional neural networks for glaucoma detection. This study

introduced a deep learning architecture focusing on automated

glaucoma diagnosis using CNNs. The proposed architecture

comprised four convolutional layers and two fully-connected

layers, demonstrating promising results in discriminating between

glaucomatous and non-glaucomatous patterns. The authors

utilized techniques like dropout and data augmentation to enhance

diagnostic performance. Their method was evaluated on the

ORIGA and SCES datasets, achieving significant improvements

with an area under the curve (AUC) of the receiver operating

characteristic (ROC) curve at 0.831 and 0.887 for glaucoma

detection in the respective databases (Chen et al., 2015).

Yu et al. (2019) developed an advanced segmentation method

for optic disc and cup using a modified U-Net architecture. This

approach leverages a combination of encoding layers from the

widely adopted pre-trained ResNet-34 model and classical U-

Net decoding layers. The model was meticulously trained on the

recently available RIGA dataset, achieving an impressive average

dice value of 97.31% for disc segmentation and 87.61% for cup

segmentation. These results are comparable to the performance of

experts in optic disc/cup segmentation and Cup-Disc-Ratio (CDR)

calculation on a reserved RIGA dataset. When evaluated on the

DRISHTI-GS and RIM-ONE datasets without re-training or fine-

tuning, the model demonstrated performance on par with state-

of-the-art methodologies reported in the literature. Furthermore,

the authors fine-tuned the model on two databases, achieving

outstanding results. For the DRISHTI-GS test set, the average disc

dice value was 97.38%, and the cup dice value was 88.77%. In the

case of the RIM-ONE database, the model achieved a disc dice of
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FIGURE 1

In (A), a healthy eye is depicted, while in (B), optic nerve cupping is illustrated, clearly demonstrating an increase in the cup-to-disc ratio. (A) Healthy

eye. (B) Eye with glaucoma.

96.10% and a cup dice of 84.45%. These results represent the state-

of-the-art performance on both databases concerning cup and disc

dice values.

Al-Bander et al. (2017) investigated the potential of employing

deep learning to automatically acquire features and identify signs

of glaucoma in colored retinal fundus images. They developed a

fully automated system that utilized a convolutional neural network

(CNN) to differentiate between normal and glaucomatous patterns

for diagnostic purposes. This innovative approach automatically

extracted features from the raw images using CNN, diverging from

traditional methods that relied on manually crafted optic disc

features. The extracted features were then fed into a Support Vector

Machine (SVM) classifier to categorize the images as normal or

abnormal. The achieved results demonstrated an accuracy of 88.2%,

a specificity of 90.8%, and a sensitivity of 85%.

These investigations showcase the efficacy of both traditional

machine learning and deep learning approaches in addressing

glaucoma detection using digital fundus images. Nevertheless,

there is a pressing requirement for additional research aimed

at enhancing the precision and resilience of these techniques.

Developing artificial intelligence for clinical use in glaucoma faces

several challenges.

3 Method

The model design incorporates the architecture of both the

Vision Transformer and Detection Transformer, shaping the

framework for glaucoma detection as outlined in the process in

Section 3.3.

3.1 Vision transformer or ViT

The Vision Transformer (ViT) Dosovitskiy et al. (2020) is a

deep learning architecture designed for computer vision tasks,

particularly image classification. It’s an innovative approach that

applies the transformer architecture, originally developed for

natural language processing (NLP), to process and analyze images.

ViT starts by segmenting the input image into uniform, non-

overlapping patches as illustrated in Figure 2. These patches are

considered as “tokens” and undergo linear embedding to convert

pixel values into higher-dimensional vectors. The patches, now

represented as tokens, are essential for capturing image features. To

preserve spatial relationships, positional encodings are introduced

and added to these token embeddings, indicating their positions in

the original image. Next, these token embeddings, along with their

positional encodings, are input into the transformer encoder. The

transformer comprises multiple layers, each housing twomain sub-

layers: a multi-head self-attention mechanism and a position-wise

fully connected feedforward neural network.

The ViT model is composed of multiple transformer

blocks (Vaswani et al., 2017) tailored for object detection. Within

each block, the MultiHeadAttention layer facilitates self-attention

over the image patch sequence. The “multi-head” concept enables

the model to simultaneously learn various attention patterns. The

encoded patches (utilizing skip connections) and the outputs from

the self-attention layer undergo normalization and are then passed

through a multilayer perceptron (MLP) (Taud and Mas, 2018).

Following the attention mechanism, position-wise feedforward

neural networks process each token independently, integrating

insights from the attention mechanism. These operations are

performed in each layer of the transformer, enabling the model to

comprehend intricate features at different levels of abstraction. The

model generates outputs with four dimensions, representing the

bounding box coordinates of an object. This design is specifically

optimized for object detection tasks, where identifying object

positions is a primary objective (Chincholi and Koestler, 2023).

The model is trained using labeled data (e.g., image-label pairs)

and appropriate loss functions (e.g., cross-entropy loss). The model

learns to predict the correct class labels for the input images.

ViT offers advantages such as scalability, as it can handle images

of varying sizes, and parallelization, which helps in processing

patches independently.

3.2 DEtection TRansformer or DETR

The DEtection TRansformer or DETR (Carion et al., 2020)

is a transformer-based architecture utilizing an encoder-decoder

framework with a convolutional backbone as depicted in Figure 3.
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FIGURE 2

Illustration of a custom-designed Vision Transformer architecture specifically optimized for the detection of optic disc and optic cup.

The encoder employs a convolutional neural network (CNN)

like ResNet (Koonce and Koonce, 2021) to extract feature maps

from the input image. Subsequently, the decoder, built on the

transformer architecture (Vaswani et al., 2017), processes these

feature maps to produce predictions related to objects within the

image. To facilitate object detection, two additional heads are

integrated into the decoder: a linear layer for handling class labels

and a multi-layer perceptron (MLP) for bounding box predictions.

The key to object detection lies in utilizing “object queries,” which

are responsible for identifying specific objects within an image.

In the context of the COCO dataset (Lin et al., 2014), the model

employs 100 object queries.

During training, the model leverages a “bipartite matching loss”

mechanism. This involves comparing the predicted classes and

bounding boxes generated by each of the N (in this case, 100)

object queries with the ground truth annotations. The annotations

are padded to match the length of N, wherein if an image

contains fewer objects (e.g., 4), the remaining annotations (96

in this example) are marked with “no object” for class and “no

bounding box.” The Hungarian matching algorithm is employed

to establish an optimal one-to-one mapping between the N queries

and annotations. Subsequently, standard cross-entropy is utilized

for class predictions, and a combined loss comprising L1 and

generalized Intersection over Union (IoU) loss is applied for

optimizing bounding box predictions.

3.3 Process outline

The flowchart in Figure 4 outlines the sequential steps for

detecting the Optic Disc (OD) and Optic Cup (OC) using ViT

and DETR. It starts with data preprocessing to prepare the input.

Following this, the OD data undergoes processing. This involves

training the model designed to recognize and pinpoint the optic

disc within the given data. The model is instructed and fine-

tuned to accurately identify the OD. Subsequently, predictions

regarding the location and features of the OD are derived from this

trained model.

Simultaneously, the OC data also undergoes a parallel

processing trajectory. Similar to the OD data, the OC data is

preprocessed and structured for meaningful analysis. A distinct

model is then trained to identify the OC accurately. Predictions

concerning the OC are generated through this trained model,

providing crucial insights into its location and attributes.

The bounding box is defined by its coordinates represented

as (xmin, ymin, xmax, ymax), where (xmin, ymin) denotes the top-left

corner, and (xmax, ymax) represents the bottom-right corner of the

bounding box. To calculate the radius, the distance between the

center of the bounding box and one of its corners is computed

as follows:

Centerx =
xmin + xmax

2

Centery =
ymin + ymax

2

The distance from the center to a corner (for example, the top-

left corner) is determined using the Euclidean distance formula:

Distance =
√

(Centerx − xmin)2 + (Centery − ymin)2 (1)

This distance is considered analogous to a radius for a bounding

box. An analysis is conducted by assessing the ratio of OC to OD,

considering a threshold of 0.6. Depending on this ratio, a diagnosis

of glaucoma, is made if the ratio exceeds 0.6. This diagnostic step

is critical for identifying and addressing glaucoma in a timely and

effective manner.

4 Experiments

4.1 Datasets

To investigate the scalability of ViT and DETR models, the

Standardized Multi-Channel Dataset for Glaucoma (SMDG), a
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FIGURE 3

Customized DETR architecture for optic disc and optic cup detection.

FIGURE 4

The step-by-step process of detecting optic disc and optic cup using ViT and DETR.
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comprehensive open-source resource (Ahalli, 2023; Deathtrooper,

2023) accessible on Kaggle, is utilized. SMDG represents a

harmonization effort encompassing 19 public glaucoma datasets,

strategically curated to advance AI applications in this domain.

This extensive dataset aggregates diverse information, including

full-fundus glaucoma images and pertinent image metadata such

as optic disc segmentation, optic cup segmentation, blood vessel

segmentation, along with any available per-instance textual details

such as sex and age.

Remarkably, SMDG-19 stands as the most extensive public

repository housing fundus images associated with glaucoma. This

research specifically draws on datasets like CRFO-v4, DRISHTI-

GS1-TRAIN, DRISHTI-GS1-TEST, G1020, ORIGA-light, PAPILA,

and REFUGE1-TRAIN (Retinal Fundus Glaucoma Challenge 1

Train) from SMDG-19 as outlined in Table 1, constituting a

crucial aspect of our investigation into ViT and DETR model

scalability. Leveraging this diverse and extensive dataset enables

a comprehensive exploration of the models’ performance and

scalability across varied data sources, enriching the findings of

our study.

4.2 Training and fine-tuning

4.2.1 Preprocessing
For preprocessing during training and validation, images are

resized or rescaled so that the shorter side measures at least 224

pixels while the longer side does not exceed 224 pixels. Additionally,

they are normalized across the RGB channels.

4.2.2 Computing environment
In the training process of both models, the computing

environment employed was the JupyterHub environment running

on the Alex cluster.1 The cluster consists of a total of 352

Nvidia A40 GPUs, supplemented by 160 Nvidia A100 GPUs with

40GB memory, and an additional 144 Nvidia A100 GPUs with

80GB memory.

4.2.3 Training
DETR was trained using the AdamW optimizer, an extension

of the Adam optimizer that incorporates weight decay to prevent

overfitting. The training process was facilitated by PyTorch

Lightning and the Hugging Face Transformers library.2 PyTorch

Lightning simplifies the training loop, providing a more modular

and readable structure, while the Hugging Face Transformers

library offers pre-trained transformer models and tools for various

natural language processing tasks. The forward method of the

Lightning module was implemented to take pixel values and masks

as inputs, generating model predictions—a crucial step in the

training process. The initial learning rate for the transformer

was set to 1 × 10−4, and for the backbone, it was 1 × 10−5.

Additionally, a weight decay of 1× 10−4 was applied. Transformer

1 https://hpc.fau.de/systems-services/documentation-instructions/

clusters/alex-cluster

2 https://huggingface.co/facebook/detr-resnet-50

weights were initialized using Xavier initialization, a technique

that contributes to stable training by appropriately scaling weights

based on the number of input and output units in a layer.

A ResNet50 backbone, pre-trained on ImageNet—a large-scale

dataset of images—was utilized. The training schedule spanned 300

epochs, with each epoch involving a pass over all training images.

Hyperparameterization techniques were employed for fine-tuning

to optimize the training process.

The ViT model underwent training for 1,000 epochs, utilizing

the Adam optimizer with a batch size of 16 and a weight

decay of 0.0001, as per Zhang (2018). This weight decay value,

contrary to common preference for Stochastic Gradient Descent

(SGD), has demonstrated efficacy in model transfer. The training

protocol incorporated a linear learning rate set at 0.001, along

with a decay strategy. For fine-tuning, SGD with momentum

was employed, accompanied by a reduced batch size of 8. The

training procedure involved extracting and reshaping patches

from input images using a custom Patches Layer, with a patch

size of 32 × 32. Each image was divided into 49 patches, resulting

in 3,072 elements per patch. The patches were then encoded

using learned projections and positional embeddings through

the PatchEncoder Layer. Transformer Blocks, consisting of layer

normalization, multi-head attention, skip connections, and an

MLP with head units configured as [2, 048, 1, 024, 512, 64, 32],

facilitated robust feature extraction. The transformer units

were characterized by dimensions of projection_dim *
2 and projection_dim, with 4 transformer layers. The

Representation Layer flattened the output and applied dropout

for enhanced feature representation. Finally, the Bounding Box

Output layer produced four neurons representing bounding

box coordinates. This comprehensive training approach and

architecture, incorporating effective optimization strategies,

contribute to the model’s performance in object detection tasks.

4.3 Optic disc and optic cup detection and
localization

In this section, a concise evaluation of the detection

and localization performance for the optic disc (OD) and

optic cup (OC) is provided. Figure 5 visually presents the

bounding box coordinates [x_min, y_min, x_max, y_max]

representing both the ground truth and predicted objects. These

coordinates are obtained by applying the trained model to the

test data.

The accompanying table beneath Figure 5 offers an in-depth

comparison between the ground truth and predicted bounding box

coordinates for both OC and OD for the bottom most image. The

table includes calculated radii and the OC/OD ratio. The bounding

box coordinates are presented in the format [x_min, y_min, x_max,

y_max]. The radii for the optic disc and optic cup are approximate

values determined using Equation (1). TheOC/OD ratio, calculated

as 0.7 in this case, is indicative of a potential diagnosis of glaucoma.

This ratio serves as a key metric in evaluating the health of

the optic nerve head based on the detected optic disc and optic

cup parameters.

Table 2 provides a detailed comparison between ground truth

and predicted values for bothOD andOC on the test data. Each row
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TABLE 1 Overview of utilized datasets sourced from the Standardized Fundus Glaucoma Dataset (SMDG-19) accessible on Kaggle (Ahalli, 2023).

Dataset CRFO-v4 G1020 DRISHTI
GS1-TRAIN

DRISHTI
GS1-TEST

ORIGA
-light

PAPILA REFUGE1
-TRAIN

0 (Non-Glaucoma) 31 724 18 13 482 333 360

1 (Glaucoma) 48 296 32 38 168 87 40

FIGURE 5

The left figure displays the output generated by the models, whereas the right figure exhibits the annotated positions of the optic cup (OC) and optic

disc (OD).

corresponds to a specific image (labeled 1 to 9) for both OD and

OC. The last section of the table presents calculations, including

the OC/OD ratio for ground truth and predictions, along with

actual and predicted classifications. This comprehensive evaluation

aids in assessing the model’s accuracy in predicting OD and OC

parameters and is crucial for diagnosing ocular health.
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TABLE 2 The table displays both the ground truth and predictions derived from the test data, including the corresponding radius values for each.

Image Ground truth Predicted Radius

Ground truth Predicted

OPTIC DISC 1 [186, 209, 259, 292] [190, 209, 270, 291] 41.5 41.1

2 [195, 214, 251, 280] [201, 217, 258, 280] 33 31.5

3 [254, 239, 286, 271] [245, 237, 285, 281] 16 21.9

4 [231, 236, 275, 277] [231, 234, 276, 282] 22 24.4

5 [253, 237, 300, 281] [250, 240, 291, 282] 23.5 20.6

6 [227, 239, 267, 276] [222, 238, 263, 279] 20 20.7

7 [228, 239, 275, 291] [223, 242, 277, 295] 26 26.9

8 [223, 251, 269, 297] [223, 252, 266, 295] 23 21.6

9 [200, 228, 285, 315] [205, 234, 278, 314] 43.5 40.1

OPTIC CUP 1 [195. 214. 251. 280.] [201, 217, 258, 280] 33 31.5

2 [254. 239. 286. 271.] [245, 237, 285, 281] 16 21.9

3 [231. 236. 275. 277.] [231, 234, 276, 282] 22 24.4

4 [253. 237. 300. 281.] [250, 240, 291, 282] 23.5 20.6

5 [227. 239. 267. 276.] [222, 238, 263, 279] 20 20.7

6 [228. 239. 275. 291.] [223, 242, 277, 295] 26 26.9

7 [223. 251. 269. 297.] [223, 252, 266, 295] 23 21.6

8 [200. 228. 285. 315.] [205, 234, 278, 314] 43.5 40.1

9 [200. 216. 285. 304.] [203, 219, 280, 301] 44 41.1

Image Radius Classification

Ground truth OC/OD Predicted
OC/OD

Actual Prediction

Calculations 1 0.8 0.8 1 1

2 0.5 0.6 0 1

3 0.6 0.6 1 1

4 0.7 0.5 1 0

5 0.6 0.6 1 1

6 0.6 0.6 1 1

7 0.5 0.5 0 0

8 0.8 0.8 1 1

9 0.8 0.7 1 1

Additionally, it provides a thorough calculation of the ratio between the optic cup (OC) and optic disc (OD) (OC/OD).

4.4 Comparison of ViT and DETR model
results

In this section, a comparison between ViT and DETR will be

conducted, focusing on performance evaluation, ROC Curves, and

Precision-Recall Curves.

4.4.1 Performance
The Table 3 presents a performance comparison of our object

detectionmodels, DETR and ViT, with the state-of-the-art methods

discussed in Section 2. For DETR, the model achieved an accuracy

of 92.30% on the DRISHTI dataset with IoU of 0.94 and specificity

of 0.85. When applied to a broader range of datasets (DRISHTI,

CRFO, G1020, ORIGA, PAPILA, REFUGE1), DETR maintained a

notable accuracy of 90.48% with IoU of 0.94 and specificity of 0.75.

On the other hand, ViT exhibited an accuracy of 88% with

IoU of 1 and specificity of 0.33 on the DRISHTI dataset. When

tested on a wider set of datasets (DRISHTI, CRFO, G1020, ORIGA,

PAPILA, REFUGE1), ViT showcased an accuracy of 87.87% with

IoU of 0.92 and specificity of 0.84. Overall, the results highlight

DETR’s slightly higher accuracy and specificity compared to ViT

across the evaluated datasets. The results suggest that DETR and

ViT exhibit competitive performance in comparison to existing

methods, showcasing their potential in glaucoma detection in the

domain of medical image analysis.
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TABLE 3 Performance comparison of DETR and ViT with state-of-the-art methods. Evaluation metrics include accuracy, sensitivity, specificity, AUC, and

ROC.

Model Datasets Accuracy Sensitivity Specificity AUC ROC

DETR[ours] DRISHTI 92.30 0.94 0.85 0.91 0.89

ALL DATASETS 90.48 0.94 0.75 0.88 0.87

ViT[ours] DRISHTI 88 1 0.33 0.85 0.80

ALL DATASETS 87.87 0.92 0.84 0.86 0.82

CNN + RF (An et al., 2019) OWN DATA - - - 0.96 -

ML+CNN (Civit-Masot et al.,

2020)

RIM-ONE V3,

DRISHTI

- - - 0.91 -

CNN (Chen et al., 2015) ORIGA and SCES - - - 0.83 0.88

CNN (Al-Bander et al., 2017) DRISHTI-GS,

RIM-ONE, ONHSD

88.20 0.85 0.90 - -

The results indicate that DETR and ViT demonstrate comparable performance when compared to established methods, highlighting their potential for effective glaucoma detection within the

field of medical image analysis.

FIGURE 6

(A) ROC Curve for “DETR” and “ViT” models, with AUC of 0.95 and 0.90 respectively (DRISHTI), and 0.90 and 0.95 respectively (all datasets). (B)

Precision-Recall Curve, with AP of 0.98 (DRISHTI) and 0.94 (all datasets) for “DETR,” and AP of 0.89 (DRISHTI) and 0.77 (all datasets) for “ViT.”

4.4.2 ROC curves
The ROC curve for the “DETR”model highlights its exceptional

ability to achieve a high True Positive Rate (sensitivity) even

at low False Positive Rates (1-specificity). This is reflected in

its impressively high area under the curve (AUC) of about

0.95 for DRISHTI and 0.90 for all datasets, indicating strong

discriminative power (refer to Figure 6A). Conversely, the ROC

curve for the “ViT” model demonstrates a commendable True

Positive Rate at low False Positive Rates, yielding an AUC

of approximately 0.90 for DRISHTI and 0.85 for all datasets.

Although slightly lower than “DETR,” it still signifies robust model

performance.

4.4.3 Precision-recall curves
In the Precision-Recall curve analysis, the “DETR” model

showcases excellent precision at relatively high recall values,

illustrating its effectiveness in identifying true positive cases while

minimizing false positives. In Figure 6B, the area under the curve

(AP) for “DETR” is approximately 0.98 for DRISHTI and 0.94 for

all datasets, indicating a strong precision-recall trade-off. On the

other hand, the “ViT” model displays a reasonable precision-recall

trade-off, achieving an AP of approximately 0.89 for DRISHTI and

0.77 for all datasets. This suggests its ability to effectively balance

precision and recall.

Both models demonstrate strong discriminative power and

a good balance between precision and recall. The ROC and

Precision-Recall curves underscore the efficacy of the “DETR”

model, particularly in terms of discriminative ability. However, the

“ViT” model also performs admirably, striking a commendable

balance between precision and recall. The choice of model may

depend on specific task requirements, with “DETR” excelling in

discriminative power and “ViT” showcasing a favorable precision-

recall trade-off.

5 Discussion and future work

In conclusion, our investigation into advanced deep learning

models, notably the Vision Transformer (ViT) and the Detection
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Transformer (DETR), for glaucoma detection presents an exciting

opportunity to revolutionize this vital medical domain. We have

delved into applying Transformers directly to diverse computer

vision tasks, including object detection, a pivotal challenge outlined

in the original ViT research. By viewing retinal images as sequences

of patches and harnessing the power of a Transformer-based

architecture, ViT effectively captures intricate patterns and features

critical to glaucoma detection, devoid of image-specific biases.

This hints at its promising role in automating glaucoma diagnosis.

Consequently, ViT either matches or surpasses the state of the art

on numerous image classification datasets, all while being relatively

cost-effective to pre-train.

On a different note, DETR, tailored for object detection,

demonstrates significant potential in precisely localizing specific

features within retinal images indicative of glaucoma. This

capability enables the accurate detection of affected regions. Its

end-to-end detection approach aligns well with the imperative

of precisely identifying glaucomatous areas, contributing to

heightened diagnostic accuracy. DETR boasts a straightforward

implementation and a flexible architecture that can be easily

extended to object detection in medical imaging, yielding

competitive results.

While these preliminary findings are promising, the

development of AI for clinical practice in glaucoma faces

significant challenges. Standardizing diagnostic criteria is

crucial given the absence of a universally accepted definition

for glaucoma. The wide spectrum of the disease and the

shortage of glaucoma experts globally contribute to variations

in diagnosis and treatment criteria, hindering the development

of diagnostic devices. Additionally, collecting detailed data on

neurodegenerative and systemic metabolic conditions alongside

glaucoma data is crucial for predicting progression. Multifactorial

associations between glaucoma and diseases like diabetes and

hypertension emphasize the need for AI technology to reveal

intricate relationships between systemic conditions and retinal

images. To address data shortages and biases, generative AI

techniques such as generative adversarial networks (GAN) and

emerging diffusion models offer solutions. These models provide

data augmentation by generating realistic fundus photographs,

overcoming challenges associated with imbalanced medical data.

As these generative AI techniques continue to evolve, they hold

the promise of synthesizing realistic fundus images based on

improved data quality, advancing the field of glaucoma diagnosis

and treatment.

Another major hurdle is the ongoing exploration of self-

supervised pre-training methods. Our initial experiments have

shown improvements from self-supervised pre-training, but a

substantial gap persists between self-supervised and large-scale

supervised pre-training. Furthermore, scaling up ViT and DETR is

likely to lead to enhanced performance. Additionally, a significant

challenge lies in further optimizing these models to cater to the

unique intricacies of glaucoma detection, such as subtle structural

changes in the optic nerve head and retinal nerve fiber layer.

Customizing ViT and DETR to extract and interpret features

specific to glaucoma pathology is essential for enhancing their

effectiveness and reliability in a clinical context.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: https://www.kaggle.com/datasets/deathtrooper/

multichannel-glaucoma-benchmark-dataset.

Author contributions

FC: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Resources, Software, Validation,

Visualization, Writing – original draft, Writing – review &

editing. HK: Project administration, Supervision, Writing – review

& editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Ahalli, A. D. (2023). Smdg modified. Available online at: https://www.kaggle.com/
datasets/agattadahalli/smdg-modified

Al-Bander, B., Al-Nuaimy, W., Al-Taee, M. A., and Zheng, Y. (2017).
“Automated glaucoma diagnosis using deep learning approach,” in 2017 14th
International Multi-Conference on Systems, Signals and Devices (SSD) 207–210.
doi: 10.1109/SSD.2017.8166974

An, G., Omodaka, K., Hashimoto, K., Tsuda, S., Shiga, Y., Takada, N., et al. (2019).
Glaucoma diagnosis with machine learning based on optical coherence tomography
and color fundus images. J. Healthc. Eng. 2019:4061313. doi: 10.1155/2019/40
61313

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko,
S. (2020). “End-to-end object detection with transformers,” in European

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2024.1324109
https://www.kaggle.com/datasets/deathtrooper/multichannel-glaucoma-benchmark-dataset
https://www.kaggle.com/datasets/deathtrooper/multichannel-glaucoma-benchmark-dataset
https://www.kaggle.com/datasets/agattadahalli/smdg-modified
https://www.kaggle.com/datasets/agattadahalli/smdg-modified
https://doi.org/10.1109/SSD.2017.8166974
https://doi.org/10.1155/2019/4061313
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Chincholi and Koestler 10.3389/frai.2024.1324109

Conference on Computer Vision (Springer), 213–229. doi: 10.1007/978-3-030-58
452-8_13

Chen, X., Xu, Y., Kee Wong, D. W., Wong, T. Y., and Liu, J. (2015). “Glaucoma
detection based on deep convolutional neural network,” in 2015 37th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC) 715–718. doi: 10.1109/EMBC.2015.7318462

Chincholi, F., and Koestler, H. (2023). Detectron2 for lesion detection in diabetic
retinopathy. Algorithms 16:147. doi: 10.3390/a16030147

Civit-Masot, J., Domínguez-Morales, M. J., Vicente-Díaz, S., and Civit, A. (2020).
Dual machine-learning system to aid glaucoma diagnosis using disc and cup feature
extraction. IEEE Access 8, 127519–127529. doi: 10.1109/ACCESS.2020.3008539

Deathtrooper. (2023). Smdg dataset. Available online at: https://www.kaggle.com/
datasets/deathtrooper/multichannel-glaucoma-benchmark-dataset

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., et al. (2020). An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929.

Glaucoma Research Foundation (2023). Optic nerve cupping. Available online at:
https://glaucoma.org/optic-nerve-cupping/ (accessed August 17, 2023).

Koonce, B., and Koonce, B. (2021). “Resnet 50,” in Convolutional Neural Networks
with Swift for Tensorflow: Image Recognition and Dataset Categorization 63–72.
doi: 10.1007/978-1-4842-6168-2_6

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
“Microsoft coco: common objects in context,” in Computer Vision-ECCV 2014: 13th

European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V
13 (Springer), 740–755. doi: 10.1007/978-3-319-10602-1_48

National Eye Institute (2023). Glaucoma: The silent thief begins to tell
its secrets. Available online at: https://www.nei.nih.gov/about/news-and-
events/news/glaucoma-silent-thief-begins-tell-its-secrets (accessed August 17,
2023).

Praveena, R., and Ganeshbabu, T. (2021). Determination of cup to disc ratio
using unsupervised machine learning techniques for glaucoma detection. Molec. Cell.
Biomech. 18:69. doi: 10.32604/mcb.2021.014622

Taud, H., andMas, J. (2018). “Multilayer perceptron (mlp),” inGeomatic Approaches
for Modeling Land Change Scenarios 451–455. doi: 10.1007/978-3-319-60801-3_27

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et
al. (2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems 30.

Wagner, I. V., Stewart, M. W., and Dorairaj, S. K. (2022). Updates on
the diagnosis and management of glaucoma. Mayo Clin. Proc. 6, 618–635.
doi: 10.1016/j.mayocpiqo.2022.09.007

Yu, S., Xiao, D., Frost, S., and Kanagasingam, Y. (2019). Robust optic disc and cup
segmentation with deep learning for glaucoma detection.Computer. Med. Imag. Graph.
74, 61–71. doi: 10.1016/j.compmedimag.2019.02.005

Zhang, Z. (2018). “Improved adam optimizer for deep neural networks,” in 2018
IEEE/ACM 26th International Symposium on Quality of Service (IWQoS) (IEEE), 1–2.
doi: 10.1109/IWQoS.2018.8624183

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2024.1324109
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.1109/EMBC.2015.7318462
https://doi.org/10.3390/a16030147
https://doi.org/10.1109/ACCESS.2020.3008539
https://www.kaggle.com/datasets/deathtrooper/multichannel-glaucoma-benchmark-dataset
https://www.kaggle.com/datasets/deathtrooper/multichannel-glaucoma-benchmark-dataset
https://glaucoma.org/optic-nerve-cupping/
https://doi.org/10.1007/978-1-4842-6168-2_6
https://doi.org/10.1007/978-3-319-10602-1_48
https://www.nei.nih.gov/about/news-and-events/news/glaucoma-silent-thief-begins-tell-its-secrets
https://www.nei.nih.gov/about/news-and-events/news/glaucoma-silent-thief-begins-tell-its-secrets
https://doi.org/10.32604/mcb.2021.014622
https://doi.org/10.1007/978-3-319-60801-3_27
https://doi.org/10.1016/j.mayocpiqo.2022.09.007
https://doi.org/10.1016/j.compmedimag.2019.02.005
https://doi.org/10.1109/IWQoS.2018.8624183
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Transforming glaucoma diagnosis: transformers at the forefront
	1 Introduction
	2 Related work
	2.1 Classical machine learning methods
	2.2 Deep learning methods

	3 Method
	3.1 Vision transformer or ViT
	3.2  DEtection TRansformer or DETR
	3.3 Process outline

	4 Experiments
	4.1 Datasets
	4.2 Training and fine-tuning
	4.2.1 Preprocessing
	4.2.2 Computing environment
	4.2.3 Training

	4.3 Optic disc and optic cup detection and localization
	4.4 Comparison of ViT and DETR model results
	4.4.1 Performance
	4.4.2 ROC curves
	4.4.3 Precision-recall curves


	5 Discussion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


