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Background: Carotid plaques are major risk factors for stroke. Carotid ultrasound 
can help to assess the risk and incidence rate of stroke. However, large-scale 
carotid artery screening is time-consuming and laborious, the diagnostic results 
inevitably involve the subjectivity of the diagnostician to a certain extent. Deep 
learning demonstrates the ability to solve the aforementioned challenges. Thus, 
we attempted to develop an automated algorithm to provide a more consistent 
and objective diagnostic method and to identify the presence and stability of 
carotid plaques using deep learning.

Methods: A total of 3,860 ultrasound images from 1,339 participants who 
underwent carotid plaque assessment between January 2021 and March 2023 
at the Shanghai Eighth People’s Hospital were divided into a 4:1 ratio for training 
and internal testing. The external test included 1,564 ultrasound images from 
674 participants who underwent carotid plaque assessment between January 
2022 and May 2023 at Xinhua Hospital affiliated with Dalian University. Deep 
learning algorithms, based on the fusion of a bilinear convolutional neural 
network with a residual neural network (BCNN-ResNet), were used for modeling 
to detect carotid plaques and assess plaque stability. We chose AUC as the main 
evaluation index, along with accuracy, sensitivity, and specificity as auxiliary 
evaluation indices.

Results: Modeling for detecting carotid plaques involved training and internal 
testing on 1,291 ultrasound images, with 617 images showing plaques and 674 
without plaques. The external test comprised 470 ultrasound images, including 
321 images with plaques and 149 without. Modeling for assessing plaque stability 
involved training and internal testing on 764 ultrasound images, consisting of 
494 images with unstable plaques and 270 with stable plaques. The external test 
was composed of 279 ultrasound images, including 197 images with unstable 
plaques and 82 with stable plaques. For the task of identifying the presence of 
carotid plaques, our model achieved an AUC of 0.989 (95% CI: 0.840, 0.998) 
with a sensitivity of 93.2% and a specificity of 99.21% on the internal test. On 
the external test, the AUC was 0.951 (95% CI: 0.962, 0.939) with a sensitivity 
of 95.3% and a specificity of 82.24%. For the task of identifying the stability of 
carotid plaques, our model achieved an AUC of 0.896 (95% CI: 0.865, 0.922) 
on the internal test with a sensitivity of 81.63% and a specificity of 87.27%. On 
the external test, the AUC was 0.854 (95% CI: 0.889, 0.830) with a sensitivity of 
68.52% and a specificity of 89.49%.
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Conclusion: Deep learning using BCNN-ResNet algorithms based on routine 
ultrasound images could be useful for detecting carotid plaques and assessing 
plaque instability.
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1 Introduction

The incidence of stroke exceeds 100 per 100,000 and is 
increasing year by year. And because the death rate from stroke is 
close to 300 per 100,000, the high morbidity and mortality rates 
make the cost of stroke treatment among the highest (Hu et al., 
2020). Up to one quarter of strokes can be attributed to the rupture 
and shedding of unstable carotid plaques (Murray et al., 2018; Sun 
et al., 2018; Parish et al., 2019; Kopczak et al., 2020). Plaque stability 
is commonly based on the following features: shape, structure, 
lipids, fibrous caps, and calcification (Baradaran and Gupta, 2021; 
Bos et al., 2021).

Traditional carotid plaque identification relies on obtaining 
images of patients’ necks through techniques such as ultrasound 
examination (Murray et  al., 2018), computed tomography (CT) 
(Zhang et al., 2022), magnetic resonance imaging (MRI) (Hajhosseiny 
et  al., 2019) and so on, which are then analyzed by experienced 
doctors for diagnosis. These imaging techniques are categorized into 
invasive and non-invasive methods. To reduce the burden on patients 
and to acquire the necessary images more rapidly, ultrasound 
examination, known for its non-invasive nature and capability for 
real-time imaging, is widely used in clinical settings (Tjoa and Guan, 
2021). Due to factors like the uneven distribution of medical resources 
across different regions and the inherent limitations of ultrasound 
imaging technology, ultrasound images are prone to a significant 
amount of noise. The diagnostic process conducted by doctors can 
be influenced by variables such as the expertise of the physician, their 
knowledge background, fatigue, and other factors. When combined 
with the interference from these noises, subjective bias can occur in 
the diagnostic outcomes.

Before the application of deep learning to carotid plaque 
identification, researchers often used methods such as edge detection 
algorithms (Kerwin et al., 2007), region-growing algorithms (Francois 
et al., 2011), and texture-based analysis for plaque detection (Molinari 
et al., 2007). However, edge detection algorithms and region-growing 
algorithms are limited by the image quality and are particularly 
sensitive to changes in brightness and color. Texture-based analysis 
methods can be significantly affected by the high-density noise present 
in ultrasound images.

Therefore, we believe that these challenges can be solved through 
automated analysis through deep learning (Wang et al., 2021), which 
has already shown great promise in medical image analysis, spanning 
from screening, diagnosing to prognosis prediction in varying disease 
such as lung cancer, skin cancer, and breast cancer (Chaudhary et al., 
2018; Roy-Cardinal et al., 2019; Ying et al., 2022; Wang et al., 2023). 
Machine learning could detect carotid plaques (Chen et al., 2021), but 
requires manual segmentation. Deep learning, in contrast, automates 

feature extraction for potentially greater reliability and accuracy 
(LeCun et al., 2015).

Among the various deep learning algorithms reported so far, 
Convolutional Neural Networks (CNNs) (Wang and Qi, 2023) such 
as VGG-16, ResNet (Johri et al., 2020) and their variants have shown 
particularly good performance in image feature classification. 
Therefore, we attempted to directly apply these networks to the task of 
plaque recognition and classification in ultrasound images. However, 
these traditional network models seem to struggle with processing 
conventional ultrasound images, which are often filled with noise, 
especially where plaques usually occupy a relatively small area. 
Conventionally, increasing the number of network parameters 
theoretically benefits the model’s fitting effect. We started testing with 
ResNet-18 and found that ResNet-50, which has more parameters, 
improved the model’s performance. Consequently, we explored using 
bilinear CNNs on top of Resnet to increase the network’s parameters 
without increasing its depth, providing a more detailed representation 
of ultrasound image features. This approach makes the algorithm 
more robust to heterogeneity and noise in images. The ability to use 
image features can enhance supervised information, aiding in 
improving the proficiency of image classification.

Therefore, the objective of this study is to develop and validate a 
novel BCNN-ResNet that facilitates automated detection of carotid 
plaques and assessment of their instability from routine ultrasound 
images, thereby aiding in the efficient screening and prevention of 
stroke associated with carotid artery disease.

2 Dataset and methods

2.1 Data and quality control

2.1.1 The BCNN-ResNet dataset
Doppler ultrasound images of the bilateral carotids, which 

underwent health checkup and carotid plaque screening. A total of 
3,860 ultrasound images from 1,339 participants who underwent 
carotid plaque assessment between January 2021 and March 2023 at 
the Shanghai Eighth People’s Hospital were divided into a 4:1 ratio for 
training and internal testing. The external test included 1,564 
ultrasound images from 674 participants who underwent carotid 
plaque assessment between January 2022 and May 2023 at Xinhua 
Hospital affiliated with Dalian University. Participants were excluded 
from the study if longitudinal ultrasound images were unavailable, 
annotated measurement size markers, insufficient quality. At last, 
Modeling for detecting carotid plaques involved training and internal 
testing on 1,291 ultrasound images, with 617 images showing plaques 
and 674 without plaques. The external test comprised 470 ultrasound 

https://doi.org/10.3389/frai.2024.1321884
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


He et al. 10.3389/frai.2024.1321884

Frontiers in Artificial Intelligence 03 frontiersin.org

images, including 321 images with plaques and 149 without. Modeling 
for assessing plaque stability involved training and internal testing on 
764 ultrasound images, consisting of 494 images with unstable plaques 
and 270 with stable plaques. The external test was composed of 279 
ultrasound images, including 197 images with unstable plaques and 
82 with stable plaques. Details see Supplementary Figure S1.

2.1.2 Carotid plaques ultrasound imaging quality 
control

Carotid plaques and stability were assessed using longitudinal 
scanning images based on the 2020 American Society of 
Echocardiography guidelines (Zhou et  al., 2021). The presence of 
plaques were defined as deposits with intima-media thickness (IMT) 
≥1.5 mm or that protruded into the lumen or whose thickness 
exceeded 50% of the peripheral IMT. Plaques were considered stable 
if their morphology was regular in shape, their echogenicity was 
uniform, and their surface was smooth and continuous with an intact 
fibrous cap. Plaques were considered unstable when they exhibited 
inordinate morphology, uneven echogenicity, a thin fibrous cap that 
was incomplete or ruptured, a hypoechoic plaque or ulcerated plaque 
that revealed damaged areas on the plaque surface, or lipid cores that 
covered more than 40% of the plaque area. Color Doppler 
ultrasonography was conducted with a 7.5–12.0 MHz probe on 
patients in a supine position. Five imaging systems were used: EPIC7c 
(Philips, Amsterdam, Netherlands), Affiniti70 (Philips, Amsterdam, 
Netherlands), Aloka ARIETTA 60 (HITACHI, Tokyo, Japan), GEs8 
(GE, Fairfield, Connecticut, United  States), Aplio400 (TOSHIBA, 
Tokyo, Japan). The probe was longitudinally scanned perpendicularly 
to the neck in order to maintain a scan depth of 3–4 cm. The carotid 
was placed in the middle of the image in the case of patients diagnosed 
with a normal artery; otherwise, the plaque was placed in the middle 
of the image (show as Figure 1). During scanning, gain was 50–70 dB; 
power, 40–50 Hz; and the angle between the flow beam and the speed 
of sound, ≤60°. One or two images in both DICOM and JPG formats, 
without measurement size markers, were analyzed for each 
participants. Resolution was standardized across all images to 
be 256 × 256 pixels.

Using Wei Ning Ultrasound Information Management System 
(miis60pro, Hefei, China), four experienced physicians analyzed 
images for the presence or absence of plaques and classified them as 

stable or unstable. The images and assessments were reviewed by two 
chief physicians who resolved disagreements through discussion.

2.2 Deep learning models

2.2.1 Image preprocessing
We first manually cropped all images to a standard size in order 

to remove irrelevant background areas and retain only the ultrasound 
image region. We  then normalized the data using the mean and 
standard deviation of all images in order to ensure that data followed 
a standard distribution.

To enhance the model’s ability to generalize and improve its 
robustness, we  employed data augmentation techniques such as 
random horizontal flipping, random vertical flipping, and random 
rotation. In order to mitigate the overfitting issue, which could arise 
due to the presence of a small number of erroneous samples, 
we  incorporated label smoothing into our strategy. This approach 
prevented the model from relying excessively on training samples, 
ensuring a more balanced learning process.

2.2.2 Development of the BCNN-ResNet 
algorithm

The BCNN-ResNet algorithm is designed to construct a model 
that includes autonomously cropping each image to leave only the 
carotid artery and potential plaques, as well as for the identification 
and classification of plaques. Before building this algorithm, 
we  attempted to start with various existing CNN models and 
Transformer models, training them with our dataset. Due to the small 
size of the dataset, models with Transformer architecture performed 
poorly on this task. Among the common CNN models, the ResNet 
network was superior in feature extraction for ultrasound images, 
which are full of high-frequency noise, compared to other CNN 
models like VGG. Analyzing the feature heatmaps of the ResNet 
model, we found it had a significant advantage in recognizing the 
vascular system within ultrasound images (Lei et al., 2020; Cheng 
et  al., 2022; Johri et  al., 2022; Shokouhmand et  al., 2023), where 
plaques are located.

Starting with ResNet-18 for this task, we found that ResNet-50, 
which has more parameters, improved the model’s performance, but 

FIGURE 1

Schematic diagram of carotid ultrasound image retention standards. (A–D) The normal carotid. (E-H) The carotid plaques.
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the performance of ResNet-34 actually worsened. Therefore, 
we sought a method to increase the number of model parameters 
without increasing the model’s depth. Thus, we proposed the BCNN-
ResNet network, using ResNet-50 as the backbone network, linearly 
combining features extracted by two ResNet-50 networks. Feature 
fusion is achieved by bilinearly combining two images of the same 
resolution as the original image, creating a mixed feature matrix that 
aligns pixels at corresponding positions in both images. The fused 
features are then input into a fully connected layer, which outputs the 
classification results. The first ResNet-50 network takes edge-
extracted ultrasound images as input, retaining only the structural 
information of the image. The second ResNet-50 network uses the 
original ultrasound images as input to extract pixel information. The 
fusion of structural and pixel information enables finer 
image classification.

2.2.3 Modeling for detecting carotid plaques
For the classification network of plaque presence and absence 

(Figure 2), we built a BCNN network using two Res-Net50 networks 
but only a single input. Let the two networks perform feature 
extraction on the image separately, and then bilinear feature 
combination of the two features at the same location, stretch the 
mixed feature matrix into a vector, and perform moment 
normalization and L2 normalization on the vector to obtain the fused 
features, and finally use the fully connected layer for classification.

2.2.4 Modeling for assessing plaque stability
For the stability classification task of plaques (Figure 3), we build a 

dual-input BCNN network on top of the single-input BCNN network 
to extract more obvious difference features to improve the model effect 
since the pixel difference between different plaques is smaller than that 

FIGURE 2

Schematic of the BCNN-ResNet algorithm. Flowchart of carotid plaque detection using a single-input algorithm.

FIGURE 3

Schematic of the BCNN-ResNet algorithm. Flowchart of plaque stability assessment using a dual-input algorithm.
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of the previous task. The dual-input network still uses two Res-Net50 
networks as the backbone network, but has two inputs, which are 
ultrasonic image after edge extraction retaining only the structural 
information of the image; the second one uses the original ultrasound 
image as the input to extract the pixel information to complete the 
finer-grained image classification task. A detailed processing flowchart 
of the Model 2 network in Supplementary Figure S2.

2.2.5 Parameter setting
We trained the BCNN-ResNet algorithm using modeling for 

detecting carotid plaques training dataset and modeling for assessing 
plaque stability training dataset, the AdamW optimization algorithm 
and a batch size of 64, while dynamic learning rate adjustments were 
made through cosine annealing. Before we decided to use ResNet-34 
as the backbone network, we  tested whether to use pre-trained 
weights. The ResNet-34 network using completely random 
initialization parameters lags behind the AUC indicator by about 4% 
compared to the ResNet34 network pre-trained using imagenet. 
Therefore, the backbone network of two ResNet-34 models was 
initialized using pre-trained ImageNet parameters. We  further 
refined the cross-entropy loss function to incorporate label 
smoothing, thereby enhancing model robustness. The algorithm was 
executed within the PyTorch machine learning framework. Training 
was performed on four Nvidia RTX 4000 GPUs.

2.3 Algorithm evaluation

2.3.1 Evaluation modeling for detecting carotid 
plaques and modeling for assessing plaque 
stability algorithms

Modeling for detecting carotid plaques and Modeling for assessing 
plaque stability algorithms were validated using an internal testing 
dataset from patients belonging to the same cohort as those used for 
training, as well as an external testing dataset from patients who were 
non-overlap with the training and internal testing dataset. In both 
cases, algorithm performance was assessed for the two tasks of plaque 
detection and plaque stability assessment in terms of the area under 
the AUC (the area under the ROC curve), accuracy, sensitivity, and 
specificity. Thresholds for defining whether a plaque was present or 
absent or whether it was stable or unstable were optimized using the 
Youden index. Where appropriate, results were reported with 95% 
confidence intervals (CIs).

2.3.2 Demonstration of modeling for assessing 
plaque stability algorithms using 
gradient-weighted class activation mapping

In order to describe the prediction from our Modeling for 
assessing plaque stability, we used Grad-CAM network visualization 
methods (Libby et al., 2019) to generate model’s heat-maps. Higher 
intensity areas in a heat-map correspond to regions in the input image 
that contribute more to the model’s prediction. These areas are where 
the model focused its attention during the classification process. 
Conversely, lower intensity areas are less influential. Our heat-maps 
are the same as most Grad-CAM heat-maps, using a color scale to 
represent the intensity of importance. Warmer colors like red and 
yellow indicate higher importance, while cooler colors like blue and 
green represent lower importance.

2.3.3 Statistical analyses
Continuous data showing a normal distribution were reported as 

mean ± standard deviation, and inter-group differences were assessed 
for significance using a Student’s t test. Continuous data showing a 
skewed distribution were reported as median (interquartile range), 
and inter-group differences were assessed using a non-parametric test 
such as the Mann–Whitney U test.

Categorical data were reported as n (%), and inter-group 
differences were assessed using a chi-squared test if n > 40 or Fisher’s 
exact test otherwise.

2.3.4 Ethics statement
The study was approved by the Ethics Review Board at Shanghai 

Eighth People’s Hospital (approval 2022-015-09-02) and the Xinhua 
Hospital affiliated with Dalian University (approval 2022-100-01). The 
requirement for informed consent was waived by the Ethics 
Review Boards.

3 Results

3.1 The study cohort

Modeling for detecting carotid plaques consisted 1761 ultrasound 
images from 1,165 participants, 510 with plaques, 655 without carotid 
plagues. Modeling for assessing plaque stability consisted 1,043 
ultrasound images from 510 participants, 156 with stable plagues, 354 
with unstable plagues.

Among the 1,165 participants included in the Modeling 
for detecting carotid plaques analysis, those with carotid 
plaques showed significantly higher Male, Age, Lipoprotein a, SBP, 
DBP, Uric acid, Apolipoprotein A1, Apolipoprotein B and 
significantly lower Apolipoprotein E, HDL-C, LDL-C, Total 
cholesterol than those without plaques (Table  1). Among the 
510 participants included in the Modeling for assessing 
plaque stability final analysis, those with stable plaques 
showed significantly higher SBP, Apolipoprotein A1, 
Apolipoprotein E, HDL-C, Total cholesterol than those with 
unstable ones (Table 2).

3.2 Model performance in detection of 
carotid plaques

For detecting carotid plaques in the internal testing dataset, the 
BCNN-ResNet algorithm had an AUC of 0.989 (95% CI 0.998–0.840), 
accuracy of 95.97%, sensitivity 93.20% and specificity 99.21%. In the 
external testing dataset, the AUC of 0.951 (95% CI 0.962–0.939), with 
86.38% accuracy, 95.30% sensitivity and 82.24% specificity 
(Figures 4A, 5A,B and Table 3).

3.3 Model performance in assessment of 
carotid plaques stability

For assessing plaques as stable or unstable, the performance 
parameters of AUC 0.896 (95% CI 0.922–0.865), accuracy of 83.66%, 
sensitivity of 81.63% and specificity of 87.27% in internal testing 
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dataset, and 0.854 (95% CI 0.889–0.830), 74.55, 68.52 and 89.49% in 
the external testing dataset (Figures 4B,C, 5C–F and Table 3). The 
combination of BCNN and Res-Net50, especially in dual-input mode, 
assessed plaque stability markedly better than other Res-Net 
architectures (Supplementary Table S1).

Original ultrasound images and gradient-weighted class activation 
maps from representative patients within Modeling for assessing 
plaque stability are shown in Figure 6.

4 Discussion

In this study, we built Modeling for detecting carotid plaques 
and Modeling for assessing plaque stability algorithms, we provide 
evidence that a novel combination of a BCNN and Res-Net 
architecture can accurately detect carotid plaques in ultrasound 
images, as well as assess their stability, which correlates with risk 
of stroke and other cardiovascular disorders (Selwaness et al., 2016; 
Saba et al., 2019, 2022; Van Der Toorn et al., 2022). Modeling for 
detecting carotid plaques and modeling for assessing plaque 
stability demonstrate excellent diagnostic performance. The 
proposal of this study provides a new and objective automatic 
quantitative approach for the detection of carotid plaque and the 
determination of plaque stability, which may provide an effective 
examination method for early screening of stroke in 
clinical practice.

For the ultrasound images of carotid, the ultrasound imaging 
effect has more noise compared with CT and other modalities, and 
the area of the plaque is smaller compared with the whole carotid 
image, the finer-grained image classification task, which is more 
suitable for the carotid ultrasound image classification task 
research. Our study justifies further work to optimize and develop 
the combined network into a tool for automated detection and 
analysis of carotid plaques, and it may help guide future efforts to 
integrate deep learning into complex image classification pathways 
in the clinic.

Our Modeling for detecting carotid plaques, the internal testing 
AUC was 0.989 (95% CI 0.998–0.840) and the external testing 
AUCwas 0.951 (95% CI 0.962–0.939), better than an AUC of 
0.935  in previously reported deep learning method to identify 
plaque location (Li et al., 2021). A deep learning method has also 
been reported for assessing plaque area (Yu et al., 2021; Jain et al., 
2022; Lin et al., 2022), which could help monitor plaque progression 
and regression. In our study, we identified the presence or absence 
of plaque in the carotid based on further identification of plaque 
stability, which is more clinically useful for clinical prediction of 
stroke than identifying the location and size of plaque, and unstable 
high-risk carotid plaque suggests a higher risk of stroke occurrence. 
Modeling for assessing plaque stability algorithms, the internal 
testing AUC (0.896), the external testing AUC (0.854), the internal 
testing AUC was better than previous existing models AUC (0.868) 
(We validated using the Modeling for Assessment Plaque stability 

TABLE 2 Clinical characteristics of patients for stable and unstable 
plaques in the modeling for assessing plaque stability.

Characteristics Stable, 
N =  156

Unstable, 
N =  354

p value

Sex 0.0028

Male 65 (41.67) 200 (56.50)

Female 91 (58.33) 154 (43.50)

Age, yr 67.26 ± 11.32 68.45 ± 12.93 0.3212

Marital history 0.1586

Married 155 (99.36) 350 (98.87)

Unmarried 0 (0.00) 4 (1.13)

Triglycerides, mmol/L 1.40 (1.07, 155) 1.37 (0.96, 1.66) 0.6224

Lipoprotein a, mg/dL 202.18 (74.00, 

202.18)

172.00 (62.20, 

207.00)

0.0544

SBP, mmHg 169.47 ± 32.55 151.61 ± 19.73 <0.0001

DBP, mmHg 83.60 ± 8.36 83.94 ± 8.29 0.6751

Heart rate, bpm 78.17 ± 7.66 78.20 ± 11.08 0.978

Uric acid, μmol/L 358.60 ± 80.34 351.36 ± 93.76 0.4021

Apolipoprotein A1, g/L 1.15 ± 0.17 1.12 ± 0.19 0.0429

Apolipoprotein B, g/L 0.86 ± 0.22 0.81 ± 0.19 0.0171

Apolipoprotein E, g/L 41.44 ± 9.17 38.84 ± 9.03 0.003

HDL-C, mmol/L 1.22 ± 0.21 1.13 ± 0.28 0.0002

LDL-C, mmol/L 2.90 ± 0.82 2.82 ± 0.80 0.3113

Total cholesterol, mmol/L 4.76 ± 0.91 4.43 ± 0.91 0.0002

Values are n (%), mean ± SD or median (interquartile range), unless otherwise noted. SBP, 
systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high-density lipoprotein 
cholesterol; LDL-C, low-density lipoprotein cholesterol.

TABLE 1 Clinicodemographic comparison between patients with or 
without plaques in the modeling for detecting carotid plaques.

Characteristic No plaques 
(n =  655)

Plaques 
(n =  510)

p

Sex <0.0001

Male 121 (18.47) 265 (51.96)

Female 534 (81.53) 245 (48.04)

Age, yr 57.15 ± 10.98 68.09 ± 12.46 <0.0001

Marital status 0.0299

Married 643 (98.17) 506 (99.22)

Unmarried 12 (1.83) 4 (0.78)

Triglycerides, mmol/L 1.42 (1.12, 1.75) 1.37 (0.960, 1.647) 0.0001

Lipoprotein a, mg/dL 148.50 (57.00, 

188.70)

178.750 (65.10, 

203.48)
<0.0001

SBP, mmHg 148.14 ± 31.58 157.02 ± 25.70 <0.0001

DBP, mmHg 80.09 ± 6.61 83.84 ± 8.31 <0.0001

Heart rate, bpm 77.41 ± 11.09 78.18 ± 10.15 0.2204

Uric acid, μmol/L 330.78 ± 73.78 353.57 ± 89.84 <0.0001

Apolipoprotein A1, g/L 1.21 ± 0.18 1.23 ± 0.18 <0.0001

Apolipoprotein B, g/L 0.79 ± 0.18 0.83 ± 0.20 0.001

Apolipoprotein E, g/L 42.34 ± 9.86 39.63 ± 9.14 <0.0001

HDL-C, mmol/L 1.21 ± 0.29 1.16 ± 0.26 0.0009

LDL-C, mmol/L 2.99 ± 0.79 2.84 ± 0.81 0.0016

Total cholesterol, mmol/L 4.86 ± 0.67 4.53 ± 0.93 <0.0001

Values are n (%), mean ± SD or median (interquartile range), unless otherwise noted. SBP, 
systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high-density lipoprotein 
cholesterol; LDL-C, low-density lipoprotein cholesterol.
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dataset, see Supplementary Table S1). Our work, together with 
those previous studies, supports the idea that deep learning can 
accurately and reproducibly identify even small, subtle features in 
noisy ultrasound images. Indeed, deep learning appears to 
be superior to traditional machine learning algorithms for fine-
grained interpretation of medical images (Biswas et al., 2021; Latha 
et al., 2022; van Dam-Nolen et al., 2022). In addition, machine 
learning requires more time and human involvement (van Veelen 
et al., 2022), for example, features need to be manually defined, 
which can make the algorithm’s classifications less reliable and 

robust to noise or patient heterogeneity. This observation provides 
a crucial understanding of the specific regions within the 
ultrasound imagery that significantly contribute to the predictions 
of the network. The aforementioned insight underscores the 
capacity of our model to discern and focus on clinically significant 
features such as carotid plaques, thereby making it a valuable tool 
for automated diagnosis and feature extraction. The results suggest 
that further integration of Grad-CAM into our deep learning 
model has the potential to enhance the interpretability and 
transparency of these predictive networks, an attribute of utmost 

FIGURE 4

Receiver operating characteristic curves to assess the ability of the BCNN-ResNet algorithm to (A) detect carotid plaques or (B,C) assess plaque stability 
in (B) single-input or (C) dual-input mode. The algorithm was assessed against the training dataset (red curves), internal testing dataset (blue) or 
external testing dataset (gold). The area under each curve is indicated in the legends at the bottom right of each panel.

FIGURE 5

Confusion matrices to assess the ability of the BCNN-ResNet algorithm to (A,B) detect carotid plaques in the (A) training dataset or (B) external testing 
dataset; (C,D) assess plaque stability in single-input mode in the (C) training dataset or (D) external testing dataset; or (E,F) assess plaque stability in 
dual-input mode in the (E) training dataset or (F) external testing dataset.
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importance in the application of deep learning in the medical 
imaging domain.

In our study, the AUC of the Modeling for detecting carotid 
plaques was 0.093 higher than that of the Modeling for assessing 
plaque stability, with a 11.75% higher sensitivity and a 11.94% higher 
specificity on the internal test. On the external test, the AUC of the 

Modeling for detecting carotid plaques was 0.093 higher than that of 
the Modeling for assessing plaque stability, with a 26.78% higher 
sensitivity and a 11.94% higher specificity. In classification tasks, the 
granularity of classification is a key factor that affects classification 
performance. The analysis suggests that in the two main tasks 
mentioned in this article, the task of plaque detection only requires a 

TABLE 3 Performance of BCNN-ResNet algorithms in internal and external testing.

Dataset AUC (95% CI) TP FP Accuracy (%) Sensitivity (%) Specificity (%)

Detection of carotid artery plaques

Internal testing 0.989 (0.908, 0.840) 137 1 95.97 93.20 99.21

External testing 0.951 (0.962, 0.939) 142 57 86.38 95.30 82.24

Assessment of carotid plaque stability (single-input algorithm)

Internal testing 0.878 (0.908, 0.840) 86 12 84.31 87.76 78.18

External testing 0.869 (0.893, 0.841) 160 16 81.00 81.22 80.49

Assessment of carotid plaque stability (dual-input algorithm)

Internal testing 0.896 (0.922, 0.865) 80 7 83.66 81.63 87.27

External testing 0.854 (0.889, 0.830) 135 9 74.55 68.52 89.49

AUC, area under the receiver operating characteristic curve; CI, confidence interval; FP, false positive; TP, true positive.

FIGURE 6

Gradient-weighted class activation mapping to identify areas of ultrasound images that the BCNN-ResNet algorithm weighed more during its 
calculations. Original ultrasound images that served as input are shown in grayscale, while the neighboring image is colored according to where the 
algorithm “focused.”
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small number of features to achieve good results because the goal is 
simply to determine whether a plaque exists in the carotid artery. 
However, for the task of classifying the stability of carotid plaque, a 
more detailed classification of plaque types is required, and the model 
needs to learn deeper features for each type. This necessitates more 
parameters and stronger feature extraction capabilities in the model, 
which is a challenging task in data-limited scenarios. Consequently, 
the AUC and other indicators for this model are lower than for coarse-
grained tasks. Therefore, we adopted dual-input BCNN network for 
identifying the stability of carotid plaques. To our knowledge, this 
model has advancements in recognizing carotid plaque ultrasound 
images and has not been reported previously.

Our study still has some limitations, the algorithm should 
be validated and further optimized in larger patient samples, such as 
through the integration of a transformer-based network. It may be useful 
to extend the algorithm to the assessment of lipid nuclei in unstable 
plaques, extent of calcification, or size of ulcerated plaque craters. These 
features have been linked to the risk of stroke. In future work, we will 
expand the external validation to include a wider range of locations and 
populations, which would make the findings more universally applicable. 
Another useful addition would be a study of how the model performs 
over time with the same patients, to assess its consistency and reliability.

5 Conclusion

In conclusion, we present a combined BCNN-ResNet algorithm 
that shows superior performance compared to other deep learning 
methods in detecting carotid plaques and assessing their stability. 
The BCNN network demonstrates advanced capabilities in 
recognizing carotid artery ultrasound images. Our BCNN-network 
outperforms previous models in determining the presence of carotid 
plaques and identifying their stability. The application of our 
algorithm could potentially streamline clinical workflows, facilitate 
clinical screening for carotid artery disease, and contribute to the 
prevention of stroke.
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