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The ability to accurately predict the yields of di�erent crop genotypes in

response to weather variability is crucial for developing climate resilient crop

cultivars. Genotype-environment interactions introduce large variations in crop-

climate responses, and are hard to factor in to breeding programs. Data-

driven approaches, particularly those based on machine learning, can help

guide breeding e�orts by factoring in genotype-environment interactions when

making yield predictions. Using a new yield dataset containing 93,028 records of

soybean hybrids across 159 locations, 28 states, and 13 years, with 5,838 distinct

genotypes and daily weather data over a 214-day growing season, we developed

two convolutional neural network (CNN) models: one that integrates CNN and

fully-connected neural networks (CNN model), and another that incorporates

a long short-term memory (LSTM) layer after the CNN component (CNN-LSTM

model). By applying the Generalized Ensemble Method (GEM), we combined the

CNN-based models and optimized their weights to improve overall predictive

performance. The dataset provided unique genotype information on seeds,

enabling an investigation into the potential of planting di�erent genotypes based

on weather variables. We employed the proposed GEM model to identify the

best-performing genotypes across various locations and weather conditions,

making yield predictions for all potential genotypes in each specific setting.

To assess the performance of the GEM model, we evaluated it on unseen

genotype-location combinations, simulating real-world scenarios where new

genotypes are introduced. By combining the base models, the GEM ensemble

approach provided much better prediction accuracy compared to using the

CNN-LSTM model alone and slightly better accuracy than the CNN model,

as measured by both RMSE and MAE on the validation and test sets. The

proposed data-driven approach can be valuable for genotype selection in

scenarios with limited testing years. In addition, we explored the impact of

incorporating state-level soil data alongside the weather, location, genotype

and year variables. Due to data constraints, including the absence of latitude

and longitude details, we used uniform soil variables for all locations within

the same state. This limitation restricted our spatial information to state-level

knowledge. Our findings suggested that integrating state-level soil variables

did not substantially enhance the predictive capabilities of the models. We

also performed a feature importance analysis using RMSE change to identify

crucial predictors. Location showed the highest RMSE change, followed by

genotype and year. Amongweather variables, maximum direct normal irradiance
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(MDNI) and average precipitation (AP) displayed higher RMSE changes, indicating

their importance.

KEYWORDS

convolutional neural network, genotype selection, crop yield prediction, Generalized

Ensemble Method, genotype-environment interaction, feature importance analysis

1 Introduction

The world’s population is projected to reach almost 10 billion

by 2050 (Nations et al., 2017), and climate change is expected

to have a significant impact on crop yields in the coming years.

As a result, there is an urgent need to increase crop production

in order to feed the growing population. The current global

food production systems are facing several challenges such as the

increasing frequency and severity of droughts, floods, heatwaves

and increased pests and diseases, which are all associated with

climate change (Kumar, 2016). These challenges are likely to affect

crop yields and food security, making it essential to develop new

strategies to increase crop production.

One of the main strategies for increasing crop production

is to develop climate-resilient crops through breeding programs

(Hafeez et al., 2023). This involves selecting and crossbreeding

plants that are better able to withstand the effects of climate

change, such as drought or heat stress. Despite the focus on climate

resilience in breeding programs, there is mounting evidence of the

difficulties and challenges in creating crops capable of handling

the effects of climate change. These challenges stem from the

contradiction between the pressing need for breeding in response to

climate change and the inadequate understanding of how genotype

and environment interact with each other (Xiong et al., 2022).

Another approach is to use crop simulation models that integrate

environmental information and tools into the breeding analysis

process to tackle the effects of climate change and anticipate crop

growth and yield under different climate scenarios (de Los Campos

et al., 2020; Heslot et al., 2014). However, crop simulation models

have limitations, particularly related to their complexity and the

challenge of fully capturing all interactions of multiple factors such

as genetics, environment, and management practices. While these

models are designed to simulate many of these interactions, the

primary issue often lies in the availability and quality of input

data required for accurate calibration and prediction (Lobell and

Burke, 2010). Additionally, computational resources, the limitation

of analyzing a limited number of genotypes, and simplification

of reality in the models are other limitations of simulation

crop modeling (Roberts et al., 2017; Hajjarpoor et al., 2022).

To overcome the limitations of crop growth models, studies

are emerging recently to utilize statistical methods as promising

alternatives and complementary tools. Among these methods,

Machine Learning (ML) is a practical statistical approach that has

gained popularity due to advancements in big-data technologies

and high-performance computing. ML algorithms can help farmers

to increase crop production in response to climate change by

providing capabilities such as crop yield prediction (Shahhosseini

et al., 2021; Khaki and Wang, 2019), climate change impact

modeling (Crane-Droesch, 2018), climate-smart crop breeding

(Xu et al., 2022), automation of farming equipment (Patil and

Thorat, 2016), market price prediction (Chen et al., 2021), water

management optimization (Lowe et al., 2022), disease and pest

forecasting (Domingues et al., 2022), and precision agriculture

(Sharma et al., 2020). These capabilities can help farmers to plan

for and adapt to changing weather patterns, identify resilient crops,

optimize crop management practices, and make better decisions to

increase crop production. The challenge of effectively training ML

algorithms is posed by the inconsistent spatial and temporal data

regarding some of the production and management inputs, such

as planting date, fertilizer application rate, and crop-specific data

(Srivastava et al., 2022). This is a problem that needs to be addressed

for efficient ML algorithm training.

Genotype by environment interaction is a challenging factor

that limits the genotype selection for increased crop yields in

unseen and new environments especially with the presence of

global climate change. Plant breeders typically choose hybrids

based on their desired traits and characteristics, such as yield,

disease resistance, and quality. They first select parent plants with

desirable traits and cross them to create a new hybrid. The new

hybrids are then tested in various environments to determine their

performance, finally the hybrids with the highest yield are selected

(Bertan et al., 2007). However, this approach can be extremely

time-consuming and tedious due to the vast number of possible

parent combinations that require testing (Khaki et al., 2020a). This

highlights the importance of having a data driven approach to select

genotypes with the highest performance in response to climates

as well as other environmental variables using limited years of

field testing per genotype. For example, Arzanipour and Olafsson

(2022), suggests employing imputation methods to address the

issue of incomplete data, particularly when certain crop types are

not cultivated in every observed environment. This perspective

views these absent data points not merely as traditional missing

values but as potential opportunities for additional observations.

In this study, we introduce a new deep learning framework for

predicting crop yields using environmental data and genotype

information. The framework is designed to identify the most

efficient genotype for each location and environment, by first

forecasting crop yields based on the given weather conditions in

each location for all available genotypes, and then selecting the

optimal genotype with the highest yield in each specific location

and environmental scenario. This strategy helps in enhancing

policy and agricultural decision-making, optimizing production,

and guaranteeing food security. To the best of our knowledge this is

the first study to use a deep learning approach for optimal genotype

by environment selection.

Over the years, several machine learning algorithms have been

employed for predicting performance of crops under different

environmental conditions. These include Convolutional Neural
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Network (CNN; Srivastava et al., 2022), Long Short Term Memory

(LSTM) networks (Shook et al., 2021), Regression Tree (RT)

(Veenadhari et al., 2011), Random Forest (RF), Support Vector

Machine (SVM), K-Nearest Neighbor (KNN), Extreme Gradient

Boosting (XGBoost), Least Absolute Shrinkage and Selection

Operator (LASSO) Regression (Kang et al., 2020), and Deep Neural

Network (DNN; Khaki and Wang, 2019). In time series prediction

tasks, deep neural networks have proven to be robust to inputs with

noise and possess the ability tomodel complex non-linear functions

(Dorffner, 1996). By utilizing deep learning models, it becomes

possible to tackle complex data, as these models can effectively

learn the non-linear relationships between the multivariate input

data, which includes weather variables, maturity group/cluster

information, genotype information, and the predicted yield.

Our proposed CNN-LSTMmodel consists of CNNs and LSTM.

CNNs can handle data in multiple array formats, such as one-

dimensional data like signals and sequences, two-dimensional data

such as images, and three-dimensional data like videos. A typical

CNN model consists of a series of convolutional and pooling

layers, followed by a few fully connected layers. There are several

design parameters that can be adjusted in CNNs, including the

number of filters, filter size, type of padding, and stride. Filters are

weight matrices used to process the input data during convolution.

Padding involves adding zeroes to the input data to maintain

its dimensional structure, while the stride refers to the distance

by which the filter is moved during processing (Albawi et al.,

2017). Recurrent Neural Networks (RNNs) are a type of deep

learning model designed for handling sequential data. The key

advantage of RNNs is their ability to capture time dependencies

in sequential data due to their memory mechanism, allowing them

to use information from previous time steps in future predictions

(Sherstinsky, 2020; Lipton et al., 2015). LSTM networks are a

specialized type of RNNs that address the issue of vanishing

gradients in traditional RNNs (Hochreiter and Schmidhuber, 1997;

Sherstinsky, 2020). LSTMs are particularly beneficial for capturing

long-term dependencies in sequential data, and they maintain

information for longer periods of time compared to traditional

RNNs (Hochreiter and Schmidhuber, 1996). These characteristics

make LSTMs highly effective for handling data with complex

temporal structures, such as speech and video (Xie et al., 2019; Li

et al., 2019). Furthermore, LSTMs have been successfully utilized

in multivariate time series prediction problems (Shook et al.,

2021; Sun et al., 2019; Gangopadhyay et al., 2018), and they are

flexible and handle varying length inputs, making them suitable for

processing sequential data with different lengths (Sutskever et al.,

2014).

Crop yield prediction has been more recently improved by the

application of deep learning methods. Khaki and Wang (2019)

utilized deep neural networks to predict corn yield for various

maize hybrids using environmental data and genotype information.

Their study involved designing a deep neural network model that

could forecast corn yield across 2,247 locations from 2008 to 2016.

With regards to the accuracy of their predictions, the model they

developed outperformed others such as LASSO Regression, shallow

neural networks, and Regression Trees, exhibiting a Root Mean

Square Error (RMSE) of 12% of the average yield when using

weather data that had been predicted, and an RMSE of 11% of the

average yield when using perfect weather data. Environmental data

including weather and soil information and management practices

were used as inputs to the CNN-RNN model developed by Khaki

et al. (2020b) for corn and soybean yield prediction across the entire

Corn Belt in the U.S. for the years 2016, 2017, and 2018. Their

proposed CNN-RNN model outperformed other models tested

including RF, deep fully connected neural networks, and LASSO

Regression, achieving a notable improvement with an RMSE of

9% and 8% for corn and soybean average yields, respectively.

They also employed a guided backpropagation technique to select

features and enhance the model’s interpretability. Similarly, Sun

et al. (2019) adopted a comparable strategy, utilizing a CNN-

LSTM model to predict county-level soybean yields in the U.S.

using satellite imagery, climate data, and other socioeconomic

factors. Their results show that the CNN-LSTM model can

capture the spatiotemporal dynamics of soybean growth and

outperform other models in terms of accuracy and computational

efficiency. Oikonomidis et al. (2022) utilized a publicly available

soybean dataset, incorporating weather and soil parameters to

develop several hybrid deep learning-based models for crop yield

prediction. Comparing their models with the XGBoost algorithm,

the authors found that their hybrid CNN model outperformed

the other models with an impressive RMSE of 0.266, Mean

Squared Error (MSE) of 0.071, and Mean Absolute Error (MAE)

of 0.199. However, none of these studies have addressed the issue

of determining which crop genotype to plant based on the given

weather conditions. The dataset, which was developed, prepared,

and cleaned by Shook et al. (2021), provided us with unique

genotype information on seeds, allowing us to investigate the

potential of planting genotypes based on weather variables. Our

proposed data-driven approach can be particularly valuable for

selecting optimal genotypes when there are limited years of testing

available. This is because the traditional approach of selecting the

best genotypes based on a small number of years of field trials can

be unreliable due to variations in weather and other environmental

factors. By leveraging large datasets with genotype and weather

information, it becomes possible to develop more accurate models

that can predict the performance of different genotypes in various

weather conditions. This can ultimately lead to the identification

of genotypes that are both high-yielding and adaptable to different

environments. Given that land for agriculture is limited, such data-

driven approaches can help improve the productivity of crops per

acre, as well as the quality and productivity of food crops through

plant breeding.

This study aims to achieve three primary objectives. Firstly,

it proposes two novel CNN architectures that incorporate a 1-

D convolution operation and an LSTM layer. To achieve higher

accuracy than other baseline models, the Generalized Ensemble

Method (GEM) is utilized to determine the optimal weights of

the proposed CNN-based models. Then, the Generalized Ensemble

Method is utilized to select optimal genotypes for each location

and weather condition. This is achieved by predicting the yield for

all possible genotypes in each specific location and environmental

scenario. This approach is evaluated using test dataset containing

unseen genotype-location combinations, providing a simulation of

scenarios where new genotypes are introduced. Secondly, the study

assesses the impact of location, genotype, and weather variables
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on prediction outcomes, investigating critical time periods for

weather variables in yield predictions throughout the growing

season of 30 weeks. Lastly, the study investigates the impact of soil

variables on Soybean yield prediction by incorporating state-level

soil variables. Through these objectives, this study demonstrates the

value of using data-driven approaches in plant breeding and crop

productivity research.

The structure of this paper is as follows. Section 2 introduces

the dataset used in this study. In Section 3, we propose a

methodology for crop yield prediction and optimal genotype

selection using two CNN-based architectures with a 1-D

convolution operation and LSTM layer, as well as the GEM to find

optimal model weights. This section also includes implementation

details of the models used in this research, along with the

design of experiments. Section 4 presents the experimental

results, followed by an analysis of the findings in Section 5.

Finally, in Section 6, we conclude the paper by discussing the

contributions of this work and highlighting potential avenues for

future research.

2 Data

2.1 Main dataset: MLCAS2021 Crop Yield
Prediction Challenge

In this paper, the data analyzed was taken from theMLCAS2021

Crop Yield Prediction Challenge (MLCAS, 2021). The goal of

the 2021 MLCAS Crop Yield Prediction Challenge was to predict

soybean yield for the test data consisting of 10,337 performance

records, using the training dataset containing 93,028 observations

from all years and locations. Since the competition did not

provide the ground truth response variables for the test data,

our analysis in this paper relied solely on the training dataset,

which comprises 93,028 samples from 159 locations across 28

states in the U.S. and Canadian provinces, over 13 years (2003–

2015). The data included information on 5,838 unique genotypes

and daily weather data for a 214-day growing season. This data

was prepared and cleaned by Shook et al. (2021). The unique

characteristic of this dataset is that it enables us to capture the

biological interactions complexity, and temporal correlations of

weather variables, as it provides both daily weather variables during

the growing season for different locations and genotype data. The

dataset included a set of variables for each performance record,

which are as follows:

• Weather: Every performance record in the dataset included

a multivariate time-series data for 214 days, which represent the

crop growing season between April 1st and October 31st. Each day

in the record contained seven weather variables, including average

direct normal irradiance (ADNI, Wm-2), average precipitation

(AP, inches), average relative humidity (ARH, Percentage),

maximum direct normal irradiance (MDNI, Wm-2), maximum

surface temperature (MaxSur, ◦C), minimum surface temperature

(MinSur, ◦C), and average surface temperature (AvgSur, ◦C).

Records with the same location and yield year share the same set

of weather variables.

• Maturity group: The dataset included 10 maturity groups

corresponding to different regions.

• Genotype IDs: The dataset contained 5,838 distinct

genotypes, which were further clustered into 20 groups using

the K-means clustering technique as described in Shook et al.

(2021). The resulting hard clustering approach allowed us to

obtain a unique cluster ID for each of the 5,839 genotypes in

the dataset.

• State: The state information was provided for each

performance record, indicating the specific state that the record

corresponds to. The data covers 28 U.S. states and Canadian

provinces in total.

• Location ID: For each performance record, the dataset

included the corresponding location ID, indicating the unique

identifier for the location associated with the record. The data was

collected from a total of 159 locations.

• Year: The performance record dataset contained information

on the year when the yield was recorded, ranging from 2003 to

2015.

• Yield: The yield performance dataset included observed

average soybean yields, measured in bushels per acre, from 159

locations across 28 U.S. states and Canadian provinces between

2003 and 2015. The data showed a mean yield of 50.66 bushels

per acre and a median yield of 50.60 bushels per acre. Yield values

ranged from a minimum of 0.4 to a maximum of 112.40 bushels

per acre, with a standard deviation of 15.95. The 25th percentile

was 39.8 bushels per acre, while the 75th percentile reached 61.40

bushels per acre.

The dataset consisted of weather data gathered from 159

distinct locations across multiple years. Each location was identified

by a unique location ID, which had been mapped to a continuous

range from 1 to 159 for clarity. Figure 1 presents the temporal

distribution of data availability for each location. The x-axis

denotes the mapped location IDs (1–159), while the y-axis

indicates the number of years with available weather records.

As depicted in Figure 1, weather data for the 159 unique

locations are not available for all years from 2003 to 2015.

Some locations have data for only 1 year, others for 2 years,

and so on.

Figure 2 displays the distribution of performance records across

28 U.S. states and Canadian provinces in this dataset. The size

of each yellow dot corresponds to the size of the dataset for the

corresponding state or province.

2.2 State-level soil data integration

To enhance our dataset with soil information, we utilized

preprocessed and cleaned soil data available from an open-source

repository on Github. The soil data originates from SoilGrids250m

and comprises 11 variables measured at six different depths (0–5,

5–15, 15–30, 30–60, 60–100, and 100–200 cm) with a resolution of

250 m2 (Poggio et al., 2021; Turek et al., 2023). The corresponding

acronyms and properties of these soil variables are listed

in Table 1.

The soil data provided in the open-source repository

includes average values of each soil variable across all counties

within each state. This dataset encompasses soil information

from both agricultural and non-agricultural areas, as it is
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FIGURE 1

Temporal distribution of data availability for each location. The x-axis denotes the mapped location IDs (1–159), while the y-axis indicates the

number of years with available weather records.

FIGURE 2

The distribution of performance records across 28 U.S. states and Canadian provinces in the dataset used in the study. The size of each yellow dot

corresponds to the size of the dataset for the corresponding state\province.

not specifically limited to agricultural zones. To understand

how soil data affects our analysis, we added 66 soil variables

to each record in our dataset. We merged the soil data with

our existing dataset using the State column. This ensures

that all locations within the same state share the same

soil information.

3 Method

3.1 Data preprocessing

The pre-processing tasks were conducted to ensure the data was

in a useful and efficient format for fitting machine learning models.
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TABLE 1 Acronyms and corresponding soil properties.

Acronym Property

bdod Bulk density

cec Cation exchange capacity at pH7

cfvo Coarse fragments

clay Clay

nitrogen Total Nitrogen

ocd Organic carbon density

ocs Organic carbon stock

phh2o pH in H2O

sand Sand

silt Silt

soc Soil organic carbon

One of the main tasks involved one-hot encoding the categorical

variables, which included year, location IDs, and genotype IDs. For

the genotype data we tried both genotype clusters and the unique

genotypes. The results demonstrated a considerable improvement

when the genotype IDs were included with other variables. In one-

hot encoding, each unique value of each categorical variable is

represented as a new binary feature in a new column. This means

that for every observation, a value of 1 is assigned to the feature that

corresponds to its original category, while all other features are set

to 0. This technique results in a new binary feature being created for

each possible category, allowing for more accurate modeling and

prediction. One-hot encoding facilitates accurate modeling because

it prevents the model from making assumptions about any ordinal

relationship between categories, which can occur if categorical

variables are encoded with integers. By transforming categories

into binary features, one-hot encoding ensures that categories are

treated as independent, unrelated entities. This is especially useful

for non-linear models, as it helps avoid misleading the model

into inferring non-existent relationships between categories (Seger,

2018).

The weather data covers a total of 214 days, spanning the

growing season from April 1st through October 31st. To reduce

the complexity of the daily weather data and make it more suitable

for analysis, we aggregated the feature values by taking the average

and downsampling the data to a 4-day level. We opted for 4-

day intervals instead of the more commonly used weekly (7-

day) intervals to better capture short-term variability in weather

patterns that can significantly impact crop yield. Aggregating the

data over 4 days provides a finer level of detail than weekly

intervals, while still ensuring that the variation over each period

is manageable and reliable. As a result of this downsampling

and feature aggregation, we were able to reduce the number of

model parameters significantly, with a dimension reduction ratio of

214:53. Reducing the daily weather data to a weekly level through

downsampling has been commonly utilized in yield prediction

studies to address the issue of excessive granularity in the data. This

practice has been validated in prior research studies (Khaki and

Wang, 2019; Shook et al., 2021; Srivastava et al., 2022).

Given the diverse range of values and varying scales of weather

variables, it is important to avoid bias that may arise from a single

feature. To address this, we applied the z-score normalization

technique (Equation 1) to standardize all weather variable values.

This technique rescales all weather variables to conform to a

standard normal distribution, preventing any unintended bias on

the results. In addition tomitigating bias, standardizing the weather

variable values also improves the numerical robustness of the

models and accelerates the training speed.

Wi,j =
wi,j − w̄j

σj
(1)

where Wi,j is the standardized value of the ith observation of

the jth weather variable (j ranges from 1 to K, where K represents

the total number of weather variables, which in this case is 371 (7

variables * 53 time periods)), wi,j is the original value of the ith

observation of the jth weather variable, w̄j is the mean of the jth

weather variable, and σj is the standard deviation of the jth weather

variable. The formula rescales each variable to have a mean of 0 and

a standard deviation of 1.

To properly evaluate the proposed DL models and other

ML models’ performance on new and unseen genotype-location

combinations, we carefully split the dataset into training,

validation, and test sets. The dataset consists of 93,028 observations

with 5,838 unique genotype IDs. Each observation includes

information on genotype ID, year, location, and crop yield.

To ensure the test set contains entirely new genotype-location

combinations, we created a unique identifier for each combination

of genotype and location. This identifier was crucial in making

sure the model is trained on a diverse set of data while being

evaluated on combinations it has never seen before. Initially, we

split the unique genotype-location combinations into a training set

(60%) and a temporary set (40%). The temporary set was further

split into validation (20%) and test (20%) sets. This approach

ensured that the validation and test sets were of equal size and

helped in maintaining the balance of the dataset. After the initial

split, we verified if all genotypes were present in the training set.

This was necessary because having all genotypes in the training

set is crucial for the model’s ability to generalize. If any genotype

was missing from the training set, we moved the first occurrence

of that genotype from the validation or test set to the training

set. This adjustment ensured that the model had exposure to all

genotypes during training. Boolean masks were created for each

split (train, validation, and test) based on the unique genotype-

location combinations. These masks were then used to filter the

original dataset into the respective training, validation, and test

sets. This method allowed for a clear and precise division of the

dataset, maintaining the integrity of the split process.We confirmed

that there were no overlapping genotype-location combinations

between the training, validation, and test sets. This was critical in

ensuring that the test set contained entirely new combinations,

providing a robust evaluation of the model’s performance on

unseen data. By removing any overlap, we aimed to mimic real-

world scenarios where new genotypes are introduced.

The data preprocessing resulted in 6,381 column features (6,010

features after one-hot encoding year, location IDs, and genotype
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TABLE 2 Summary statistics of soybean yield for the training, testing, and

validation datasets.

Summary
statistics

Train Validation Test

Total number of

locations

159 159 159

Year range 2003–2015 2003–2015 2003–2015

Mean yield 50.69 50.50 50.73

Standard deviation

of yield

15.97 15.81 16.02

25th percentile of

yield

39.8 39.7 39.9

Median yield 50.70 50.60 50.60

75th percentile of

yield

61.40 61.10 61.50

Minimum yield 0.40 2.10 1.00

Maximum yield 112.40 106.70 110.60

Number of weather

components

7 7 7

Number of

genotype IDs

5,838 5,069 5,081

Number of

observations

56,078 18,354 18,596

The unit of yield is bushels per acre.

IDs, and 371 (53×7) features after downsampling the weather data

to a 4-day level).

Table 2 provides detailed summary statistics for the training,

testing, and validation datasets.

3.2 Crop yield prediction model
development

In this section, we introduce two proposed models, CNN and

CNN-LSTM, for predicting crop yield using location, genotype,

year, and weather data. These models are designed to handle

the temporal features of weather data, which play a crucial role

in crop yield prediction. CNN is a combination of CNNs and

fully-connected (FC) neural networks, while CNN-LSTM is a

combination of CNNs, LSTM networks, and FC neural networks.

The architectures of the CNN and CNN-LSTM models are

illustrated in Figures 3a, b, respectively. To evaluate the impact

of integrating state-level soil data alongside the primary dataset,

we incorporated this additional data into the architectures of

both models. The modified versions of the CNN and CNN-LSTM

models are illustrated in Figures 4a, b, respectively. All models

were trained and evaluated using the same dataset for a consistent

comparison.

The CNN model is simpler and faster to train due to its

straightforward architecture, making it computationally efficient.

Conversely, the CNN-LSTM model incorporates an LSTM layer

after the CNN component to capture long-term temporal

dependencies in the weather data.

To improve the accuracy of our yield predictions, we propose

using the GEM method that combines the predictions of both

models. This approach allows us to leverage the strengths of each

model and obtain better RMSE values than either model alone.

In the following subsections, we describe the architecture and

training processes for the CNN and CNN-LSTM models, both

with the primary dataset and the enhanced dataset that includes

state-level soil variables. Additionally, we detail the implementation

of the GEM method, used for yield prediction, to provide a

comprehensive overview of our approach. We then outline our

approach to feature importance analysis using RMSE change,

followed by a description of the evaluation metrics applied in this

study.

3.2.1 Proposed CNN model
The first proposed model architecture combines CNNs

and FC neural networks. The weather variables measured

throughout the growing season are taken as input in the

convolutional neural network part of the model, which captures

their temporal dependencies, and linear and nonlinear effects

through 1−dimensional convolution operations. The CNN part

of the model takes in the seven weather variables separately

and concatenates their corresponding output for capturing their

high−level features. The data for genotype, location, and year

(input _others) are fed into a fully−connected neural network

with one layer. The high−level features from the CNN are

then combined with the output of the fully−connected neural

network for input _others data. The combined features are then

processed through two additional FC layers before yielding the final

prediction of the soybean yield. Moreover, to prevent overfitting,

three dropout layers with dropout ratios of 0.5, 0.7, and 0.2 are

respectively added to the fully connected layer after the CNN layer,

at the end of the fully connected layer for input _others data, and at

the final layer of the model. The proposed modeling architecture is

designed to capture the complex interactions between weather data,

genotype IDs, year, and location IDs for an accurate yield prediction

and is illustrated in Figure 3a.

3.2.2 Proposed CNN-LSTM model
The second proposed model is based on the architecture of the

first one, but includes an LSTM layer at the end of the CNN part for

the weather variables. Additionally, there are slight modifications

in the CNN components and different numbers of neurons in the

dense layers. Specifically, the output of the CNN part is passed

to an LSTM layer consisting of 128 units. The resulting output is

then combined with the output of the fully connected layer for the

input _others data. This model architecture is designed to further

capture the temporal dependencies and nonlinear effects of the

weather variables, in addition to the high-level features extracted by

the CNN part. Similar to the architecture described above, dropout

layers are utilized to prevent overfitting. Four dropout layers with

dropout ratios of 0.5, 0.5, 0.7, and 0.2 are respectively inserted after

the CNN layer, at the LSTM layer, at the end of the fully connected

layer for input _other data, and at the final layer of the model. The

complete modeling architecture is illustrated in Figure 3b.
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FIGURE 3

The CNN architectures proposed in this study includes convolutional, and fully connected layers denoted by Conv, and Dense, respectively. The

parameters of the convolutional layers are presented in the form of “convolution type—number of filters—kernel size—stride size”. For all layers,

“valid” padding was employed. Matrix concatenations are indicated by C©, while the symbol T© is used to indicate matrix transpose. Rectified Linear

Unit (ReLU) was chosen as the activation function for all networks, with the exception of the fully connected layer in the input _other data, where a

Leaky ReLU activation function was applied. (a) Proposed CNN model. (b) Proposed CNN-LSTM model.

To ensure sufficient capacity for capturing intricate patterns

in the combined inputs of genotype, location, and year, the

dense layer in the CNN model has 2,048 neurons. This larger

number of neurons compensates for the absence of sequential

modeling through an LSTM layer, thereby enhancing the model’s

representational power. On the other hand, the CNN-LSTM
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FIGURE 4

The CNN architectures proposed in this study includes convolutional, and fully connected layers denoted by Conv, and Dense respectively. The

parameters of the convolutional layers are presented in the form of “convolution type—number of filters—kernel size—stride size”. For all layers,

“valid” padding was employed. Matrix concatenations are indicated by C©, while the symbol T© is used to indicate matrix transpose. Rectified Linear

Unit (ReLU) was chosen as the activation function for all networks, with the exception of the fully connected layers in the input _other data and soil

data, where a Leaky ReLU activation function was applied. (a) Proposed CNN model incorporating soil data. (b) Proposed CNN-LSTM model

incorporating soil data.
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model’s dense layer has 1,596 neurons for the input_others data. By

reducing the number of neurons in this layer, the overall complexity

of the model is managed, which helps prevent overfitting and

optimizes performance. Additionally, in the CNN model, the

combined features are processed through a dense layer with 3,200

neurons, ensuring sufficient capacity to capture intricate patterns

and interactions in the combined feature space. In contrast, the

CNN-LSTM model processes the combined features through a

dense layer with 1,280 neurons. The presence of the LSTM layer,

which captures temporal dependencies in the weather data, reduces

the need for a very large dense layer, resulting in a more balanced

and efficient model architecture.

3.2.3 Integrating state-level soil variables in CNN
and CNN-LSTM models for improved crop yield
prediction

As highlighted in Subsection 2.1, the dataset lacks information

about soil variables for each location. The available data only

included location IDs and states, with no provided latitude and

longitude details. Consequently, the exact geographical coordinates

for each location ID were unavailable, limiting our spatial

information to state-level knowledge. In this section, we aim to

investigate the impact of incorporating state-level soil data in

addition to the variables provided by the MLCAS2021 Crop Yield

Prediction Challenge.

The employed CNN and CNN-LSTM models, detailed in

Subsections 3.2.1 and 3.2.2 respectively, remained consistent with

the methodology outlined in this paper. The key modification

involved integrating soil data via an additional dense layer. This

layer, structured with 512 neurons, processes the input soil data

using a Leaky ReLU activation function. To prevent overfitting

and enhance the model’s robustness, dropout regularization was

applied. This regularization technique randomly dropped out

approximately 50% of the neurons during training, preventing the

model from relying too heavily on specific features and aiding in

better generalization. The architectural configurations of both the

CNN and CNN-LSTMmodels, incorporating soil data, are visually

represented in Figures 4a, b, respectively.

3.2.4 Generalized Ensemble Method
The Generalized Ensemble Method is an advanced technique

for creating a regression ensemble that combines the strengths

of multiple base estimators. The method was first proposed by

Perrone and Cooper (1995) in the context of artificial neural

networks. The main goal of GEM is to find the optimal weights

of the base models that minimize the error metric, such as MSE

or RMSE. To prepare the data for model training and evaluation,

we partitioned the dataset into a training set containing 56,078

samples, a validation set including 18,354 samples, and a test set

containing 18,596 samples. We selected the best performing model

on the validation set and leveraged the following optimization

approach to create an ensemble of models that further improved

the prediction accuracy. The problem can be stated as a nonlinear

convex optimization problem, where the objective is to minimize

the sum of squared errors between the true values (yi) and the

predicted values (ŷij) of all observations (i= 1. . . , n) by the k base

models (j = 1,. . . , k). The validation set was used to optimize the

ensemble weights.

min
wj

1
n

∑n
i=1(yi −

∑k
j=1 wjŷij)

2 (2)

The problem is subject to two constraints: the weights of all

base models should be non-negative (wj ≥ 0) and sum up to one

(
∑k

j=1(wj) = 1). Here, wj represents the weight assigned to base

model j.

3.2.5 Feature importance analysis using RMSE
change

In this study, we conducted a feature importance analysis

to identify the key predictors that significantly influence our

model’s predictions. The analysis was based on the RMSE change,

which measured the impact of feature permutations on prediction

performance. This method allowed us to assess the impact of

variable shuffling on the model’s performance.

• Baseline RMSE calculation: We initially computed the

baseline RMSE (r0) using the proposed GEM model predictions

(yhat) and the ground truth values (test set containing 18,596

samples).

• Permutation and RMSE change: We systematically shuffled

the columns within various groups of variables and recalculated

the RMSE for each permutation. These groups encompassed

variables related to weather conditions, such as ADNI, AP, ARH,

MDNI, MaxSur, MinSur, and AvgSur. Additionally, we considered

other critical variables, including year, location, and genotype ID.

Among these, the categorical variables, such as year, location, and

genotype IDs, underwent one-hot encoding, resulting in multiple

variables representing these categories. Similarly, each weather-

related variable comprises 53 distinct variables, each signifying the

aggregation of daily feature values through the process of averaging

and downscaling the data to a 4-day granularity.

• Interpreting RMSE change: A higher RMSE change after

shuffling indicated that the original group of variables had a

more substantial impact on the model’s predictions. In other

words, when these variables were shuffled, the model’s performance

degraded significantly because they were contributing substantially

to the model’s accuracy. Conversely, a lower RMSE change after

shuffling suggested that the original group of variables had a lesser

influence on the model’s predictions. Shuffling these variables did

not significantly impact the model’s performance, indicating that

they might not be as critical for prediction accuracy.

3.2.6 Model evaluation
In this study, we evaluated the performance of our prediction

models using two widely used metrics: MAE (Equation 3) and

RMSE (Equation 4). Both of these metrics provide a measure

of the distance between the predicted and actual values of the

target variable. Specifically, MAE represents the average absolute

difference between the predicted and actual values, while RMSE

represents the square root of the average of the squared differences

between the predicted and actual values. By using both of these

metrics, we were able to assess the accuracy of our models

and compare their performance against each other. We also
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reported the results of correlation coefficient (r) (Equation 5) as

an additional metric to evaluate the linear relationship between the

predicted and actual values.

MAE =
1

n

n
∑

i=1

|yi − ŷi| (3)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 (4)

r =

n
∑

i=1
(yi − ȳ)(ŷi − ¯̂y)

√

n
∑

i=1
(yi − ȳ)2

n
∑

i=1
(ŷi − ¯̂y)2

(5)

Where n is the total number of data points, yi is the true value

of the i-th data point, ŷi is the predicted value of the i-th data point,

and ȳ and ¯̂y represent their respective means.

3.3 Optimal genotype by environment
selection

The aim of optimal genotype by environment selection is to

identify the best genotypes for cultivation in each specific location

and weather scenario. To achieve this, we utilized the entire dataset

to identify the top 10 genotypes with the highest yields for each

location-environment combination.

To assess our approach, we split the data into training,

validation, and test sets, ensuring that the test dataset consisted of

entirely new genotype-location combinations that are not present

in the training or validation sets. This approach ensures that the

model is trained on a diverse set of data while being evaluated on

unseen genotype-location combinations, thereby mimicking real-

world scenarios where new genotypes are introduced. Based on

the results, the GEM model demonstrated superior performance

on unseen genotype-location combinations. Consequently, we

proceeded to retrain the proposed CNN, CNN-LSTM, and GEM

models using the entire dataset.

As described in Subsections 3.2.1 and 3.2.2, the inputs

of the base models include weather data, genotype, location,

and year. We excluded the maturity group variable because

different types of maturity groups were utilized in each location.

Following this, the model was used to predict yields for all

5,838 genotypes for each record with its specific weather and

location information.

Next, we chose the top 10 genotypes with the highest yields.

We then proceeded to compute the average yield for these

elite genotypes across each location-environment combination. As

illustrated in Figure 1, the weather data available for each location

varied significantly. Specifically, not all locations had weather data

spanning the full thirteen years. Consequently, the amount of

weather data differed from one location to another. For example,

for location ID 167, we selected the top 10 genotypes with the

highest yields based on weather variables from 2008 to 2010. In

contrast, for location ID 163, we selected the top 10 genotypes

with the highest yields based on weather variables from 2004

to 2012.

4 Results

In this section, we begin by evaluating the proposed GEM

model’s performance in predicting yields for new and unseen

genotype-location combinations, using both the primary dataset

and the dataset integrated with state-level soil variables. We then

present the results of the feature importance analysis, providing

insights into the key factors driving yield predictions. Finally, we

use the model to predict yields across all 5,838 genotypes, utilizing

specific weather and location data for each record, and discuss the

optimal genotype selections that achieved the highest yields for

each specific location and environmental condition.

4.1 Prediction results for soybean yield
using deep learning and machine learning
models on unseen genotype-location
combinations

In order to make a comprehensive comparison, we

incorporated three additional commonly used prediction models:

Random Forest (RF; Breiman, 2001), Extreme Gradient Boosting

(XGBoost; Chen andGuestrin, 2016), and Least Absolute Shrinkage

and Selection Operator (LASSO) Regression (Tibshirani, 1996).

Further details on the implementation of these models are outlined

in Appendix A.Wemaintained the same partitioned dataset, which

was used to train the ensemble models, consisting of a training

set with 56,078 samples, a validation set with 18,354 samples, and

a test set with 18,596 samples, for both hyperparameter tuning

and model evaluation. Multiple models were trained using various

hyperparameter values and their performance was evaluated on

the validation set. The hyperparameter values that resulted in

the best performance on the validation set were selected, and the

corresponding model was evaluated on the test set to estimate its

generalization performance. The range of hyperparameter values

that we tested was selected based on our domain knowledge.

Table 3 shows the tested hyperparameters along with the best

estimates obtained for the baseline models. The architecture

and hyperparameters of the CNN and CNN-LSTM models are

described in Figures 3a, b, respectively. We trained the proposed

models using the Adam optimizer with a scheduled learning rate

of 0.0004, which decayed exponentially with a rate of 0.96 every

2,500 steps. The models were trained for 100,000 iterations with a

batch size of 48. ReLU was chosen as the activation function for

all networks, with the exception of the fully connected layers in

the input _other data and soil data, where a Leaky ReLU activation

function was applied.

The performance of the proposed CNN, CNN-LSTM, and

GEM models in predicting soybean yield is evaluated based on

RMSE, MAE, and the correlation coefficient (r), with results

presented in Table 4. The performance of the baseline machine

learning models is detailed in Supplementary Table 1, located in

Appendix A.

The optimal weights for the ensemble were determined to be

0.744 for CNN and 0.256 for CNN-LSTM, indicating that the CNN

model contributed more to the final prediction. Integrating the

base models through the GEM ensemble approach demonstrated
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TABLE 3 Hyperparameters of the baseline machine learning models

employed to predict soybean yield.

Model Parameters Best parameter

RF Number of estimators 650

Max. feature numbers Sqrt

Max. depth 55

Min. samples split 5

Min. samples leaf 1

Bootstrap FALSE

XGBoost Max. depth 13

Objective [reg:squared error]

regularization alpha 0.0001

Min. child weight 5

Gamma 0.05

Learning rate 0.09

Booster Gbtree

Subsample 0.5

Column sample by

tree

0.9

LASSO Regression alpha 0.0001

TABLE 4 Comparison of test and validation results of RMSE, MAE, and r

for the proposed CNN, CNN-LSTM, and GEMmodels in predicting

soybean yield.

CNN CNN-
LSTM

GEM

Train RMSE 2.683 2.535 -

Validation RMSE 7.633 7.779 7.613

Test RMSE 7.688 7.855 7.674

Train MAE 1.772 1.969 -

Validation MAE 5.787 5.939 5.779

Test MAE 5.848 6.018 5.844

Train r 0.987 0.986 -

Validation r 0.876 0.871 0.877

Test r 0.878 0.872 0.878

The units of both RMSE and MAE are bushels per acre, matching the units of the predicted

and actual yield values.

much better performance compared to the CNN-LSTM base model

and slightly better performance compared to the CNN model in

terms of all evaluation metrics on the validation and test sets. The

ensemble approach might have benefited from combining more

base models. The relatively small differences between validation

and test set performance for the GEM model suggest that it is

not overfitting significantly. The strong correlation coefficients (r)

obtained for all models indicate a robust relationship between

predicted and actual yields.

The performance of the proposed GEM model was compared

with benchmark machine learning models, including XGBoost,

RandomForest, and LASSORegression. Based on the results shown

in Supplementary Table 1, the GEM model outperformed all other

testedmodels. It is because, the GEMmodel combines the strengths

of multiple models, including the highly nonlinear structure of the

CNNmodel and the ability to capture the temporal dependencies of

weather data using the LSTM model. This results in a more robust

and accurate model that outperforms the other tested models.

Specifically, the GEM model achieved a reduction in RMSE of

5.264%, 3.896%, and 24.798%, and a reduction in MAE of 3.302%,

2.583%, and 27.567% compared to RF, XGBoost, and LASSO

Regression, respectively, on the test data. Among the baseline ML

models, XGBoost and RF demonstrated comparable performance,

both outperforming linear models by effectively capturing the

nonlinear relationships between variables. LASSO, on the other

hand, is a linear regression model with an L1 penalty, which can

result in some of the coefficients being forced to zero. While this

can result in a simpler and more interpretable model, it may not

be able to capture the complex relationships present in the weather

data, and genotype by environment interactions. Despite extensive

hyperparameter tuning using train-validation-test splits to select

the best hyperparameters based on validation RMSE and MAE,

some models, such as CNN, CNN-LSTM, and Random Forest,

still exhibit overfitting, as indicated by the noticeable differences

between training and validation/test performance metrics.

4.1.1 Impact of state-level soil characteristics on
soybean yield prediction

We maintained consistency in our experimental setup by

employing identical training, test, and validation datasets, as well

as the same set of hyperparameters for traditional ML models,

as outlined in Subsections 3.1 and 4.1. For our proposed CNN

and CNN-LSTM models, we maintained consistency by using

the same learning rate, number of iterations, batch size, and

activation functions, as detailed in Subsections 4.1. Additionally,

after incorporating soil variables into the existing data, we

conducted a comparison of the models’ performances. The results

of this comparison are presented in Table 5, shedding light on

the impact of integrating soil variables into the predictive models.

Given the lack of precise latitude and longitude data for each

location, we resorted to using state-level soil data. Therefore,

the inclusion of soil variables as additional input features did

not yield substantial improvements in model performance, which

aligns with our expectations. Noteworthy is the marginal impact

observed in the RMSE for the Test data. Specifically, the RMSE

decreased by only 2.15%, and 0.32% for the CNN-LSTM, and

GEM models, respectively. In contrast, the CNN model did not

show any improvement; instead, its performance slightly worsened,

with an increase of 0.27% in RMSE. The comparison of the ML

models performance is presented in Supplementary Table 1, located

in Appendix A. This table demonstrates that the RMSE for the

XGBoost model decreased by just 0.21%, while the RMSE for

the RF and LASSO Regression models showed negligible changes,

with reductions of 0.03% and 0.02%, respectively. These minimal

improvements highlight the inherent challenges of effectively

incorporating soil data. As a result, despite our efforts, the
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TABLE 5 Comparison of test and validation results of RMSE, MAE, and r for the proposed CNN, CNN-LSTM, and GEMmodels with and without soil

variables in predicting soybean yield.

Model No soil variables All 66 soil variables are included

RMSE MAE r RMSE MAE r

Train

CNN 2.683 1.772 0.987 4.861 2.467 0.943

CNN-LSTM 2.535 1.969 0.986 1.742 1.302 0.994

GEM - - - - - -

Validation

CNN 7.633 5.787 0.876 7.638 5.779 0.876

CNN-LSTM 7.779 5.939 0.871 7.667 5.799 0.875

GEM 7.613 5.779 0.877 7.602 5.746 0.878

Test

CNN 7.688 5.848 0.878 7.709 5.847 0.877

CNN-LSTM 7.855 6.018 0.872 7.686 5.837 0.878

GEM 7.674 5.844 0.878 7.649 5.804 0.879

The units of both RMSE and MAE are bushels per acre, matching the units of the predicted and actual yield values.

additional granularity provided by the soil data did not significantly

enhance the performance of the models.

4.2 Feature importance analysis using
RMSE change

Figure 5 illustrates the RMSE changes for different groups of

variables after shuffling. Each group represents a set of variables,

and the RMSE change quantifies the impact of shuffling those

variables on the model’s predictions.

Among all the groups, the location variable exhibits the highest

RMSE change, suggesting that it plays a pivotal role in the

model’s predictions. When the location variable is shuffled, there

is a significant decline in model performance. This emphasizes

the substantial influence of geographical location on prediction

accuracy. Following location, the genotype variable shows the

second-highest RMSE change. Its shuffling causes a notable

decrease in model accuracy, underscoring its importance in

achieving reliable predictions. Different genotypes or plant varieties

evidently contribute significantly to the model’s predictive power.

The year variable ranks third in terms of RMSE change. Shuffling

the year variable leads to a substantial drop in model performance.

This implies that variations across different years significantly

affect the model’s ability to make accurate predictions, likely due

to year-specific climate patterns or other time-dependent factors.

Within the weather category, MDNI demonstrates the highest

RMSE change, followed by AP, ADNI, MinSur, ARH, MaxSur, and

AvgSur. While these weather-related variables do influence the

model’s predictions, their impact appears to be less pronounced

compared to the location, genotype, and year variables. Shuffling

these weather variables results in a relativelymodest effect onmodel

performance, suggesting that they may be less critical for prediction

accuracy compared to the aforementioned groups.

4.3 Optimal genotype selection

The differences between the average predicted yield of optimal

genotypes and the actual yield of existing genotypes for each year

with specific weather variables for each location were calculated and

are shown in Supplementary Figure 3. Each year and state contains

a number of unique locations ranging from 1 to 10. The observed

differences across all years suggest that the optimal genotypes can

potentially lead to increased average soybean yields in all states,

with improvements ranging from 5.1 to 42.5 bushels per acre.

These visualizations underscore the nuanced influence of

weather conditions on the selection of optimal genotypes for

achieving the highest yields. Moreover, they emphasize the critical

role of genotype choice in varying weather conditions. For instance,

consider Location ID 1, located in the state of Louisiana (LA).

Depending on the weather variables corresponding to the year,

the top 10 genotypes for the highest predicted yields varied,

exemplifying the sensitivity of optimal genotype selection to

different weather conditions. Significantly, the impact of weather

variables on achieving the highest yield with optimal genotypes

is magnified when considering diverse Location IDs, states, and

provinces. The variability in weather variables for different years

also contributes to the observed differences in yield outcomes. For

example, in the province of Manitoba (MB), which had weather

data for only one location in the years 2003, 2004, 2005, 2006, 2007,

2010, and 2011, the original data showed that 2004 had the lowest

yields for the 14 genotypes present in the dataset. Correspondingly,

the prediction results for 2004 also exhibited the lowest range

compared to other years. This led to the highest differences between

the average predicted yield of optimal genotypes and the actual

yield of existing genotypes among all states and years. Notably, the

absence of weather variables for certain years in specific location

IDs adds another layer of complexity. Illustratively, for weather

variables corresponding to the year 2004, the range of differences

spans from 6.04 for the state of DE (Delaware) to 42.5 for the
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FIGURE 5

The RMSE changes for di�erent groups of variables after shu	ing. Each group represents a set of variables, and the RMSE change quantifies the

impact of shu	ing those variables on the model’s predictions.

province of MB (Manitoba). In contrast, for weather variables

corresponding to the year 2010, the range narrows to 11.05 for the

state of IA (Iowa) and 23.73 for the province of MB (Manitoba).

The highest differences between the average predicted yields of

optimal genotypes and the actual yields of existing genotypes are

inherently linked to the specific weather variables corresponding to

different years. It is noteworthy that the years 2014 and 2015 exhibit

a lower number of locations in our analysis. It is interesting that

the difference generally increases with latitude other than Arkansas,

adding a compelling layer of geographical insight to our findings.

5 Discussion

The hexagonal plots shown in Figure 6 are a visualization tool

used to compare the ground truth yield with the predicted yield

values for the proposed models. The plots show the density of

points where the two yields overlap, with the color of the hexagons

representing the density of points. The 1:1 line represents the ideal

situation where the predicted yield is exactly equal to the ground

truth yield.

By looking at the hexagonal plots and the position of the points

relative to the 1:1 line, we can observe how well each model is

performing. If the points are concentrated near the 1:1 line, it

indicates that the model is performing well, with high accuracy and

precision. On the other hand, if the points are scattered or far from

the 1:1 line, it indicates that the model is not performing well and is

making large errors in its predictions.

The hexagonal plots in Figure 6 indicate strong overall

predictive performance for all models, as demonstrated by a dense

clustering of points around the diagonal line. Notably, the GEM

model exhibits a slightly tighter point distribution, suggesting

potentially greater reliability across the yield range and improved

precision in error reduction. While all models show some scatter,

particularly at lower yield levels, indicating potential challenges in

predicting low yields, their performance is more consistent in the

mid to high yield ranges.

In our analysis, we observed that certain time periods

within the weather variables exhibited the highest RMSE

change after shuffling. Specifically, for two key weather

variables, Maximum Direct Normal Irradiance (MDNI)

and Average Precipitation (AP), we identified the time

periods that demonstrated the most significant impact on

model performance.

For MDNI, we found that time period 25, which corresponds

to approximately week 15th, exhibited the highest RMSE change

following shuffling, as it is shown in Supplementary Figure 1.

Similarly, for AP, time period 19 (approximately week 10th) showed

the highest RMSE change, as illustrated in Supplementary Figure 2.

These findings prompt us to explore the relationship between

these time periods and the growth stages of soybeans in

the United States.

In the context of soybean growth in the U.S., the growth

stages are often categorized into Vegetative (V) and Reproductive

(R) stages. Based on our analysis and considering typical soybean

growth patterns in the USA (McWilliams et al., 1999; University
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FIGURE 6

Hexagonal plots of the predicted soybean yield vs. ground truth yield values for the proposed CNN, CNN-LSTM, and GEM models on the test data.

of Kentucky Cooperative Extension, 2023), we can provide the

following insights:

• Week 10 (Approximately): During this time, soybeans are

in the early to mid-vegetative stages, typically ranging from V4

to V6. They are transitioning from early vegetative growth to the

onset of reproductive growth (University of Kentucky Cooperative

Extension, 2023).

• Week 12 (Approximately): At this stage (mid to late June),

soybeans are typically in the V6 to V8 vegetative stage, indicating

that they are approaching the reproductive stages (University of

Kentucky Cooperative Extension, 2023).

• Week 15 (Approximately): This period, occurring in early

to mid-July, corresponds to soybeans being in the V8 to V10

vegetative stage. This is a critical time when soybeans start

transitioning to early reproductive stages, with some plants

beginning to flower (R1 stage; University of Kentucky Cooperative

Extension, 2023).

•Week 17 (Approximately): Around mid to late July, soybeans

may have progressed to the R2 (Full Flower) to R3 (Beginning

Pod) stages. This is a vital phase during which soybeans flower

and initiate pod development (University of Kentucky Cooperative

Extension, 2023).
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The observed highest RMSE changes in time periods 25

(MDNI) and 19 (AP) suggest a noteworthy correlation with

soybean growth stages. The marked sensitivity of soybean growth

to solar radiation (MDNI) during the transition from vegetative

to reproductive stages underscores the importance of adequate

sunlight in meeting the energy needs of the plants as they begin to

flower. Similarly, the high sensitivity to precipitation (AP) during

the early vegetative stages highlights the critical role of sufficient

water supply in supporting vegetative growth and preparing

the plants for subsequent stages. These findings underscore the

significance of weather variables during crucial growth phases of

soybeans and their influence on accurate yield predictions.

6 Conclusion

In this study, we proposed two novel CNN architectures that

incorporate a 1-D convolution operation and an LSTM layer.

These models were developed to predict soybean yield using a

combination of factors, including genotype ID, year, location,

and weather data. Our study is based on an extensive dataset

collected from 159 locations across 28 U.S. states and Canadian

provinces over a span of 13 years. These architectures represent

an advancement in the field of crop yield prediction, allowing us

to leverage the power of deep learning to improve accuracy and

efficiency in genotype selection. Moreover, we have employed the

GEM method to determine the optimal weights of our proposed

CNN-based models, which has led to superior performance in the

MLCAS2021 Crop Yield Prediction Challenge and compared to

baseline models.

Our work has gone beyond traditional crop yield prediction

methods by addressing the challenge of genotype by environment

interaction, which is a critical factor in selecting genotypes

for increased crop yields, particularly in the face of global

climate change. Conventionally, plant breeders rely on extensive

field testing of hybrids to identify those with the highest yield

potential, a process that is both time-consuming and resource-

intensive. Our approach has introduced a data-driven paradigm

for genotype selection, wherein we use environmental data and

genotype information to predict crop yields. This approach enables

us to identify the most efficient genotypes for each location

and environmental condition by forecasting crop yields based

on weather conditions and then selecting the optimal genotype

with the highest yield. This novel strategy holds the potential

to significantly enhance policy and agricultural decision-making,

optimize production, and ensure food security.

To validate the effectiveness of our proposed GEM model for

genotype by environment selection, we conducted a comprehensive

evaluation alongside other DL and ML models. We specifically

focused on new and unseen genotype-location combinations to

mimic real-world scenarios where new genotypes are introduced.

Our dataset, comprising 93,028 observations with 5,838 unique

genotype IDs, was meticulously split into training, validation,

and test sets to ensure robust assessment. Unique identifiers

for each genotype-location pair were created to guarantee the

test set contained entirely new combinations. This approach

not only tested the model’s predictive accuracy but also its

generalizability to novel situations. The results demonstrated that

the GEM model outperformed traditional methods. Specifically,

it exhibited lower RMSE and MAE values ranging from 3.89%

to 24.79% and 2.58% to 27.56%, respectively, compared to the

baseline models when evaluated on test data. Additionally, the

GEM model showcased higher correlation coefficients ranging

from 1.14% to 8.66% in comparison to the baseline models

on test data. These performance improvements suggest the

effectiveness of the GEM model in soybean yield prediction,

attributed to its ability to capture the nonlinear nature of

weather data and model the temporal dependencies of weather

variables, including genotype by environment interactions.

This is achieved through the combination of two CNN-based

models, which are adept at handling complex relationships in

the data.

We retrained the CNN, CNN-LSTM, and GEM models

using the complete dataset, predicting yields for 5,838 genotypes

across each location with specific weather information. By

selecting the top 10 genotypes with the highest predicted

yields, we observed that optimal genotypes could potentially

increase average soybean yields across all states, with

improvements ranging from 5.1 to 42.5 bushels per acre.

The analysis highlighted the significant influence of weather

conditions on genotype selection and the model’s ability

to adapt to varying environmental conditions. Variability

in weather data across locations and years, as well as the

general increase in yield differences with latitude, underscored

the model’s robust performance and potential for enhancing

agricultural decision-making.

Additionally, we conducted a feature importance analysis using

RMSE change to identify significant predictors affecting themodel’s

predictions. The location variable had the highest RMSE change,

indicating its strong influence on predictions. Genotype, and year

also played crucial roles. Among weather variables, MDNI had the

most impact, followed by AP, ADNI, and others. While weather

variables influenced predictions, categorical variables like location

and genotype were more influential.

In addition to evaluating the importance of different variable

groups, we explored the temporal aspects of weather data. We

identified significant time periods within the MDNI and AP

variables that showed the highest RMSE changes after shuffling.

Notably, the highest RMSE changes were observed in time periods

25 (week 15) for MDNI and 19 (week 10) for AP. These findings

underscore the critical roles of solar radiation and precipitation

in plant development, emphasizing the importance of adequate

sunlight and water supply during specific growth phases for

accurate yield predictions.

Despite the constraints imposed by limited information and

the absence of exact latitudes and longitudes in our dataset, we

opted to explore the impact of soil variables onmodel performance.

We accommodated this limitation by integrating state-level soil

variables into the original dataset. Our findings suggest that the

integration of soil variables, under the current data constraints,

did not lead to a substantial enhancement in the predictive

capabilities of the models. Given that climate change can also have

an adverse effects on soil attributes (Das et al., 2016), it is advisable

to consider datasets that provide precise soil variables for each
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specific location. This more granular data can significantly enhance

our understanding of the intricate relationships among weather,

soil, and crop outcomes. The incorporation of location-specific

soil attributes into predictive models has the potential to elevate

accuracy, particularly in regions where soil quality plays a pivotal

role in agricultural outcomes.
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