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Background and novelty: When RT-PCR is ineffective in early diagnosis and 
understanding of COVID-19 severity, Computed Tomography (CT) scans are 
needed for COVID diagnosis, especially in patients having high ground-glass 
opacities, consolidations, and crazy paving. Radiologists find the manual method 
for lesion detection in CT very challenging and tedious. Previously solo deep 
learning (SDL) was tried but they had low to moderate-level performance. This 
study presents two new cloud-based quantized deep learning UNet3+ hybrid 
(HDL) models, which incorporated full-scale skip connections to enhance and 
improve the detections.

Methodology: Annotations from expert radiologists were used to train one SDL 
(UNet3+), and two HDL models, namely, VGG-UNet3+ and ResNet-UNet3+. 
For accuracy, 5-fold cross-validation protocols, training on 3,500 CT scans, and 
testing on unseen 500 CT scans were adopted in the cloud framework. Two 
kinds of loss functions were used: Dice Similarity (DS) and binary cross-entropy 
(BCE). Performance was evaluated using (i) Area error, (ii) DS, (iii) Jaccard Index, 
(iii) Bland–Altman, and (iv) Correlation plots.
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Results: Among the two HDL models, ResNet-UNet3+ was superior to UNet3+ 
by 17 and 10% for Dice and BCE loss. The models were further compressed using 
quantization showing a percentage size reduction of 66.76, 36.64, and 46.23%, 
respectively, for UNet3+, VGG-UNet3+, and ResNet-UNet3+. Its stability and 
reliability were proved by statistical tests such as the Mann–Whitney, Paired t-
Test, Wilcoxon test, and Friedman test all of which had a p  <  0.001.

Conclusion: Full-scale skip connections of UNet3+ with VGG and ResNet in 
HDL framework proved the hypothesis showing powerful results improving the 
detection accuracy of COVID-19.

KEYWORDS

COVID-19, computed tomography, COVID lesions, glass ground opacities, 
segmentation, hybrid deep learning, quantization

1 Introduction

SARS-CoV-2 is an infectious illness and a severe acute respiratory 
syndrome coronavirus 2 that has affected nearly 677 million individuals 
and killed 6.7 million people all over the world. On March 11, 2020, the 
World Health Organization (WHO) declared COVID-19 a worldwide 
epidemic, the novel coronavirus disease. COVID-19 is a fast-growing 
disease with inadequate hospital resources (WHO, 2022). During 
COVID-19, numerous molecular pathways (Saba et al., 2020) shown 
evidence of myocardial damage (Cau et  al., 2021a), diabetes 
(Viswanathan et al., 2021), pulmonary embolism (Cau et al., 2021b), 
vascular damage (Khanna et al., 2022), and thrombosis (Fanni et al., 
2021). Early, quick, and accurate identification of COVID-19 sickness 
is crucial to saving lives and protecting frontline workers due to the 
absence of a proper vaccine or medication. One of the gold standards 
for COVID-19 detection is RT-PCR, commonly known as “reverse 
transcription-polymerase chain reaction” (Gibson et al., 1996; Bustin 
et al., 2005). Furthermore, there is a need for new detection techniques 
due to the RT-PCR test’s slowness and low sensitivity (Fang et al., 2020). 
Because of superior sensitivity and repeatability in the diagnosis of 
COVID-19, imaging-based diagnosis such as chest X-ray (Nillmani 
et  al., 2022), and computed tomography (CT) are becoming more 
popular in diagnosing and controlling COVID-19 infection (Sluimer 
et al., 2006; Saba and Suri, 2013; Giannitto et al., 2020; Cau et al., 2021c).

Healthcare imaging research and development have increased as 
a result of computer-aided diagnosis using machine learning (ML) 
(Suri and Rangayyan, 2006; Shrivastava et  al., 2015) and artificial 
intelligence (AI) (Winston, 1992; Ramesh et al., 2004; Hamet and 
Tremblay, 2017). The potential benefit of AI to mimic manual 
delineation has speeded up the identification and diagnosis of illnesses 
(Molinari et al., 2007; Acharya et al., 2011, 2012a,b, 2013a,b,c; Pareek 
et al., 2013; Biswas et al., 2018a, 2019; Saba et al., 2019, 2021; Agarwal 
et al., 2021). AI techniques have tried to precisely duplicate the human 
brain using neural networks. This makes them capable of resolving 
imaging-related problems. Feature extraction, classification, and 
segmentation are all completely automated using deep layers in deep 
learning (DL), a subfield of AI (Ker et al., 2017; Litjens et al., 2017; 
Shen et al., 2017; Razzak et al., 2018; Fourcade and Khonsari, 2019; 
Hesamian et al., 2019; Zhou et al., 2019).

The primary imaging benefit of CT (Saba and Suri, 2013; Pathak 
et  al., 2020; Wu X. et  al., 2020) imaging is the ability to detect 
anomalies such as consolidation, ground-glass opacity (GGO) (Salehi 

et al., 2020; Cozzi et al., 2021), and other opacities that can be detected 
in the CT for a COVID-19 patient (Xie et al., 2020). Most chest CT 
lung scans frequently contain the GGO abnormality (Gozes et al., 
2020; Yang et al., 2020; Shalbaf and Vafaeezadeh, 2021; Cau et al., 
2021c). Most radiologists evaluate COVID-19 lesions using 
judgmental and semantic approaches due to time restraints and the 
vast volume of data. Additionally, the human and semi-automated 
evaluations take a lot of time, sluggish, and subjective (Alqudah et al., 
2020; Xu et al., 2020; Aslan et al., 2021; Wu et al., 2021). As a result, to 
increase the timeliness of diagnosis for early COVID-19 sickness, 
rapid and error-free detection and real-time prognosis solutions 
are needed.

Several studies have been tried for COVID-19 lesion 
segmentation. They have been categorized into non-UNet-based 
solutions such as Ding et al. (2021), and UNet-based solutions (Hou 
et al., 2021; Lizzi et al., 2021; Paluru et al., 2021). A slight deviation 
from UNet was Generative Adversarial Network (GAN) by Zhang 
et al. (2020) and DR-MIL model by Qi et al. (2021). The challenges 
with these models were their low Dice Similarity Coefficient (DSC) in 
their prediction systems. Further, these techniques do leverage on the 
hybrid nature of the DL system design, nor there was an attempt to 
model them in the cloud-based framework or a reduction in the AI 
model size framework. A detailed analysis of previous methods will 
be discussed in a benchmarking subsection in the Discussion section.

To overcome the shortcomings of low DSC in the prediction, 
we proposed two HDL-based on UNet3+ framework. These models 
required less training data to achieve higher prediction scores. Further, 
we designed these HDL models in (a) a quantization framework for 
reduced model size and (b) in cloud-based settings. Thus, the 
following are the study’s primary contributions: (i) COVLIAS 3.0 was 
designed for the cloud and uses a quantized hybrid of Solo DL (SDL) 
and Hybrid DL (HDL) to target the lesion location for quicker 
segmentation. Annotations from one expert radiologist were used to 
train UNet3+ and two HDL models, namely VGG-UNet3+ and 
ResNet-UNet3+. (ii) A cohort of 3,500 CT scans chosen from a set of 
45 COVID-19-positive patients for cross-validation using a 5-fold 
(K5) technique. (iii) A 500-image dataset that had never been seen 
before was used to validate the system. (iv) The computation of Area 
Error, Dice Similarity, Jaccard Index, Bland–Altman Plots, and 
Correlation Coefficient Plots comprised the performance evaluation 
systems. (v) Using quantization to reduce the storage space and 
prediction time of the final models. (vi) Statistical tests including the 
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Mann–Whitney, paired t-test, Wilcoxon, and Freidman test, together 
with the p values, showed their stability and reliability. (vii) The online 
system took less than 1 s for each slice.

2 Methods

2.1 Demographics and baseline 
characteristics

The training cohort consisted of approximately 3,500 (3,542) CT 
images that were derived from 45 Croatian patients (Figure 1). With a 
mean age of 67, the patients were split into 37 men and the remaining 
females (SD 7.588). The group’s average GGO and consolidation scores 
were 2.5 and 1.5, respectively. In the cohort of 45 patients, all had coughs, 
85.5% had dyspnea, 28% had hypertension, and 13.5% smoked, but none 
had cancer, diabetes, chronic obstructive pulmonary disease (COPD), or 
any other significant disorders. They did not all die from COVID-19 
infection and were not all sent to the intensive care unit (ICU).

2.2 Image acquisition and data preparation

UHID Ethics committee approved this study investigation where 
45 COVID-19-positive Croatian cohorts were considered. The data 
were collected retrospectively between March 1 to December 31, 2020, 
at the University Hospital for Infectious Diseases in Zagreb, Croatia. The 

patient who met the following criteria: age > 18 years old, who had 
positive test results on RT-PCR, oxygen saturation 92% (hypoxia), 
respiratory rate 22/min (tachypnea), pulse rate > 100 (tachycardia), and 
systolic blood pressure 100 mm Hg (hypotension), went for thoracic 
MDCT scans. Fujifilm Corporation, Tokyo, Japan, 2017 vendor was 
used having the CT hardware 64-detector FCT Speedia HD. The 
technique used for CT acquisition was an inspiratory breath-hold 
(single) in the craniocaudal direction. System Software Version: V2.25, 
Copyright Hitachi, Ltd. 2017 had the following voltage and current 
ratings (120 kV, 350 mA having a rotation speed of 0.75 s). Using these 
parameters, standard Supria software was used for the whole-body 
X-ray CT imaging. The imaging parameters were: slice thickness of 
1.25 mm along with recon index of 1 mm for picture filter 22 (lung 
standard). The iterative algorithm adopted was Intelli IP Lv.2 (WW1600/
WL600). The criteria considered for imaging adopted reasonable image 
quality acceptance or no motion artifact due to patient movement and 
ensuring the presence of no metallic objects. The volume acquired 
consisted of ~300 slices, out of which ~70 CT slices (512 × 512 px2) were 
extracted by the senior radiologist, which accounted for about 23% of 
the total CT slice. The red color marked annotated lesion over the 
grayscale raw CT scan can be seen in Figure 2.

2.3 The deep learning models

To more quickly locate and segment lesions, the suggested study 
combines SDL and HDL models. The invention of merging two SDL 

FIGURE 1

Raw CT images from the Croatian dataset.
FIGURE 2

Manual overlays (red) on raw CT images.
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models came about as a result of a recent demonstration that the 
combination of two HDL models, as opposed to the SDL models, had 
better feature extraction power (Jena et al., 2021). Therefore, two HDL 
models—namely, VGG-UNet3+ and ResNet-UNet3+ were used in 
this investigation. They were trained using data from a single expert 
radiologist and compared the SDL, namely, UNet3 + .

2.3.1 The SDL: UNet3+
The UNet3+ (Figure 3) were proposed by Huang et al. (2020) as a 

full scales-connected architecture designed for medical image 
segmentation. UNet3+ is a DL model that explores full-scale skip 
connections, unlike that of UNet++, which uses interlinked and dense 
skip connections, but refrains from full scales connections. The 
advantage of using full-scale skip connections over and above 
interlinked and dense skip connections is that the model combines 

low-level information from the images with high-level meanings from 
feature maps at different levels of resolution on the image. In contrast 
to the UNet, a collection of inter encoder-decode skip connections 
applies a non-overlapping max pooling operation to convey low-level 
detailed information from the smaller-scale encoder layers X1

En and 
X2

En. Finally, to make the model understand the hierarchical features 
from the full-scale feature maps, full-scale deep supervision is also 
used. Note that this study does not implement UNet and UNet++; 
they are mentioned just to show how the new UNet3+ and its hybrid 
variants were derived.

2.3.2 HDLs: VGG-UNet3+ and ResNet-UNet3+
The VGGNet architecture was designed to shorten training time 

by substituting 11 and 5-sized filters for the initial layer’s kernel filter 
(Simonyan and Zisserman, 2014). VGGNet was incredibly quick and 
efficient, but it struggled with optimization because of vanishing 
gradients. Because it is compounded by the gradient at each epoch and 
the update to the initial layers is so small, backpropagation produces 
far less training with no weights. To solve this problem, Residual 
Network, often known as ResNet (He et al., 2016), was developed. 
Gradients can now skip a select few layers in this design thanks to a 
new connection known as the “skip connection,” which solves the 
disappearing gradient problem. An identity function was also added 
to the network during the backpropagation step to maintain the local 
gradient values to a non-zero value.

By fusing one SDL (VGG or ResNet) with another SDL (UNet3+), 
the HDL models create a superior network that benefits from the 
strengths of both parent networks (Das et al., 2022). Three components 
make up the VGG-UNet3+ and ResNet-UNet3+ architectures used in 
this study: an encoder, a decoder, and a pixel-wise SoftMax classifier.

2.4 Loss function for SDL and HDL models

During the model creation process, the new models adopted the 
binary cross-entropy (BCE)-loss functions (Shore and Johnson, 1981; 
De Boer et al., 2005; Jamin and Humeau-Heurtier, 2019). The loss 
function can be mathematically described as given in Equation 1 if 
αBCE  represented the BCE-loss function, ai  represented the 
classifier’s probability utilized in the AI model, x i represented the 
input gold standard label 1, (1−x i) represented the gold standard 
label 0.

 αCE x x= − ×( ) + −( )× −( ) i i i ia alog log1 1  (1)

Here × represents the product of the two terms.
The dice loss is named after the Dice-Sørensen coefficient, a 

statistic developed in the 1940s to evaluate the similarity between two 
samples. It was introduced to the computer vision field by Milletari 
et al. (2016) for the segmentation of 3D medical images. When X is 
the input image and Y is the target or ground truth image, the Dice 
loss (D) employed in this manuscript can be represented as given in 
Equation 2.

 
D

X Y
X Y

= −
∩
+

1
2

 
(2)

FIGURE 3

Top: UNet (Ronneberger et al., 2015), Middle UNet++ (Zhou et al., 
2020), and Bottom: UNet 3+ (Huang et al., 2020).
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2.5 Experimental protocol

Standardized cross-validation (CV) method was used to assess the 
accuracy of the AI models. Our team has developed several CV-based 
protocols of various types for a variety of applications using the AI 
framework (Acharya et al., 2013b; Shrivastava et al., 2015; Araki et al., 
2016; Maniruzzaman et  al., 2018). We  employed the K5 cross-
validation methodology using observed data analysis, consisting of 
80% training (2,800 scans) and 20% training data (700 CT scans). 
Because of the favorable COVID-19 parameters, the 5-fold was 
chosen. Here, in each fold, the chance was given to have its own test 
set, where 10% of the data was taken into consideration for protocol’s 
internal validation mechanism. The test data consisted of unseen 500 
COVID-19 positive images for generalizability.

The accuracy (ACC) of the AI system is assessed by contrasting 
predicted output with actual ground truth pixel values. The black and 
white pixels of the output mask were converted to binary 0/1 integers 
for further processing. Using the standardized symbols TP, TN, FN, 
and FP to signify true positive, true negative, false negative, and false 
positive, truth table was designed for accuracy determination (Eq. 3).

 
ACC

TP TN

TP FN TN FP
%( ) = +

+ + +






×100

 
(3)

3 Results and performance evaluation

3.1 Results

This proposed study is a novel implementation of two HDL 
architectures VGG-UNet3+ and ResNet-UNet3+ for COVID-19-
based lesion segmentation. A cohort of 3,500 lung CT images from 45 
COVID-19 positive patients has been utilized with a five-fold CV 
technique. Another cohort of 500 COVID-19 positive patients from 
the MosMed (Russia) dataset was used as part of an unseen-AI 
analysis. Figure 4 shows the overlay of the DL predicted lesion using 
the three DL models UNet3+, VGG-UNet3+, and ResNet-UNet3+ for 
the dice and BCE loss functions, using the unseen dataset.

3.2 Performance evaluation

This proposed study uses (i) Area Error (AE), (ii) Dice similarity 
(DS) (Basar et  al., 2022; Chu et  al., 2022), (iii) Jaccard index (JI) 
(Eelbode et al., 2020), (iv) Bland–Altman (BA) plots (Dewitte et al., 
2002; Giavarina, 2015), and (v) Correlation coefficient plots, for the 
three DL models against Dice and BCE loss for performance 
evaluation, using the unseen dataset containing 500 CT images. 
Figures 5–7 show the cumulative frequency distribution (CFD) plot 
for Area error, DS, and JI for UNet3+, VGG-UNet3+, and ResNet-
UNet3+, respectively, and depicts the score at an 80% threshold. 
Figures 8, 9 depict the BA and CC plots for the three DL models. This 
study also uses manual delineation from a trained radiologist to 
validate the results from the three DL models, thus, useable for clinical 
settings. Using the performance evaluation on the unseen dataset, the 
HDL model ResNet-UNet3+ outperformed all the other models 
proposed in this study, thereby proving the performance of the HDL 
model is superior to the SDL model.

4 Discussion

The main application domain is the pulmonary field of medicine 
combined with radiological imaging which involves AI-based solution 
for segmentation of COVID-19 lung lesions embedded with pruning 

FIGURE 4

AI predicted COVID-19 lesion overlay, using three models: UNet3+ 
(row 1 and 2), VGG-UNet3+ (row 3 and 4), and ResNet-UNet3+ (row 
5 and 6). BCE and Dice are the two loss functions.

FIGURE 5

Area error.
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framework in cloud-based settings. This study uses one SDL UNet3+ 
and two HDL models, (i) VGG-UNet3+ and (ii) ResNet-UNet3+, 
trained using a 5-fold cross-validation technique utilizing a set of 3,500 
manually annotated images, to demonstrate automatic lesion 
identification in a DL framework. The three DL models in this proposed 
study are trained using Dice and BCE loss and tested against the unseen 
dataset of 500 CT images utilizing (i) AE, (ii) DS, (iii) JI, (iv) BA, and 
(v) CC plots. Considering these metrics, the best AI model, ResNet-
UNet3+ was superior to UNet3+ by 17 and 10% using Dice loss and 
BCE loss when compared against a seen dataset. Thereby establishing 

that the dice performed better than BCE loss for COVID-19 lesion 
segmentation. Further, the COVLIAS 3.0 showed DSC was 16% better 
when comparing against the mean DSC of previous studies (Zhang 
et al., 2020; Ding et al., 2021; Lizzi et al., 2021; Paluru et al., 2021). 
Mann–Whitney, Paired t-Test, Wilcoxon, and Friedman tests 
demonstrated the stability and scientific reliability of the proposed 
system, with a p value <0.001 (Table 1). To speed-up the training process 
NVIDIA’s DGX V100, with multi-GPU, was adopted. The results show 
that ResNet-UNet3+ is the best model out of all the DL models.

Table  2 lists the key metrics for comparing the three models, 
describing (i) the loss function used while training, (ii) the total number 
of AI model parameters, (iii) the number of layers, (iv) the size of the 
final saved model, (v) the number of training epochs, (vi) the batch size, 
and (vii) the online prediction time per image for COVLIAS 3.0.

4.1 A short note on cloud-based COVLIAS 
3.0

In cloud-based setting, the patient and physician relationship can 
be very efficient, especially during the virology period. In all such 
setups, it is vital to demonstrate the usage of the visual images. These 
visual images carry a deep role especially under explainability 
paradigm. The trust of the physicians to use the software system is the 
most important component in medical imaging. This was 
demonstrated in our previous contributions (Saba et al., 2016, 2017, 
2018, 2023). Some of these applications are in cardiology applications. 
These visual displays serve two purposes: (i) show the comprehension 
nature of the design depicting and (ii) proves the nature of 
explainability. Both these objectives are met in our display. Further, 
the figures provide an overview of the system and display the overall 
pipeline of the system. To make the system accessible, we have made 
a web-based AI system using Amazon Web Services. The system is 
capable of processing single as well as multiple CT images at a time. 
After selection of the image(s), the system loads the AI model and 
segments the COVID-19 lesion and displays it as a report, which can 
be downloaded as a portable document format (PDF).

Note that a certain pre-processing discussed in our previous research 
(Suri et al., 2022a,b) must be done before the system can accept the image 
and process it for segmentation and analysis. Each run is assigned a 
unique identification ID, which allows it to be  easily accessible for 
analysis purposes and can also be used to finetune the AI model at a later 
stage. Figure 10 represents the landing page of COVLIAS 3.0: Hybrid 
AI-Based COVID-19 Lesion Segmentation system. Figure 11 presents 
the output from the web-based COVLIAS 3.0 system. To make the cloud 
deployment cost-effective and reduce the processing time, we  have 
utilized multiprocessing and load-balancing.

4.2 Quantization

Quantization in deep learning is the process of reducing the 
number of bits used to represent the weights and parameters of a 
neural network model (Wu H. et al., 2020; Ma H. et al., 2021). By 
reducing the precision of the parameters, the overall size of the model 
can be dramatically reduced, which can have a significant impact on 
the speed of computation and the amount of memory required. In 
other words, it is the process of reducing the resolution of a pixel by 

FIGURE 6

Dice Similarity plot.

FIGURE 7

Jaccard Index plot.
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reducing the number of its possible values. This is typically done by 
rounding off the pixel’s values to a predetermined set of values, which 
are referred to as levels.

Additionally, quantization can also be used to improve the accuracy 
of the model by reducing the impact of noise and other distortions. 
Quantization is used in many different areas of signal processing, 
including digital audio, image processing, and communication systems.

4.2.1 Advantages of quantization in deep learning
(1) Reduced memory and storage requirements: By using fewer bits to 

represent the weights and parameters of the model, the overall size of the 
model is reduced, which can significantly reduce the memory and 
storage requirements. This can be especially beneficial for deploying 
models to devices with limited memory and storage capabilities. (2) 
Improved model performance: Quantization can also lead to improved 
model accuracy and performance by reducing the impact of noise and 
other distortions. (3) Faster computation times: By reducing the precision 
of the parameters, the computational complexity of the model is reduced, 
which can lead to faster computation times.

Table 3 presents a list of metrics for comparing the three quantized 
models, describing (i) the size of the final saved model, (ii) the size of 
the final quantized (compressed) saved model, (iii) percentage (%) 
size reduction, and (iv) the online prediction time per image for 

FIGURE 8

BA Plot.

FIGURE 9

CC Plot.
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FIGURE 10

Landing page of COVLIAS 3.0: Hybrid AI-Based COVID-19 Lesion Segmentation system.

COVLIAS 3.0 using quantized models. Quantized UNet3+, 
VGG-UNet3+, and ResNet-UNet3+ models were able to achieve 
66.76, 36.64, and 46.23% compression, respectively.

4.3 Benchmarking

With Res2Net50 (Gao et al., 2019) as its foundation, Ding et al. 
(2021) developed MT-nCov-Net, a multitasking DL network that 

comprised the segmentation of both lesions and lungs in CT images. 
More than 36,000 scans from five separate CT imaging databases 
were used in this investigation. The study adopted random flipping, 
rotation, cropping, and Gaussian blurring as part of the augmentation 
protocol, resulting a Dice of 0.86. Hou et  al. (2021) used an 
improvised canny edge detector (Ding and Goshtasby, 2001; 
McIlhagga, 2011) on CT scans to identify COVID-19 lesions. The 
authors used a dataset of roughly 800 CT images. Lizzi et al. (2021) 
designed a cascaded UNet system for COVID-19-based lesion 

TABLE 1 Statistical test.

Dice loss BCE loss

Model UNet3+ VGG-UNet3+ ResNet-
UNet3+

UNet3+ VGG-UNet3+ ResNet-
UNet3+

Paired t-test p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Mann–Whitney p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Wilcoxon p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Friedman test p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

TABLE 2 Model parameters.

SN Attributes UNet3+ VGG-UNet3+ ResNet-UNet3+

1 Loss function BCE & Dice

2 # Parameters ~26 M ~20 M ~15 M

3 # Layers 114 81 157

4 Size (MB) 299 125 106

5 # Epoch 50 50 50

6 Batch size 4 8 8

7 Prediction time ~2 s ~1 s ~1 s

M, Million; MB, Mega Byte; #, Number.
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segmentation on CT images, using a variety of augmentation 
methods, including zooming, rotation, Gaussian noise, elastic 
deformation, and motion blur, were applied. The authors showed a 
DSC of 0.62, compared to Ding et  al. (2021)'s value of 0.86. The 
network DR-MIL shown by Qi et  al. (2021) was built on the 
foundation of ResNet-50 and XceptionNet (Chollet, 2017). In this 
work, rotation, reflection, and translation were applied as image 
augmentation techniques on around 2,400 CT scans. The study did 
not mention about DSC. Paluru et al. (2021) introduced Anam-Net, 
a hybrid of UNet and ENet. This method required an additional step 
of lung segmentation prior to COVID-19 lesion segmentation. While 
using a training cohort of 4,300 CT scans, the system showed DSC of 
0.77. The Anam-Net system was designed for Android application on 
an edge device. Zhang et al. (2020) introduced CoSinGAN, a GAN 
network for COVID-19-based lesion segmentation. This GAN 
employed only 700 CT lung images for training and used no 
augmentation. The DSC using CoSinGAN’s was 0.75. Cai et al. (2020) 
used the UNet-based model and adopted a 10-fold CV protocol on 
250 images and showed a DSC of 0.77. Using the same methodology, 
the author presented lung and lesion segmentation. The length of an 
intensive care unit (ICU) stay can be predicted by the authors using 
the results of lesion segmentation. For 3D CT volume segmentation, 
Ma J. et al. (2021) also applied the typical UNet design to a collection 

of 70 patients. The training phase also included model optimization, 
and the study reported a DSC of 0.67. The model’s performance was 
compared to that of other studies in the same field by the authors. 
Kuchana et al. (2021) employed UNet and Attention UNet to segment 
the lung and lesions in a group of 50 patients. The model showed a 
DSC of 0.84 after the authors improved the hyperparameters during 
the training procedure.

Finally, Arunachalam et al. (2021) presented a two-stage lesion 
segmentation technique, where, stage-I involved employing region-
based convolutional neural networks (RCNN) to estimate the 
region of interest, while stage-II involved creating bounding boxes. 
For the train, validation, and test sets, the performance metrics 
were 0.99, 0.931, and 0.8. In conjunction with automated bounding 
box estimates for mask production, the RCNN was predominantly 
used for COVID-19 lesion identification. Our COVLIAS 3.0 
leverages hybrid model technology demonstrating a higher DSC of 
16% and further implemented in cloud-based framework embedded 
with quantization infrastructure thereby reducing the training 
model sizes.

4.4 Strengths, weakness, and extensions

UNet has been evolving over the last 7 years, especially in 
ultrasound (Sanches et  al., 2012; Jain et  al., 2021, 2022). The 
modifications to fundamental UNet have given the power to the 
segmentation process, which includes the addition of more stochastic 
image processing techniques in UNet framework (El-Baz et al., 2011, 
2015; Shrivastava et al., 2015). Using the hybrid system with advanced 
UNet that uses full-scale skip connections has improved the 
performance of the system. Further, quantizing the DL models helped 
reduce the storage space and overall computation time in the 
cloud framework.

The following are the two main limitations: (i) The major 
weakness of the above model is the lack of strong features extraction 
or small feature extraction. The addition of attention models or 
transformer models can improve this. (ii) Another limitation of this 
protocol is the requirement of hardware such as graphical processing 
unit (GPU). Since GPUs are not easily available in all universities, this 
can be a limitation when applying pruning-based segmentation models.

4.4.1 Implications
Small features can be detected by adding attention-based models. 

Multithreaded architectures can be used for increasing the speed of 
the system. Empirical convergence can be used during the training 
process, which involves fixed number of epochs where the validation 
loss can be close to training loss. Further, we can converge by taking 
training number of epochs less than a threshold value.

FIGURE 11

Snapshot of the result page using COVLIAS 3.0: Hybrid AI-Based 
COVID-19 Lesion Segmentation system.

TABLE 3 Quantization.

SN Attributes UNet3+ VGG-UNet3+ ResNet-UNet3+

1 Size (MB) 299 125 106

2 Compressed size (MB) 99.4 79.2 57

3 % Size reduction 66.76% 36.64% 46.23%

4 Prediction time <1 s <0.5 s <0.5 s

MB, Mega byte.

https://doi.org/10.3389/frai.2024.1304483
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Agarwal et al. 10.3389/frai.2024.1304483

Frontiers in Artificial Intelligence 10 frontiersin.org

Due to recent advances in pruning models (Agarwal et al., 2022) 
and evolutionary methods, one can extend this to the UNet 
framework. In the future, more variants of hybrid systems (DL with 
ML) can be used and tested for the performance and reliability of the 
system (Biswas et al., 2018b). To make the system more robust, the 
system can be trained on a combination of the dataset from different 
countries, ethnicities, patients with comorbidities as tried in other 
modalities (Skandha et  al., 2022). There are other potential 
applications of such technologies that are not limited to 
mammography, urology, pulmonary, ophthalmology, neurology, 
nephrology, and cardiology. This includes diagnosis of lesions in brain, 
breast, prostate, retinal, renal, lung, and heart.

5 Conclusion

To handle the lesion localization and segmentation more quickly, 
the proposed study provides three DL models for lesion segmentation 
in 3,500 CT images (Croatia) obtained from 45 COVID-19 patients. One 
experienced radiologist was used to train the one SDL namely UNet3+, 
and two HDL models, namely, VGG-UNet3+, and ResNet-UNet3+. For 
performance evaluation, the training program used a 5-fold cross-
validation technique. It makes use of tracings from two qualified 
radiologists as part of the validation. Using the unseen dataset of 500 CT 
images and the AE, DS, JI, BA, and CC plots, the three DL models in this 
proposed study were evaluated against Dice and BCE loss.

The key takeaway was that ResNet-UNet3+ was superior to 
UNet3+ by 17 and 10% for Dice and BCE loss when compared against 
an unseen dataset. Second takeaway was that the Quantized UNet3+, 
VGG-UNet3+, and ResNet-UNet3+ models were able to achieve 
66.76, 36.64, and 46.23% compression, respectively. The third 
takeaway was that since the system was designed for cloud-based 
settings. To sum up, our pilot research showed how consistently the 
HDL model could find and segment COVID-19 lesions in CT images 
superior performance.
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