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Accurate prediction of cattle weight is essential for enhancing the e�ciency

and sustainability of livestock management practices. However, conventional

methods often involve labor-intensive procedures and lack instant and

non-invasive solutions. This study proposed an intelligent weight prediction

approach for cows based on semantic segmentation and Back Propagation

(BP) neural network. The proposed semantic segmentation method leveraged a

hybrid model which combined ResNet-101-D with the Squeeze-and-Excitation

(SE) attention mechanism to obtain precise morphological features from cow

images. The body size parameters and physical measurements were then used

for training the regression-based machine learning models to estimate the

weight of individual cattle. The comparative analysis methods revealed that the

BP neural network achieved the best results with an MAE of 13.11 pounds and

an RMSE of 22.73 pounds. By eliminating the need for physical contact, this

approach not only improves animal welfare but alsomitigates potential risks. The

work addresses the specific needs ofwelfare farming and aims to promote animal

welfare and advance the field of precision agriculture.

KEYWORDS

weight prediction, semantic segmentation, machine learning, computer vision,

precision farming

1 Introduction

Modern society is concerned about food safety and quality, efficient and sustainable

animal farming, healthy animals, and guaranteed animal welfare of livestock farms

(Blokhuis et al., 2003; Berckmans, 2014). Livestock farming places high demands on

both the farmers and their cow monitoring techniques, and these demands are likely

exacerbated as farms increase in size (Robbins et al., 2016). Farms are always under

constant pressure to be profitable which can be challenging in environments where

labor costs are variable (MacDonald et al., 2007). In addition, livestock farms have

also been challenged with managing disease, another factor that can impact farm

efficiency. Specifically, due to the poor monitoring of livestock disease and impaired

fertility in intensive dairy farming, the largest economic losses and cattle welfare can

be seriously affected (Weary et al., 2009; Ashfaq et al., 2015; Daros et al., 2020).
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Traditional farming methods usually monitor and treat the

herd collectively according to the measured average ambient

conditions. As farm sizes increase an additional challenge is the

individual monitoring within the herd. Technical development

of automatic monitoring of individual body conditions and

health is of great interest, and it is important to find early

indicators of diseases (Stern et al., 2015; Gu et al., 2017). Precision

farming technologies that combine Artificial Intelligence (AI)

with the Internet of Things (IoT) provide the potential to treat

livestock individually, for the sake of better livestock welfare and

production (Wathes et al., 2008; González et al., 2015; Norton and

Berckmans, 2017). As such, automated and precise management

of livestock, including the use of intelligent perception-based

software, has been suggested by some scholars to be the next

frontier in terms of monitoring individuals within a group

(Qiao et al., 2021).

Previous research indicated that the individual cattle weight

information is not only an important basis for live cattle

trading, but also can be regarded as a key indicator for

studying food conversion rate, individual daily weight gain,

and setting feeding standards for cattle (Kohiruimaki et al.,

2006; Berry et al., 2007; Poncheki et al., 2015). Typically, cows

are routinely guided to the weighing systems through human

intervention, which is bound to cause stress reactions and

adverse effects on subsequent eating and growth (Charmley

et al., 2006; Alawneh et al., 2011). In order to improve animal

welfare, intelligent weighing methods are gradually populated

with the help of measuring tools such as sensors and computer

vision technology (Tasdemir et al., 2011; Nyalala et al., 2021;

Sant’Ana et al., 2021). Generally, morphological traits information

is extracted from images of cows to obtain relevant body

size or area parameters. Subsequently, the weight of the

cattle is accurately predicted based on the linear or nonlinear

relationship between these parameters and weight (Cominotte

et al., 2020; Dohmen et al., 2022; Li et al., 2022; Ruchay et al.,

2022). Therefore, the use of computer vision for cattle weight

prediction has advantages in automation, processing speed, and

animal welfare.

In order to measure the morphological traits automatically,

researchers selected and defined the back area, body size or fusing

area, and height as the pre-identified features (Kuzuhara et al.,

2015; Gjergji et al., 2020; Na et al., 2022). However, measurements

based on the back area are susceptible to variations in cow

postures. Moreover, the presented area can also be influenced

by the distance between the camera equipment and the cows.

Although the measurement of body size makes use of key areas

or body parts like body width and height, heart girth, hip width,

and height and thus achieves high accuracy, expensive equipment

needs to be equipped at different aspects and angles accordingly,

which is not applicable to housing farms (Qiao et al., 2019; Du

et al., 2021; Zhang et al., 2021; Dang et al., 2022). Instead, the

method integrating area and height takes advantage of three-

dimensional size information of cows and becomes an accurate

and reliable measurement, which is also consistent with the favorite

indicators of experienced farmers for weight estimation artificially.

For this purpose, besides the reference cards and image processing

software (Ozkaya and Bozkurt, 2008; Weber et al., 2020a), different

computer vision methods have been attempted to calculate the

body areas and height including the Euclidean distances (Weber

et al., 2020b), EfficientNet, ResNet, Recurrent Attention Model

(Gjergji et al., 2020). Moreover, considering the strong correlation

between the body parameters from the images and cattle weight,

the regression-based machine learning methods, for instance,

multiple linear regression (MLR) (Freund et al., 2006), support

vector machine (SVM) (Boser et al., 1992), backpropagation (BP)

neural network (Hakem et al., 2022) were used to predict the

body weight.

In practical applications, traditional segmentation algorithms

or machine vision algorithms face challenges in accurately

extracting contours due to factors such as cubicle sheds,

feces-contaminated ground, and variations in illumination.

Overcoming these challenges is crucial to ensure the accuracy

of body parameters. While previous studies have made

significant contributions to cattle weight prediction in different

ways, there is still a need for a comprehensive system that

integrates low-cost hardware resources and enables accurate

and automatic real-time weight estimation. The advancements

in deep learning, particularly in semantic segmentation and

instance segmentation technologies, present new opportunities

for precise body image segmentation, thus facilitating the

application of computer vision technology in livestock

weight measurement (Borges Oliveira et al., 2021; Dohmen

et al., 2021; Witte et al., 2021; Duan et al., 2023; Hou et al.,

2023).

Semantic segmentation methods have demonstrated

remarkable capabilities in image analysis tasks, especially in

scenarios where precise delineation of object boundaries is

essential. In the context of livestock weight measurement,

semantic segmentation is particularly advantageous in providing

a pixel-level understanding of the cow’s physical structure.

This study specifically employs semantic segmentation to

extract fine-grained features, such as body shape and the

precise positions of different body parts. This approach

surpasses traditional segmentation methods by providing a

pixel-level representation of the cow’s physical structure. The

resulting segmentation information enables the extraction

of key body size parameters, including length, width, and

height. By incorporating these detailed segmented parameters

into weight prediction models, the aim is to enhance the

accuracy of weight estimations by providing additional

contextual information.

The motivation behind selecting semantic segmentation lies

in its capability to offer high-resolution, detailed information

about the cow’s physical characteristics. This detailed information

is instrumental in improving the precision of weight prediction

models. By adopting state-of-the-art semantic segmentation

models, the goal is to achieve a non-invasive, automated

method for obtaining accurate body parameters. The subsequent

integration of regression-based machine learning methods

further refines weight predictions. The proposed approach

aims to facilitate the automatic acquisition of objective

sensory data from multi-view images, reducing the reliance

on manual intervention while ensuring accurate and reliable

weight predictions.
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2 Materials and methods

2.1 Data collection and annotation

The experimental data of this study were collected from private

farms in Jiangxi Province, China. The ages of cows ranged from

4 to 23 months, which were weighed using a scale to record their

actual weight. The Sony FDR-AX40 camera was selected to capture

the top-view and back-view images of 55 cows in the natural

environment of barns. The top-view data was taken within the field

of view of one cow body length where the camera was about 2.5m

from the ground and could be moved in the direction parallel to

the cattle. The camera was fixed 1.5m above the ground and 2.3m

away from the cows while collecting the back-view data, so that the

horizontal field of view was 2–2.5 cattle width.

The resolution of top-view and back-view frames was 3,840 ×

2,160 pixels. To reduce the equipment calculation, the frames were

normalized in proportion and then resized to 704 × 1,216 pixels

for top view and back view respectively. The dataset in this paper

includes 550 images for top-view and 550 images for back-view,

in which the training data and testing data for both top-view and

back-view were randomly selected at a ratio of 8:2.

While the prediction of cattle body weight is intricately tied to

various indicators such as body length, height, width, rump height,

and rump width, individually calculating these indicators proves

cumbersome (Dohmen et al., 2022; Zhao et al., 2023).Moreover, the

automatic application of these calculations in breeding barns often

leads to significant errors. Therefore, this paper takes the practical

application into consideration and explores to integrate the body

length, width, and hip width into the area in the top view and the

body height as well as the hip height into the area in the back view

of the cow body respectively.

Since the supervised semantic segmentationmethods were used

in this work, the graphical image annotation tool, Labelme, that

supports annotation for semantic and semantic segmentation was

used to label the contour of cows (Russell et al., 2008). When the

json files generated by Labelme were converted to the mask files,

the bites of mask files stored in 16 bits needed to be converted to 8

bites, which can be read by OpenCV in the model. Figure 1 shows

the image labeling of top view and back view.

2.2 Semantic segmentation method for
cow body parameters

The proposedmethod adopted in this paper built upon state-of-

art semantic segmentationmodels to extract the cow body contours

and obtain precise pixels of key parts. By leveraging the strengths

of both semantic segmentation and object detection, the proposed

semantic segmentation model employed the encoder-decoder

architecture to integrate the high-level and low-level features of

images and finally produced precise contour coordinates, object

classes, and binary masks for predictive statistical parameters. The

overview of the proposed pipeline is shown in Figure 2.

To improve the model’s generalization and robustness,

data augmentation techniques were implemented during the

training stage on the annotated dataset. These techniques

encompassed various transformations applied to the images,

including rotation, scaling, and flipping, thereby simulating

different viewing angles and orientations. By introducing such

variations, data augmentation expanded the dataset and introduced

diversity, enabling the model to learn effectively across various

scenarios and enhance its performance on unseen data. The

encoder and decoder components served as critical elements in

the proposed model for processing the input image and generating

a high-resolution semantic segmentation map. The encoder

extracted high-level semantic features using a backbone, ResNet-

101-D, and captured multi-scale contextual information through

the employment of an Atrous Spatial Pyramid Pooling (ASPP)

module (Chen et al., 2017). The decoder refined segmentation

outcomes by fusing low-level spatial information from the early

layers of the backbone with the high-level semantic information

obtained from the ASPP module. Subsequently, the fused feature

map undergone pixel-wise classification to yield a high-resolution

semantic segmentation map.

2.2.1 ResNet-101-D
The selection of a suitable model architecture is crucial for

achieving high performance in computer vision tasks. In this

regard, ResNet-101-D has been chosen due to its exceptional

performance in various computer vision tasks and its ability to

handle complex visual data (He et al., 2019). This architecture

is a modified version of the widely used ResNet-101 (He et al.,

2016) that incorporates the concept of “deep supervision” to apply

intermediate supervision for guiding the training process. This

approach involves adding auxiliary classifiers to the intermediate

layers of the network, which facilitates the flow of gradients

and helps in better convergence during training. In comparison

to the ResNet-101, the ResNet-101-D architecture introduces a

modification to the ResNet-101 architecture by incorporating

a 2 × 2 average pooling layer with a stride of 2 before

the convolutional layers. This modification results in a larger

receptive field, which enables the network to capture more

contextual information and improve its ability to handle complex

visual data.

In the context of cow weight prediction based on semantic

segmentation, the ResNet-101-D has the potential to enhance

segmentation accuracy by selectively emphasizing informative

features and suppressing less informative ones. This approach can

lead to improved boundary localization of cow instances in images,

ultimately contributing to enhanced weight prediction accuracy.

As illustrated in Figure 3, the introduction of a 2 × 2 average

pooling layer with a stride of 2 before the convolutional layers

in the block of ResNet-D leads to a downsampling of the input

feature maps by a factor of 2, effectively reducing their spatial

dimensions. This downsampling process expands the receptive

field of subsequent convolutional layers, enabling them to capture

a greater extent of global contextual information. Additionally,

the downsampling operation reduces the computational cost of

subsequent convolutional layers by reducing the number of input

feature maps. The pooling layer also aids in decreasing the number

of parameters in subsequent convolutional layers, potentially

preventing overfitting, and enhancing generalization performance.
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FIGURE 1

The image labeling of top view and back view. (A) Top-view. (B) Back-view.

FIGURE 2

The proposed semantic segmentation model for body size parameters extraction.

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1299169
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Xu et al. 10.3389/frai.2024.1299169

FIGURE 3

The architecture of a block of ResNet and ResNet-D. (A) ResNet. (B) ResNet-D.

2.2.2 ASPP-SE
To achieve accurate weight prediction based on visual features,

it is essential to capture global contextual information and segment

cow instances of varying sizes within images. The ASPPmodule is a

convolutional neural network component that enables the network

to capture multi-scale contextual information, making it highly

effective for object detection and segmentation (Chen et al., 2017;

Ding et al., 2023). It utilizes multiple parallel atrous convolutions

with different dilation rates to capture features at various spatial

resolutions, enabling the network to identify objects of different

sizes. However, in the complex agricultural settings, it may not

always capture themost informative features relevant to cowweight

prediction. To address this limitation, a combination of the ASPP

module with the Squeeze-and-Excitation (SE) module is proposed

to enhance the accuracy of the semantic segmentation model

for cow weight prediction (Hu et al., 2018), which emphasizes

informative features while suppressing less relevant ones through

feature recalibration using a gating mechanism. These informative

features encompass visual cues and patterns directly correlated with

cow weight, such as size, posture, or specific anatomical features of

the cow within the images.

The incorporation of the SE mechanism into the ASPP module

allows for the selective emphasis of the most informative features

of the extracted features through a channel-wise weighting scheme.

This results in the mitigation of the impact of irrelevant or noisy

features that may not be associated with cow weight. The SE

mechanism achieves this by reducing the spatial dimensions of the

feature maps to 1 × 1 using a global average pooling operation,

followed by a squeeze operation that decreases the dimensionality

of the feature maps in the channel dimension. The excitation

operation then selectively amplifies the informative features while

suppressing the less informative ones. The resulting sigmoid

activation function produces a channel-wise weighting mask that

highlights the informative features of the input feature maps.

2.2.3 Decoder and segmentation head
The decoder module begins by performing an upsampling

operation, which increases the size of the feature map to

match that of the input image. Deconvolution, also known as a

deconvolution layer, is employed as the upsampling technique.

Deconvolution achieves upsampling by applying a convolution

operation to the feature map, effectively enlarging its dimensions.

The deconvolution layer incorporates learnable parameters that

adapt the feature transformation during upsampling by learning

specific convolutional kernel weights.

Following the upsampling process, the decoder’s output is fused

with the low-level features from the backbone network. This fusion

operation aims to combine contextual information with the lower-

level features. To maximize the utilization of the low-level features

within the encoder, skip connections are introduced within the

decoder. These skip connections connect the corresponding level

feature maps from the encoder to the corresponding level feature

maps in the decoder. By establishing these connections, the decoder

can integrate the low-level feature information with the high-level

contextual information, ultimately enhancing the accuracy of the

semantic segmentation process.

The segmentation head serves as the final layer of the model

and is responsible for transforming the feature map generated by

the decoder into the ultimate semantic segmentation prediction.
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It consists of a convolutional layer and a pixel classifier. The

convolutional layer performs crucial adjustments to the number

of channels or the resolution of the feature map to meet the

specific requirements of the semantic segmentation task. This

adaptation enables the model to effectively extract informative

features and capture contextual information from the image data.

On the other hand, the pixel classifier assigns each pixel to

its corresponding semantic category, thus achieving pixel-wise

semantic segmentation.

2.3 Weight prediction based on
regression-based machine learning
methods

In this study, a combination of five indicators was employed

to predict cow weight, namely the areas of top-view and back-

view of the cows, the height of the top-view shooting distance

from the cow, back-view shooting distance from cattle, and the

cow’s age. The areas of first two views were obtained by the

proposed segmentation algorithm applied to the images of cows

captured from various angles. These indicators served as input with

corresponding weight as the target output, to train regression-based

machine learning methods for weight prediction. Specifically, BP

neural network, Support Vector Machine (SVM), Decision Tree

(DT), Multiple Linear Regression (MLR), and Gaussian Regression

(GR) were compared using various evaluation metrics to assess

their performance.

BP neural network is a popular type of feedforward artificial

neural network that utilizes the backpropagation algorithm to

update the weights by minimizing the error between actual and

predicted outputs during supervised training (Rumelhart et al.,

1986). This approach enables the network to model complex non-

linear relationships and make accurate predictions. The regression

model for a neural network can be represented as:

Y = f
(

w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + b
)

Here, Y is the target variable (weight). f is the activation

function, and w1, w2, w3, w4, and w5 are the weights. x1, x2, x3, x4,

and x5are the input features, and b is the bias.

SVM is a widely used supervised learning algorithm in

classification and regression tasks (Boser et al., 1992). It aims

to identify an optimal hyperplane that maximally separates data

points of different classes or predicts target values with the largest

margin while minimizing the prediction errors. SVM is a powerful

and versatile algorithm, capable of handling non-linearly separable

data through the kernel trick. The goal of SVM regression is to

find a function that minimizes the difference between predicted and

actual values. The regression function can be expressed as:

Y =

n
∑

i

αiK(Xi,X)+ c

Here, αi represents the coefficients of support vectors. Each

support vector has a corresponding coefficient, indicating the

importance of that support vector in the model. K(Xi,X) is the

kernel function, and this function measures the similarity between

the input sample X and the support vector Xi from the training

data. c is the bias and represents the average deviation between the

predicted and actual values.

DT is a hierarchical model utilized for classification and

regression tasks (Quinlan, 1986). It segments the data space

iteratively based on feature values, producing a tree-like structure

where decision points are represented by nodes and leaf nodes

signify the predicted outcome. DTs offer interpretability and ease

of visualization.

MLR is a widely used statistical method for modeling

the relationship between a dependent variable and multiple

independent variables (Freund et al., 2006). It assumes a linear

relationship between the variables and estimates the coefficients

for each independent variable by minimizing the residual sum

of squares. The method is highly interpretable and can provide

insights into the relationships between variables. The regression

equation for MLR takes the form:

Y = β0 + β1Z1 + β2xZ2 + β3xZ3 + β4xZ4 + β5Z5

Here, Z1, Z2, Z3, Z4, and Z5are the predictor variables and β1,

β2, β3, β4, and β5 are the regression coefficients.

GR is also referred to as Gaussian Process Regression (Goldberg

et al., 1997), is a non-parametric and probabilistic technique

for modeling and predicting complex relationships. This method

assumes a prior distribution over functions and updates it with

observed data to obtain a posterior distribution. The resulting

posterior distribution provides a probabilistic prediction of the

output variable given the input data. GR is known for its flexibility

inmodeling various types of relationships, whichmakes it a popular

choice in many applications.

2.4 Evaluation metrics

To assess the effectiveness of the proposed semantic

segmentation method for extracting cattle body parameters,

various commonly used evaluation metrics are utilized. The

evaluation metrics used in this study are Intersection over Union

(IoU), Accuracy, Frames Per Second (FPS), Average FPS (aFPS),

Mean Intersection over Union (mIoU), and Mean Accuracy

(mAcc). IoU measures the degree of overlap between the predicted

mask and the ground truth mask. On the other hand, mIoU

calculates the average degree of overlap between the predicted

and ground truth masks. These metrics are frequently used to

measure the accuracy of segmentation methods (He et al., 2021;

Xu et al., 2021; Sheu et al., 2022). Accuracy is a measure of the

proportion of correctly predicted pixels to the total number

of pixels in the image. Meanwhile, mAcc measures the mean

pixel-wise accuracy over the testing dataset. These metrics provide

additional information on pixel-wise segmentation performance.

FPS and aFPS are important for real-time applications since they

measure the number of frames processed per second and the

average FPS over the entire testing dataset respectively. These
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metrics are essential for determining the efficiency and practicality

of the proposed semantic segmentation method.

IoU =
Area of Intersection

Area of Union

Accuracy

=
True Positive + True Negative

True Positive + True Negative +False Positive + False Negative

FPS =
1

Time Per Frame

aFPS =
Total number of frames

Total Time

mIoU =

∑

IoU for each class

Number of classes

mAcc =

∑

Accuracy for each class

Number of classes

For regression-based methods analysis for weight prediction,

a range of metrics are used to assess the model’s overall accuracy

and fit to the data. In this study, four widely used metrics

are employed including root mean square error (RMSE), mean

squared error (MSE), mean absolute error (MAE), and coefficient of

determination (R-squared) (Chicco et al., 2021; Algarni and Ismail,

2023; Bansal and Singh, 2023). These metrics are computed using

the following equations.

R2 = 1−

∑

(yi − ŷi
(

At , Ab, Ht , Hb, Age
)

)
2

∑
(

yi − ymean

)2

RMSE =

√

∑

(yi − ŷi
(

At , Ab, Ht , Hb, Age
)

)
2

n

MSE =

∑

(yi − ŷi
(

At , Ab, Ht , Hb, Age
)

)
2

n

MAE =

∑

|yi − ŷi
(

At , Ab, Ht , Hb, Age
)

|

n

where At and Ab represent the areas of the top-view and back-

view of the cow, Ht and Hb are the heights of the top-view and

back-view shooting distances, and Age denotes the age of the

cow At .

3 Results and discussion

3.1 Semantic segmentation performance
analysis

Accurate extraction of cattle body size parameters is crucial

for reliable weight prediction, and this heavily relies on the

performance of the semantic segmentation model. In this study,

the proposed model was comprehensively evaluated, and the

results were compared with those obtained from leading semantic

segmentation algorithms. The main objective is to highlight the

potential of the proposed model as a reliable and robust tool

for extracting the body size parameters of cattle within complex

environments, which can be used to enhance the accuracy of

weight prediction.

The training of the proposed model involves a meticulous

selection of parameters to achieve optimal segmentation

performance. A batch size of 8 was employed to balance

memory constraints and computational efficiency during training.

The initial learning rate was set to 0.001, implementing the ’poly’

learning rate policy to dynamically adjust the learning rate based

on the epoch for improved convergence. The model was trained for

50,000 iterations, ensuring sufficient iterations for the network to

learn meaningful representations. Figure 4 illustrates the loss curve

and validation accuracy curve during the training process. To

augment the dataset and enhance the model’s robustness, random

horizontal flipping and random scaling were applied during

training. Additionally, weight decay of 0.0005 was employed to

regularize the model and prevent overfitting. The choice of these

parameters was determined through empirical experimentation to

strike a balance between model generalization and computational

efficiency. The comparison experiments were conducted using

the uniform parameter settings, encompassing both batch size

and image augmentation techniques. Moreover, all experiments

underwent optimization to achieve their peak performance.

3.1.1 Evaluation of feature extraction network
To assess the suitability of the backbone network used in

this study, a thorough comparison was conducted among four

different ResNet architectures, namely ResNet 50, ResNet 101,

ResNet-50-D, and ResNet-101-D. The purpose of this analysis was

to determine which ResNet architecture would provide the best

semantic segmentation results for the cattle body size parameter

extraction task.

The findings presented in Table 1 indicate that ResNet-101-

D outperforms the other architectures across all the evaluated

metrics, with a 0.1% increase in mAcc and a 0.3% increase in mIoU,

compared to the second-best performing architecture, ResNet-50-

D. Although ResNet-101-D exhibited slightly lower FPS and aFPS

values, the performance gains in other metrics justify this trade-

off. While ResNet 50 had the highest FPS and aFPS, it achieved

the lowest accuracy and IoU among the four architectures. ResNet

101 performed well and had scores similar to ResNet-101-D, but

with slightly lower scores in IoU, mIoU, and mAcc. These results

suggest that the ResNet_vd architectures, which replace the 7 ×

7 convolution in the input stem with three 3 × 3 convolutions
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FIGURE 4

The training loss curve and validation accuracy curve. (A) Training loss curve. (B) Validation accuracy curve.

and add a 2 × 2 avg_pool with stride 2 before the convolution

in the downsampling block, are effective at improving semantic

segmentation results. The results underscore that ResNet-101-D is

capable of capturing a wider range of distinct features, leading to

highly accurate and reliable semantic segmentation results for the

task of cattle body size parameter extraction.

Numerous studies have explored the performance of the

ResNet-101-D model in comparison to other architectures across a

wide range of tasks. For instance, ResNet-101-D has demonstrated

superior performance in image classification (Kang et al., 2021),

object detection (Deep learning based UAV type classification),

and semantic segmentation tasks (Wu et al., 2020). It is worth

noting that the trade-off between performance and speed should be

carefully considered, depending on the specific application of the

semantic segmentation task. In this work, ResNet-101-D appears

to be the most suitable architecture for segmenting cattle body

size parameters, considering its superior performance in IoU and

accuracy, which are critical metrics for semantic segmentation.

However, ResNet-50-D and ResNet 50 can also provide high

performance and may be more suitable for tasks that require

higher FPS and aFPS values. For example, in an intelligent spraying

system, real-time processing is critical for ensuring timely and

accurate detection and tracking of fruit disease (Storey et al., 2022).

3.1.2 Ablation study of the attention mechanism
The inclusion of attention mechanisms has been shown to

improve the segmentation performance of deep neural networks

by enabling them to selectively focus on prominent regions

while suppressing irrelevant information (Wang and He, 2022).

This study compares three commonly used attention mechanisms

namely, SE, Efficient Channel Attention (ECA) (Wang et al.,

2020b), and Convolutional Block AttentionModule (CBAM) (Woo

et al., 2018) on the dataset used in the experiment. Compared to

the SE module utilized in this paper, the ECA module aims to

enhance inter-channel correlations for more effectively capturing

information across channels. It achieves this by introducing a

lightweight 1D convolution operation, computing channel weights

position-wise to reflect the inter-channel correlations. On the other

hand, the CBAM module takes a holistic approach by considering

both channel and spatial dimensions of attention. It comprises two

components: a channel attention module and a spatial attention

module. The channel attention is implemented through the SE

module, while spatial attention weights different spatial positions

by leveraging inter-channel correlations.

The analysis of Table 2 indicates that the SE attention

mechanism surpasses other attention mechanisms, such as ECA

and CBAM, in enhancing semantic segmentation performance.

The SE mechanism produced significant improvements in critical

metrics, including IoU and accuracy, achieving the highest values

for both cattle back (0.946) and cattle body (0.962), as well as

0.974 and 0.984 accuracy values for cattle back and cattle body,

respectively. These enhancements represent a 0.5% and 0.6%

increase in mIoU and mAcc compared to the model without

attention. In contrast, both ECA and CBAM exhibited performance

improvements relative to the model without attention but fell

short in overall performance compared to the SE mechanism.

This indicated that the channel and spatial attention mechanisms

employed by ECA and CBAM were not as effective in capturing

the most relevant features in the context of semantic segmentation,

particularly for cattle body size parameter extraction.

The observed discrepancies in performance metrics among the

attention mechanisms can be ascribed to their distinct underlying

structural characteristics. The superior performance of the SE

mechanism can be attributed to its ability to capture critical

features effectively, resulting in higher IoU and accuracy values

for both cattle back and cattle body. However, the SE mechanism

had slightly lower FPS (9.1) and aFPS (6.5) values than the

attention-less model. Nonetheless, the trade-off between improved
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TABLE 1 Performance comparisons of di�erent ResNet networks.

IoU Accuracy FPS aFPS mIoU mAcc

Cattleback Cattlebody Cattleback Cattlebody Cattleback Cattlebody

ResNet 50 0.936 0.958 0.966 0.981 12.3 4.9 8.6 0.947 0.974

ResNet 101 0.937 0.959 0.974 0.982 9.2 3.9 6.6 0.948 0.978

ResNet-50-D 0.941 0.960 0.972 0.983 12.2 4.9 8.6 0.951 0.978

ResNet-101-D 0.946 0.962 0.974 0.984 9.1 3.9 6.5 0.954 0.979

TABLE 2 Performance comparisons of three attention mechanisms.

IoU Accuracy FPS aFPS mIoU mAcc

Cattleback Cattlebody Cattleback Cattlebody Cattleback Cattlebody

None 0.939 0.953 0.970 0.975 10.3 4.6 7.5 0.946 0.973

SE 0.946 0.962 0.974 0.984 9.1 3.9 6.5 0.954 0.979

ECA 0.941 0.955 0.971 0.978 9.4 3.5 6.5 0.948 0.975

CBAM 0.944 0.959 0.973 0.980 9.3 3.4 6.4 0.952 0.977

TABLE 3 Performance comparisons with typical algorithms.

IoU Accuracy FPS aFPS mIoU mAcc

Cattleback Cattlebody Cattleback Cattlebody Cattleback Cattlebody

PSPNet 0.941 0.960 0.970 0.981 9.8 5.0 7.4 0.951 0.976

PSANet 0.940 0.959 0.973 0.981 8.7 4.4 6.6 0.950 0.977

OCRNET 0.936 0.960 0.972 0.980 11.5 8.1 9.8 0.948 0.976

HRNET 0.938 0.960 0.968 0.979 12.0 10.2 11.1 0.949 0.974

The proposed

method

0.946 0.962 0.974 0.984 9.1 3.9 6.5 0.954 0.979

segmentation performance and slightly lower FPS and aFPS values

was considered acceptable. This can be explained by the increased

computational complexity introduced by the SE mechanism, as it

learns to focus on essential features in the input data. Therefore,

the SE attention mechanism in this work was selected as the

most favorable choice for the semantic segmentation model under

investigation, providing more accurate and reliable results.

3.1.3 Comparisons with typical algorithms
To further validate the advanced capabilities of the algorithm

proposed in this study, a comparative analysis was performed

against state-of-the-art algorithms commonly used in the field,

namely PSPNet (Zhao et al., 2017), PSANet (Zhao et al., 2018),

OCRNET (Yuan et al., 2020), and HRNET (Wang et al., 2020a).

These algorithms were chosen due to their prominent standing in

the field and their demonstrated efficacy in similar tasks including

fruits segmentation (Qiao et al., 2022; Qi et al., 2022), land

segmentation (Yuan et al., 2021), crop and weed segmentation

(Huang et al., 2021; Yang et al., 2023).

A thorough analysis of Table 3 highlights the superiority of

the proposed method in accurately extracting cattle body size

parameters compared to other four well-established algorithms.

The proposed method achieved the highest IoU values for

both cattle back (0.946) and cattle body (0.962), indicating its

exceptional segmentation performance. Moreover, it attained the

top accuracy values of 0.974 and 0.983 for cattle back and cattle

body respectively, which outperformed the second-best algorithm,

PSPNet, by 0.5% and 0.2% in IoU, and 0.4% and 0.2% in accuracy.

Furthermore, the proposedmethod excels in terms of mIoU (0.954)

and mAcc (0.979), emphasizing its overall effectiveness in the cow

body segmentation tasks. Although the FPS (9.1) and aFPS (6.5)

values of the proposed method are slightly lower than some of the

other algorithms, the superior performance in segmentation quality

compensates for the reduced frame rates. This trade-off signifies

the model’s ability to balance computational efficiency with highly

accurate cattle body size parameter extraction.

The proposed algorithm exhibited robustness and

generalizability in practical and challenging scenarios, as evidenced

by its consistent performance and adaptability. In contrast, the

competing algorithms showed varying degrees of limitations in

handling complex and challenging instances, resulting in decreased

performance particularly in cases involving complex instances,

as shown in areas marked with yellow rectangles in Figure 5.

Such instances may involve intricate object shapes, occlusions, or

challenging backgrounds. The proposed algorithm in this study

was designed to address the specific requirements of practical

applications for obtaining the cattle body size parameters, making
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FIGURE 5

Comparisons of segmentation results using various models. (A) Image. (B) Ground truth. (C) HRNET. (D) OCRNET. (E) PSPNet. (F) PSANet. (G) The

proposed method.
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TABLE 4 Error analysis of di�erent weight prediction models on training

samples.

Model R2 RMSE MSE MAE

MLR 0.98 35.01 1,225.72 28.44

DT 0.95 53.31 2,841.80 37.09

SVM 0.98 35.67 1,272.42 28.19

GR 0.97 40.87 1,670.18 31.59

BP 0.99 22.00 483.85 18.48

it a highly promising choice for real-world implementations.

Therefore, it is crucial to subject the latest algorithms to extensive

testing and validation in various practical scenarios prior to their

application to ensure its effectiveness and applicability.

3.2 Regression-based weight prediction
analysis

This work conducted an investigation into the performance of

MLR, DT, GR, SVM, and BP neural network models for predicting

cattle weights using a combination of image-derived cattle body

area parameters, individual age and shooting distances as input

variables. The models were trained and evaluated using a dataset

consisting of actual cattle weights as the target variable and the

aforementioned input variables.

This analysis aimed to evaluate the performance of the

models in estimating weight values based on the provided input

features and assess its potential for practical applications in weight

prediction. The coefficient of determination,R2, serves as ameasure

of the goodness of fit of the regression models. It indicates the

proportion of variance in the predicted cattle weights that can

be explained by the input variables. Higher R2 values signify a

stronger correlation and a better fit between the predicted and

actual weights.

As presented in Table 4, various evaluation metrics were

calculated to assess the performance of different regression models

based on the predicted and actual weights of the training samples.

The results of the analysis indicated that the BP neural network

model achieved the highest goodness of fit among the evaluated

regression models for predicting individual beef cattle weights.

With an R2 value of 0.99, the BP neural network model exhibited

a strong correlation between the predicted and actual weights.

Furthermore, it demonstrated the lowest MAE of 18.48 pounds

and RMSE of 22.00 pounds, indicating its superior accuracy and

precision in weight prediction.

Following the BP neural network, both the MLR and SVM

models exhibited favorable performance. These models achieved

R2 values of 0.98 and MAEs of 28.44 pounds and 28.19 pounds,

respectively. The corresponding RMSE values were 35.01 pounds

and 35.67 pounds, respectively. These results suggest a good

fit between the predicted and actual weights, albeit slightly

less accurate compared to the BP neural network model. The

Gaussian process regression model demonstrated relatively lower

performance compared to the aforementioned models, yielding

an R2 value of 0.97, an MAE of 31.59 pounds and an RMSE of

40.87 pounds. Although it exhibited a weaker fit, the model still

provided reasonable predictions of individual cattle weights. The

DT regression model presented the lowest goodness of fit among

the evaluated models, with an R2 value of 0.95. It also presented a

higher MAE of 37.09 pounds and a larger RMSE of 53.31 pounds,

indicating less accurate predictions compared to the other models.

Figure 6 presents the fit between predicted and actual weights

for regression models using training samples. The analysis revealed

that the BP neural network produced predictions that closely

aligned with the actual weights, as evidenced by the actual weights

clustering around the ideal predicted values. This observation

signified a strong fit between the predicted and actual weights.

In addition, both the SVM and MLR models exhibited similar

patterns. The majority of actual weight values clustered around the

predicted values, with only one or two outliers deviating from the

expected trend. In contrast, the GR and DTmodels exhibited larger

errors overall, particularly when predicting weights exceeding 800

pounds. This instability highlights the limitations of these models

in accurately predicting individual cattle weights.

To further validate the prediction performance of the BP neural

network model, this study employed testing samples to evaluate

regression models for comparisons, as illustrated in Figure 6 and

Table 5. The findings in Figure 6 indicate that both the SVM and

BP neural network models exhibited superior prediction results on

the testing samples. Table 5 further revealed that these two models

yield smallerMAEs and RMSEs compared to the othermodels. This

can be attributed to their robust nonlinear mapping capabilities,

which enable them to capture complex nonlinear relationships and

effectively reflect the fuzzy relationship between various indicators

and weight, resulting in enhanced adaptability compared to linear

and other nonlinear models. This advantage alleviates the need

for excessive concern about collinearity issues among indicators,

ultimately leading to higher prediction accuracy.

However, it is worth noting that the optimization objective of

the BP neural networkmodel is based onminimizing empirical risk,

which may lead to potential convergence to local optima during

training, thus resulting in less stable test results. Therefore, further

validation with an increased sample size would be beneficial. On the

other hand, SVM regression follows the principle of structural risk

minimization, ensuring better generalization ability of the model.

The model’s small sample learning approach and convergence to

the global optimum contribute to its superior performance on the

test samples compared to the training samples.

Consistent with the findings obtained from the training

samples, the prediction performance of the testing samples

followed a similar pattern. However, the performance of MLR,

GR, and DT models was slightly degraded on the testing samples

compared to the training samples. The maximum absolute error

observed in the test samples was higher than that in the

training samples, which could be attributed to the smaller size

of the testing sample or inadequate generalization ability of

the models.

Additionally, Figure 7 illustrates that the absolute errors

between predicted and actual weights for all five weight prediction

models were more prominent when the individual weight of cattle

exceeded 800 pounds. This can be explained by the decelerated

growth rate that typically occurred after 12 months of age. It should
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FIGURE 6

Comparisons of predicted weight and actual weight (pounds) on training samples. The ideal predicted values, where the predicted weight equals the

actual weight, are denoted by a black solid line. The actual weights are represented by blue dots. (A) MLR. (B) DT. (C) SVM. (D) GR. (E) BP.
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TABLE 5 Error analysis of di�erent weight prediction models on testing

samples.

Model R2 RMSE MSE MAE

MLR 0.97 45.69 2,087.58 34.39

DT 0.89 60.24 3,628.86 39.75

SVM 0.97 29.86 891.62 28.97

GR 0.93 52.31 2,736.34 34.58

BP 0.98 22.73 516.59 13.11

be noted that the weight range of 800 pounds fell within the

timeframe of 12–18 months, during which the growth rate of cattle

tended to decrease. Consequently, the models may face challenges

in accurately capturing the complex growth patterns and specific

characteristics associated with this weight range. Additionally,

the limited number of samples available above 800 pounds in

this study further restricts the models’ ability to fully learn and

generalize the weight variations in this specific range. Considering

the overall performance, the BP neural network model emerged as

the preferred choice for predicting cattle weights.

The trained BP neural network utilized the Levenberg-

Marquardt backpropagation algorithm to model the complex

relationships within the dataset. The final regression model

obtained consists of 10 hidden layer neurons. The weights and bias

connecting each input variable to the hidden layer neurons are

shown in Table 6. Each row in the weight matrix corresponds to

a hidden layer neuron, and each column corresponds to a specific

input variable. The positive and negative signs of the weights

indicate the direction of influence, while the magnitude of the

weights reflects the strength of that influence. Additionally, the bias

parameters associated with each hidden layer neuron contribute to

the overall predictive power of the neural network.

To illustrate the impact of semantic segmentation method

improvements on the final weight prediction, this study conducted

a weight prediction analysis on the testing set using a segmentation

method without the inclusion of an attention mechanism. The

results are presented in Table 7. In contrast to the results presented

in Table 5, the results suggest that the absence of an attention

mechanism led to a decrease in the performance of all weight

prediction models. Specifically, there is a noticeable decrease in

R2 and an increase in RMSE, MSE, and MAE, emphasizing

the beneficial impact of attention mechanisms on improving the

accuracy of weight estimation. Furthermore, in alignment with

the segmentation results that include attention mechanism, the

BP neural network consistently exhibits superior performance in

weight prediction accuracy compared to other models.

4 Limitations and future work

This study presents a promising approach for predicting cattle

weight based on semantic and BP neural network, however, there

are several limitations that need to be addressed. These limitations

provide valuable insights for future research and development in

this field.

The first limitation pertains to the quality and uniformity of

the image data used in the study. Despite employing advanced

techniques such as the ResNet-101-D model with the SE

mechanism for image processing, uncontrollable environmental

factors, such as background clutter, could introduce noise into the

data, potentially impacting the accuracy of the models. This finding

aligns with previous research (Zhang et al., 2022), which discussed

similar challenges in machine learning for animal recognition.

Variations in lighting conditions and certain postures adopted

by the animals, such as standing on their back feet, further

exacerbated these issues. Additionally, accurate segmentation of

the legs and head from back views proved challenging, which

added complexity to the image analysis process. Moreover, as

highlighted by Johnson and Smith in their work regarding the

camera quality and its impact on image-based machine learning

models, camera quality and stability can significantly influence the

quality of the collected data, ultimately affecting the performance

of the models. The use of automated measurement techniques

or advanced imaging technologies, such as 3D scanning or

infrared imaging, will improve the accuracy and reliability of

the data.

A substantial limitation observed in the study is the

decline in model performance with increasing cattle weight,

particularly weights exceeding 800 pounds. This limitation stems

from a relative scarcity of data in this weight range in the

dataset, leading to an imbalance that hampers the model’s

learning efficacy. As discussed in the detrimental impact of data

imbalance on model performance (Buda et al., 2018; Johnson

and Khoshgoftaar, 2019), future studies should aim to collect

a larger and more diverse dataset that encompasses a wide

range of cattle breeds, ages, and geographic locations. This

would improve the generalizability of the weight prediction

model and enhance its applicability to different populations.

The current limitation on the size of the testing dataset affects

the robustness of the statistical inferences drawn from the

regression model. To address this concern, future studies will

prioritize the inclusion of a more extensive testing dataset to

ensure the reliability and validity of the statistical analyses

performed. A larger testing dataset would contribute to more

robust statistical evaluations, increasing the confidence in the

model’s predictive performance and the overall findings of the

regression analysis. Additionally, exploring the unique growth

patterns and characteristics of cattle exceeding 800 pounds

might necessitate distinct modeling approaches or features for

accurate prediction. Future research endeavors will also consider

incorporating statistical tests, such as T-tests, to evaluate the

significance of observed differences in model performance. This

additional statistical scrutiny would provide a more comprehensive

understanding of the model’s performance and contribute to the

overall rigor of the study.

The optimization objective of the BP neural network model,

based on empirical risk minimization, poses another limitation.

Convergence toward local optima is a well-established challenge

in the machine learning community, as noted by LeCun et al.

(2015). This issue can impact the stability and generalizability of the

predictions across diverse datasets or cattle populations. Exploring

alternative optimization strategies or algorithms, such as stochastic

gradient descent, Adam optimizer, or simulated annealing, could be
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FIGURE 7

Comparisons of predicted weight and actual weight (pounds) on testing samples. The perfect prediction is represented by the alignment of the black

solid line and the blue dots on the graph, indicating an accurate prediction where the model precisely estimates the weights. (A) MLR. (B) DT. (C)

SVM. (D) GR. (E) BP.
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TABLE 6 BP neural network weight matrix and bias for feature variables.

Age Top-view
height

Top-view
area

Back-view
distance

Back-view
area

Bias

Neuron 1 −0.7168 1.7498 1.0712 0.2550 0.0099 2.2288

Neuron 2 1.5923 1.4301 −0.0613 −0.3326 −0.1688 1.9718

Neuron 3 −1.0202 1.1312 1.1350 −0.2815 0.2398 −1.1727

Neuron 4 1.4218 0.1317 1.2314 −1.2518 1.6771 0.4229

Neuron 5 0.3109 0.8227 0.1027 −1.3699 −1.2313 −0.0952

Neuron 6 −1.6136 −0.8355 1.2502 1.4542 −0.4391 0.4524

Neuron 7 −0.5799 0.2280 1.3392 1.4404 0.3207 −0.0802

Neuron 8 −0.8586 2.2939 −1.1279 −1.1543 0.3060 −1.1329

Neuron 9 1.0519 0.6161 0.3122 1.1347 1.0746 −2.2368

Neuron 10 0.8432 0.7209 −0.8869 −1.3034 0.4020 2.0389

TABLE 7 Weight prediction error analysis on testing samples without

attention mechanism.

Model R2 RMSE MSE MAE

MLR 0.95 48.86 2,387.30 43.22

DT 0.88 63.08 3,979.60 56.59

SVM 0.96 32.41 1,050.41 30.47

GR 0.91 60.90 3,708.93 53.48

BP 0.96 25.32 641.10 18.75

a potential future direction to overcome the convergence challenges

faced by the BP neural network model.

The reliance on static variables such as body area parameters,

individual age, and shooting distances in the current study may

not fully capture the dynamic nature of cattle weights. Factors such

as dietary habits, seasonal changes, health conditions, and genetic

predisposition, which are known to influence cattle weights, were

not considered in the analysis. Therefore, it is important for future

research to focus on integrating multiple sources of data to provide

a more comprehensive understanding of the factors influencing

cattle weight. By incorporating these additional modalities into the

prediction model, the accuracy and precision of weight estimations

can be enhanced. This integration of diverse data sources will

enable a more holistic approach to livestock weight prediction and

contribute to more accurate and reliable outcomes.

The images presented in the dataset predominantly feature

single cows from an optimal viewing angle, which may not fully

represent the challenges encountered in real-world cattle farm

environments. The accurate detection of the proper view, such as a

back-view, of a cow for weight estimation within images containing

multiple cows remains a challenge. Future work should also focus

on validating the model on a larger scale and conducting field

tests in real-world farming environments. This validation process

will provide an opportunity to evaluate the model’s performance

under diverse conditions and ascertain its effectiveness in practical

scenarios. Collaborating with farmers and industry stakeholders is

vital in this regard, as their expertise and feedback can offer valuable

insights and ensure that the model meets the specific needs and

requirements of the agricultural community.

The precision and dependability of segmentation outcomes

are closely tied to the caliber of human-conducted labeling.

In this study, the visual precision of the annotations in the

ground truth may seem rudimentary and might not faithfully

represent intricate details. The creation of the ground truth

involves human judgment, thereby presenting the possibility of

inaccuracies and predispositions. In future research endeavors,

addressing the limitations associated with human-dependent

ground truth annotation will be paramount. One potential avenue

for improvement involves exploring automated or semi-automated

annotation methods to enhance the accuracy and granularity of

segmentation results.

5 Conclusion

Accurate and efficient measurement of animal weight plays

a pivotal role in various aspects of livestock production, health

monitoring, animal welfare and stress reduction. In this study,

we presented a non-contact and intelligent weight prediction

approach for cows using computer vision and machine learning

techniques. This method utilized image analysis and machine

learning algorithms to estimate the weight of cows by measuring

their external morphological features. By leveraging semantic

segmentation techniques, precise boundaries and outer contours

were extracted from cow images, which were subsequently utilized

to train a regression-based model for weight prediction.

The application of pixel-level segmentation using the ResNet-

101-Dmodel with the SE mechanism allowed for precise extraction

of cattle body size parameters, which served as essential inputs for

weight prediction. Extensive evaluation revealed that the ResNet-

101-D model exhibited superior performance and demonstrated

its suitability for the task at hand. The incorporation of the SE

mechanism yielded significant improvements in both accuracy

and IoU metrics. The adaptive recalibration enabled by the SE

mechanism enhanced the model’s ability to capture fine-grained

details and accurately segment cattle bodies.
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For weight prediction, the BP neural network model was

selected due to its commendable performance. It demonstrated

a high level of accuracy in predicting individual cattle weights,

particularly within the available weight range. However, the model’s

performance showed a slight decline when predicting weights

exceeding 800 pounds, which can be attributed to the limited

amount of data in this weight range. It is postulated that the

paucity of data for weights within this range induced an imbalance,

consequently impacting the learning efficacy of the model. This

is consistent with similar constraints observed in extant literature

(Ou and Murphey, 2007; Yu et al., 2021). Future research should

focus on acquiring more data and dynamic factors in this range to

enhance the model’s performance.

The findings of this study contribute to the field of computer

vision and provide a valuable tool for accurate cattle weight

prediction, enabling advancements in livestock management

and agricultural practices. Future research can explore the

generalizability of the proposed approach to other animal

species and investigate its potential for integration into real-

world applications.
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