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Mesoscale eddies, which are fast-moving rotating water bodies in the ocean

with horizontal scales ranging from 10 km to 100 km and above, are considered

to be the weather of the oceans. They are of interest to marine biologists,

oceanographers, and geodesists for their impact on water mass, heat, and

nutrient transport. Typically, gridded sea level anomaly maps processed

from multiple radar altimetry missions are used to detect eddies. However,

multi-mission sea level anomaly maps obtained by the operational processors

have a lower e�ective spatiotemporal resolution than their grid spacing and

temporal resolution, leading to inaccurate eddy detection. In this study, we

investigate the use of higher-resolution along-track sea level anomaly data

to infer daily two-dimensional segmentation maps of cyclonic, anticyclonic,

or non-eddy areas with greater accuracy than using processed sea level

anomaly grid map products. To tackle this challenge, we propose a deep neural

network that uses spatiotemporal contextual information within the modality

of along-track data. This network is capable of producing a two-dimensional

segmentation map from data with varying sparsity. We have developed an

architecture called Teddy, which uses a Transformer module to encode and

process spatiotemporal information, and a sparsity invariant CNN to infer a two-

dimensional segmentation map of classified eddies from the ground tracks of

varying sparsity on the considered region. Our results show that Teddy creates

two-dimensional maps of classified eddies from along-track data with higher

accuracy and timeliness when compared to commonly used methods that work

with less accurate preprocessed sea level anomaly grid maps. We train and test

our method with a carefully curated and independent dataset, which can be

made available upon request.
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1 Introduction

Detecting ocean eddies is an important task because they can

have significant impacts on ocean circulation andmarine life. These

gyrating currents cause a poleward heat transport and an upwelling

of salt and nutrients (Conway et al., 2018) throughout the ocean,

influencing the distribution of organisms and the productivity of

marine ecosystems. Eddies also amplify sea-air fluxes of water vapor

and energy. Therefore, detecting mesoscale eddies can also provide

valuable information for weather forecasting and ocean navigation.

Eddies as part of the dynamic ocean can be easily seen

and tracked by infrared and other sensors from space. In radar

altimetry, sea surface heights are measured that contain features

(highs or lows) of an eddy within the satellite footprint. The current

research on eddy detection infers results either from gridded

sea level anomaly (SLA) maps that are processed from multiple

radar altimetry missions (Lguensat et al., 2018), from sea surface

temperature (SST) grid maps (Moschos et al., 2020), from both

(Zhao et al., 2023), or other grid map observations (Xia et al.,

2022). Along-track (AT) altimetry data capture the instant sea-level

heights at the time of measurement. In particular, high-frequency

ocean variability is well preserved on the AT data. The operational

processors generate multi-mission SLA grid maps with a lower

effective spatial and temporal resolution compared to their grid

spacing and temporal resolution. Thus, compared to smoothed

and resolution-degraded two-dimensional altimetry maps, AT data

have both spatial and temporal advantages in detecting eddies.

SST map products usually have higher resolution but are more

unreliable in inferring features that expose eddies, resulting in

error-prone eddy detection. Especially for detecting cyclonic eddies

of the northern hemisphere from SST maps, there is a lower

performance due to weaker cyclonic signatures (Moschos et al.,

2020). Conversely, AT data consist of one-dimensional SLA data

along with exact spatiotemporal information of each measurement.

Although data from multiple ATs could be represented as a two-

dimensional grid map, the resulting problems such as cross-

track errors and areas without SLA information and, therefore,

sparse feature maps impede the processing within conventional

neural networks. For example, these problems would lead to high

gradients within a two-dimensional grid map in conventional

convolutional neural networks (CNNs) such as a U-Net as they rely

on data without gaps or jumps. Moreover, it poses a challenge to

use the spatiotemporal information of each sample in the map.

In this study, we aim to answer the research question of

whether it is possible to utilize raw observational AT data instead

of relying on highly correlated and preprocessed two-dimensional

SLA grid maps for the accurate detection and classification of

mesoscale ocean eddies. For this study, we infer a two-dimensional

segmentation map of classified cyclonic (CE) and anticyclonic

eddies (AE) from raw observational AT SLA data. We aim to

tackle the aforementioned challenges that come with AT data,

such as cross-track errors and varying sparsity, by avoiding the

use of conventional CNNs. Instead, we use a Transformer module

for encoding the spatiotemporal information of the tracks and a

sparsity invariant CNN. This model is trained on a dataset that is

first generated by the py-eddy-tracker algorithm and then carefully

curated by photointerpretation of SLA and SST grid maps for the

removal of falsely annotated eddies. We support our claims by

testing our method’s results, which include not only segmentation

maps but also semantics, only on AT positions. This evaluation

is carried out using metrics such as the Dice score, recall, and

precision on independent reference data. It is generated through

photo interpretation of a time series of SST grid maps overlaid on

eddy candidates produced by a preliminary CNN that uses SST data

as an input. See Figure 1 for an overview of Teddy’s architecture.

To summarize, our approach is able to (i) show that cleaning

the error-prone reference data using photointerpretation of SLA

and SST grid maps leads to improved model training and

eddy classification from SLA ground tracks, (ii) infer daily two-

dimensional segmentation maps of classified eddies from one-

dimensional AT data in near real-time with higher accuracy

than using conventional methods by exploiting the spatiotemporal

context from coordinates and timestamps of the observations, and

(iii) deal with ground tracks of different lengths. These claims are

supported in this study by our experimental evaluation in Section 5.

While powerful methods, such as the U-Net architecture

(Ronneberger et al., 2015) or the Vision Transformer (Dosovitskiy

et al., 2020), exist for semantic segmentation of images or other

two-dimensional gridmaps in deep learning, they rely on processed

data where information about fine structures, such as eddies,

dissipates. To our knowledge, this study represents the first

instance of directly employing AT radar altimetry data for eddy

detection prior to gridding. This novel approach we propose in this

study therefore significantly enhances the field of eddy detection

and classification.

2 Related work

2.1 Eddy detection and classifying

Automatic eddy detection can be traced back to the

development of oceanographic research and the use of various

remote sensing techniques. Traditional methods mainly use

algorithms that are either geometrical contour-based or physical

parameter-based. A popular representative of physical parameter-

based algorithms is the Okubo-Weiss parameter method (Weiss,

1991), which demands high expert knowledge and region-specific

parameters to ensure accurate detection. In addition, the results are

sensitive to noisy sea-level anomaly data (Chelton et al., 2007). In

terms of geometric contour-based methods, Chelton et al. (2011)

conducted the most notable research. Closely related to it is the

py-eddy-tracker (Mason et al., 2014) that was used to generate the

reference data used in this study.

A recent approach for our analysis involves the use of

CNNs, which have already been used to detect eddies using two-

dimensional SLA or sea surface height (SSH) (Lguensat et al.,

2018; Santana et al., 2020), sea surface temperature (SST) (Moschos

et al., 2020, 2022b), both (Zhao et al., 2023), or other grid map

observations (Xia et al., 2022). In most cases, such as in the study

of Lguensat et al. (2018), a special CNN, known as U-Net, has been

used, which is a state-of-the-art method for semantic segmentation

of two-dimensional data has been used. A similar U-Net was

presented in a study conducted by Franz et al. (2018) among others

comparing itself to another neural network architecture.
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FIGURE 1

Overview of Teddy. The along-track data with its spatiotemporal information are the input that are fed first into a Transformer module to process the

spatiotemporal context (see Section 4.1). The resulting sparse feature map that is inferred in the positional decoding (see Section 4.2) is then

processed in a sparsity invariant convolutional neural network (see Section 4.3) to finally generate a segmentation map of classified eddies.

However, these methods rely on two-dimensional SLA grid

maps as input data, which is problematic since operational

processors create multi-mission (processing level 4) SLA grid maps

with an effective spatiotemporal resolution far lower than their grid

spacing and temporal resolution. The creation of SLA grid maps

can lead to error-prone eddy detection, as mentioned in the study

of Lguensat et al. (2018). Another possibility for eddy detection

is the usage of SST maps. Although SST grid maps are generally

available in higher resolution, the products can have area-wide gaps

due to clouds or may represent an analysis of the daily average SST

from multiple sources (CMEMS, 2021). Comparing SLA and SST

data in the same area shows some degree of discrepancy between

eddy appearances and positions. Studies, such as Moschos et al.

(2022b), that rely on simulated data where modalities such as SST

and SLA are simulated with the same high accuracies show that

groups of eddies can hide behind one single falsely detected eddy

in the SLA data of much lower effective resolution. Owing to the

disagreement in the data, different and independent reference data

of eddies should be used for eddy detection.

2.2 Eddy reference data generation

There is a scarcity of independent and accurate reference

data, mainly because physical parameter-based or geometry-based

algorithms from independent data sources, such as from SST grid

maps, can generate eddy center positions (Dong et al., 2011);

however, for reference data generation, eddy shapes are also

required.

Architectures, such as the EddyNet, from other studies

(Lguensat et al., 2018) are trained and evaluated with annotated

data that are generated using conventional eddy detection

algorithms such as the py-eddy-tracker that relies on the Okubo-

Weiss parameter method (Weiss, 1991) on height maps such as

SSH or SLA grid maps. While the method is well established

and utilized in ocean data products (Pegliasco et al., 2022), the

effective resolution of the input data that the method relies on

is between 150 km to 200 km in the gulf stream area [see the

quality information document of CMEMS (2023)]. This spatial

resolution is far lower than their grid spacing of 1◦ and less than

even larger eddies. Furthermore, due to the accumulation of data

over multiple days, the effective temporal resolution is lower than

the provided temporal product resolution of 1 day. When used in

any eddy detection method, an unknown number of eddies will go

undetected, while an unknown number of so-called ghost eddies

will be detected. These ghost eddies occur when smaller structures

aggregate into one smooth object that can be easily mistaken for

an eddy.

2.3 Transformer and signal processing

The effective resolution of SLA AT data is higher than the

one from the SLA grid maps, but, due to its different modality,

the intrinsic spatial context of a regular grid map is missing and

therefore cannot be used in eddy detection methods that utilize

them in CNNs, as demonstrated by Lguensat et al. (2018). To utilize

the spatiotemporal context that is occurring in AT data, we use the

Transformer module instead.

Transformers come from the field of Natural Language

Processing (NLP) (Vaswani et al., 2017), which suit the modality

of one-dimensional AT data since both process arrays of data of

varying intrinsic contexts to each other. In the field of image-based

analysis and interpretation, this methodology was first introduced

with the Vision Transformer by Dosovitskiy et al. (2020) and

demonstrated the abilities of Transformers by outperforming a

state-of-the-art neural network on numerous classification tasks

within the field of remote sensing (Aleissaee et al., 2023) and

environmental sciences (Mousavi et al., 2020; Yang et al., 2022). The

latter utilizes the SWIN Transformer (Liu et al., 2021) that became

popular for combining the benefits of both Vision Transformers

and CNNs in image recognition tasks.

In the field of deep learning, one particularly notable method

for one-dimensional signal processing is the long short-term

memory (LSTM) network (Hochreiter and Schmidhuber, 1997).

This network has demonstrated its ability to achieve state-of-the-

art results using unprocessed one-dimensional data (Rußwurm and

Körner, 2020).

2.4 Sparsity invariant CNNs

The Transformer encoder output has the same dimensionality

as the input, which is a one-dimensional array of AT SLA

data, expanded to a second dimension corresponding to the

dimensionality of the Transformer module. For every data point in
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this array, latitudes, longitudes, and timestamps are also available

and are used to transform the AT SLA data into a grid with

Cartesian coordinates as a preparation for following methods that

lead to a desired two-dimensional segmentation map. Studies

such as Liu et al. (2018) demonstrate that CNNs are unable to

model the coordinate transform task. They offer a solution by

concatenating coordinate channels to the input layer, but this

approach is insufficient for our sparse data in this study.

Additionally, due to the sparsity of AT data within our study

site, a resulting two-dimensional feature map will also be sparse.

Even though a conventional two-dimensional convolutional neural

network will struggle with this map, studies such as that of Zweig

and Wolf (2017) introduce the ability to interpolate data gaps

within the two-dimensional array. Jampani et al. (2016) used

bilateral filters to handle inputs of irregular sparsity, but this

approach requires guidance information and is computationally

expensive. Uhrig et al. (2017) introduced weighting to the

convolutional layer depending on the sparsity itself. This weighting

results in an invariancy to the sparsity of the data. Since our AT data

can vary a lot in the sparsity, it is deemed to be useful and will be

investigated in our experiments.

3 Data

3.1 Study site

3.1.1 Sea level anomaly along-track data
For this study, AT data of SLA from the Copernicus Marine

Environment Monitoring Service (CMEMS, 2020) were used from

00:00:00 h of 1 January 2017 to 23:59:00 h of 31 December

2019. This data product processes data from all altimeter missions

available to CMEMS, including various Sentinel and Jasonmissions

as well as the Saral/AltiKa, Cryosat-2, Topex/Poseidon, ERS-1,

ERS-2, and Envisat missions. The chosen region is within the

western Gulf stream area of the northern Atlantic with latitudes

8min = 16◦N and 8max = 56◦N and longitudes 3min = 260◦

and 3max = 320◦. A sample of these data is shown in Figure 1 in

which 1 test day (7 January 2017) is shown with all AT data within a

time frame of± 7 days that is used as an input into our architecture.

The ground tracks of the AT data depend on the different satellite

orbits, which result in varying coverage and sparsity of the data in

every considered area and day.Within one AT, two observations are

typically distanced from each other by approximately 0.05◦ or 5 km

on the ground track with approximately 10 s of time difference. In

this region, there is a large occurrence of dynamic mesoscale eddies

(Dong et al., 2022) along the gulf stream as well as in different water

bodies such as the Gulf of Mexico.

3.1.2 Sea level anomaly and sea surface
temperature grid map data

For the original reference data generation, we used SLA grid

maps. These are daily gridded (Level 4) sea level anomaly data

from multiple missions from CMEMS with a spatial resolution of

0.25◦ × 0.25◦ from the same time and region (CMEMS, 2023).

For our photointerpretation methods, we used SST data from

CMEMS (2021) within the same study area. With 0.05◦ × 0.05◦,

these grid maps have a much higher resolution, and they will aid as

additional information in the photointerpretation steps described

in Sections 3.2.1 and 3.2.2.

3.2 Annotation generation

Formodel training and evaluation, we created two datasets. The

first reference dataset is created based on SLA data and the py-eddy-

tracker. It is annotated with the three classes [0: No Eddy (NE), 1:

Anticyclonic Eddy (AE), 2: Cyclonic Eddy (CE)]. We further reduced

the number of false positives of the AE and CE classes within this

py-eddy-tracker product, which includes ghost eddies. This method

is described in Section 3.2.1. To further evaluate our method, we

created an independent reference dataset that is not based on the

py-eddy-tracker and an SLA grid map product. For this dataset

creation, we used SST data and photointerpretation, as described

in Section 3.2.2.

3.2.1 Training and validation annotation data
generation

In addition to the SLA data, as described in Section 3.1.2, we

created a corresponding set of segmentation masks for training

and validating our framework. For that, we use the py-eddy-

tracker on SLA data which is a geometric-based method to

infer the boundaries of the eddies. The contours are transformed

into indexed segmentation maps with three classes: 0: No Eddy

(NE), 1: Anticyclonic Eddy (AE), and 2: Cyclonic Eddy (CE).

These annotations are available in the form of a two-dimensional

segmentation map that we utilize completely. As mentioned earlier,

we train and validate our architecture on reproduced and predicted

two-dimensional shapes of eddies. Hence, we not only train and use

annotations on the ground tracks of the AT data alone but also train

a model for a segmentation grid map that can be valuable for future

analysis. A sample day of reference data throughout the whole study

area can be seen in Figure 2.

This reference dataset is used for training and validation

purposes only. As mentioned earlier, these data are produced

from two-dimensional SLA grid maps, which can lead to errors

in eddy detection. We reduced the errors by a process using a

photointerpretation method (see Figure 3 for an overview).

The first predictions of segmentation maps are produced by a

U-Net CNN (Bolmer et al., 2022) similar to that used by Lguensat

et al. (2018), trained on the data from this study area. Then, every

eddy in the reference data is compared to the prediction. If no pixel

of one class in the model output is present in the prediction, this

mismatch will be evaluated manually to determine whether there is

indeed an eddy at this location. A close-up of the supposed eddy

is shown with its SST and SLA data to aid the decision. If the

photointerpretation finds no eddy, the reference data are updated.

With this method, we cleaned the reference data from false

negatives of class NE as well as false positives of classes AE and

CE, which corresponds to the mentioned ghost eddies. In total,

we removed 2.1% of AE and 1.3% of CE annotations. However,

this reference dataset still originates from and depends on the py-

eddy-tracker output. This introduces bias, rendering the dataset
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FIGURE 2

Sample of data from 7 January 2017 12:00 ± 7 days within the study area with the borders 8min = 16◦N, 8max = 56◦N, 3min = 260◦ and 3max = 320◦

from which input data are sampled along with the respective reference data. For this time frame, 83,000 observations are available. (A) Along-track

sea level anomaly data of the whole study area within a time frame of 7 January 2017 ± 7 days. (B) Reference data produced by utilizing the

py-eddy-tracker. Blue: Anticyclonic Eddy (AE), Red: Cyclonic Eddy (CE).

FIGURE 3

Overviews of the reference data cleaning process and test reference generation process both using photointerpretation. (A) Reference data cleaning

process using photointerpretation. A U-Net model output trained on our basis reference dataset is matched to the same reference data. If there is a

mismatch, manual photointerpretation will be performed with the help of SST and SLA data to decide on the removal of the eddy. (B) Generation

process of the reference data for testing. Neural network models create candidates of eddies of di�erent classes. With manual photointerpretation,

the size of the eddy can be adjusted and a label can be assigned. Afterwards, the results will be added to the test reference dataset.

suboptimal as a test dataset to fairly compare methods with each

other. For a smaller but independent reference dataset, we use a

different method, as described in the following Section 3.2.2.

3.2.2 Test data generation
For testing our approach and comparing it to other methods,

an accurate and independent test dataset is produced. This product

consists of daily two-dimensional segmentation maps of the three

classes 0: No Eddy (NE), 1: Anticyclonic Eddy (AE), and 2: Cyclonic

Eddy (CE) within the testing region from 1 January 2017 to 4

February 2017. In this method, we use photointerpretation on eddy

candidates produced by a U-Net that utilizes the SST grid-map data

as an input in addition to the output generated by AT SLA data. An

overview of the test data generation method is shown in Figure 3.

For both eddy classes, we first generate two grid maps each

from an additional trained U-Net model output that uses SST

grid maps as an input. These grid maps are produced with a

softmax layer at the end in a way that they represent a probability

of each pixel or grid point for the classes AE and CE. With a

given probability threshold, candidates within the region are shown

individually on top of the currently considered day of SST data for

photointerpretation. The threshold affects the eddy area since the

predictions of the grid point’s probabilities are either included or

excluded to the candidate. To this extent, the probability threshold

is adjustable to be able to align the prediction with the visually

assessed eddy size. For easier interpretation, the past and future 2

days of SST grid maps can be shown as well. With this visualization,

it can be decided if the given candidate’s pixels should be annotated

as NE, AE, CE, or Unclear. After displaying all candidates, a blank
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test reference dataset is updated, and the next day’s iteration can be

presented to the interpreter.

We decided to annotate eddies only when there is no

uncertainty for the interpreter, which will lead to a number of

missing eddies but makes sure that there are no false positives. As a

result, a model will tend to predict a larger number of eddies than

what is present in the reference data. This will lower the Dice score,

making it less informative compared to a metric such as recall.

The recall metric is not influenced by false positives but rather

focuses on the true positives of a class and their alignment with

the prediction. We therefore will evaluate all mentioned metrics

and expect a segmentation performance that is represented by Dice

score with even larger values for the recall, since it benefits from the

method’s ability to predict the manually detected existing eddies.

4 Model architecture

To infer two-dimensional segmentation maps of classified

eddies from ATs, we introduce several modules (see Figure 1 for an

overview of all modules). We further define a 4 × G-dimensional

matrix X(0) = [x(0), xt, xlat, xlon]T that represents each AT and

consists of SLA data x(0) each with a time xt, latitude xlat, and

longitude stamp xlon.

First, the spatiotemporal context of the AT data is encoded

and processed with a Transformer module (Section 4.1). The

encoded features X(3) are transformed into a feature map X(4).

With its first two dimensions, this map corresponds to the

desired two-dimensional segmentation map covering the currently

considered two-dimensional sea surface area using the latitude and

longitude information from the observation data. An additional

third dimension is used for the features from the Transformer

module to be stored for each grid position.

This feature map X(4) is then fed into a sparsity invariant

CNN module (Section 4.3) that decodes the feature map into a

two-dimensional segmentation map of classified eddies. Utilizing

a sparsity invariant CNN is necessary due to the resulting sparsity

of the map since not every grid point will have been covered by at

least one ground track observation, and the sparsity itself can vary

a lot, depending on how many satellites were observing within the

given time frame and region.

4.1 Transformer module

The Transformer module is introduced to process the vector of

SLA data x(0) ∈ R
1×G along with its spatiotemporal information

that is a time stamp xt ∈ R
1×G as well as latitude xlat ∈ R

1×G

and longitude xlon ∈ R
1×G of the satellite’s trace during respective

observations g ∈ [1 . . .G]. For an overview of this module (see

Figure 4).

A first linear layer is applied on x(0) that expands this one-

dimensional input vector of SLA ground track observations with

the length G to the dimension G × D of the Transformer model

dimension resulting in a matrix X(1) ∈ R
G×D as the output.

To provide the Transformer with the information on the time

and location of the input data, it is processed in a spatiotemporal

encoding similar to the positional encoding introduced by Vaswani

et al. (2017). The spatiotemporal information consists of three

vectors xlat, xlon, and xt of length G. Each vector is being

normalized to values between 0 and 1 according to their given

boundaries [φmin,φmax] ∈ [8min . . . 8max] and [λmin, λmax] ∈

[3min . . . 3max] (3.1.1). From that normalization step, it follows

that only relative times and positions are considered. Then, each

spatiotemporal coordinate φg ∈ xlat, λg ∈ xlon and tg ∈ xt is used to

calculate an encoded vector p
pos
g of length ⌊D3 ⌋ with the sinusoidal

functions

pθ
g,2i = sin

(

θ

10000

2i

⌊ D3 ⌋

)

pθ
g,2i+1 = cos

(

θ

10000

2i

⌊ D3 ⌋

)

,

(1)

with i ∈ [1 . . . ⌊D/3⌋] and θ ∈ [φ, λ, t]. The resulting vectors

p
φ
g , p

λ
g and ptg are concatenated to a vector pg of length D. If D/3

is not an integer, the vector will be padded with zeros to reach

the dimension D. The padding is done for every observation g ∈

[1 . . .G], resulting in the positional encoding matrix P ∈ R
G×D

that represents each spatiotemporal coordinate of the ground track

observations (see Figure 4).

In a next step, the positional encoding P will be added to the

Transformer input with a factor q:

X(2) = X(1) + qP (2)

The resulting matrix X(2) is the input of the Transformer

encoder module TL,N,D. It consists of L identical Transformer layers

that each have N heads in the multi-head attention block. The

number of expected features D sets the dimension of the linear

layers and the Transformer model:

X(3) = TL,N,D(X
(2)) (3)

A layer normalization is applied after each Transformer layer.

4.2 Positional Decoding

The output of the Transformer X(3) ∈ R
G×D is decoded into D

grid maps that correspond to the area that is being observed within

the given latitude and longitude boundaries φmin, φmax, λmin and

λmax.

For that decoding, a tensor X(4) ∈ R
D×H×W with grid map

height H and widthW is calculated that has the entries

x
(4)
h,w

=

∑G
g=1 x

(3)
g (⌈φgH⌋ = h, ⌈λgW⌋ = w)

Oh,w
, (4)

with x
(3)
g ∈ X(3) of each observation g being summed up if its

rounded spatial coordinates ⌈φgH⌋ and ⌈λgW⌋match with the grid

point coordinates h and w and being averaged independently by

dividing the sum by the number of occurrences Oh,w at this grid

point. The Transformer depth D is preserved with the expectation

that important features are encoded for the respective position on

the grid map.
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FIGURE 4

Transformer module architecture overview and visualization of the positional encoding. (A) Overview of the Transformer module along with the

positional encoding before and the positional decoding after the Transformer encoder. The positional decoding transforms the two-dimensional

features (G× D) into a two-dimensional grid map (H×W) with its features spanning into a third dimension of size D. (B) Visualization of a sample of

the positional encoding matrix P. Here: D = 512, G = 1024. Each row represents the positional encoding of one observation g ∈ G.

4.3 Sparsity invariant CNNs

The resulting tensor can vary in its sparsity, depending on the

chosen AT data size G, how much area is covered by land, and

what resolution the AT observations were taken. In this case, a

conventional CNN decoder would generate pronounced gradients

and high values from features representing gaps. These elevated

values could overshadow pertinent features within the network,

rendering their extraction more challenging. Therefore, a sparse

invariant CNNmodule (Uhrig et al., 2017) is being introduced (see

Figure 5).

The input is a tensor X(5) ∈ R
D×H×W , and in each of the

eight layers, the tensor will be reduced in depth until the output

X(13) ∈ R
3×H×W can infer a segmentation map with three classes

(0: no eddy, 1: AE, 2: CE).

Each layer considers a sparsity mask and, depending on the

occupancy of the mask, the layer will be normalized and the mask

will be updated with a max pooling operation in the same way as

described in Uhrig et al. (2017). After each layer except the last, the

tanh activation function and layer normalization are applied.

5 Experiments

For the experiments conducted in this study, the Teddy

architecture is fully utilized as described in Section 4 and shown

in Figure 1. The architecture contains the Transformer (see Section

4.1) for treating the AT data in a spatiotemporal context and a

sparsity invariant CNN module (see Section 4.3) that processes

the feature map of varying sparsity into a segmentation map of

classified eddies. The setup of Teddy and comparison methods

in our experiments are specified in Section 5.1. The results are

compared to the methods in other studies described in Section

5.2, and the performance and advantage of using each block are

evaluated in Section 5.3.

5.1 Experimental setup

5.1.1 Teddy architecture setup
For the choice of parameters for the architecture setup of Teddy

and its training procedure, we undertook an empirical investigation

involving the systematic manipulation of the hyperparameter

values to assess their influence on the model’s performance when

evaluated on our validation dataset. The training process of the

model was carried out by optimizing the Dice-loss using the

AdamW optimizer with a learning rate of 10−5, a batch size of

8, and a dropout rate of 5%. Convergence of both the loss values

from the training set and the Dice scores of the validation set was

achieved after 3,800 epochs.

For the input of our architecture Teddy, we choose a number

of G = 4, 000 observations, which is a compromise between

two factors. On the one hand, a higher number leads to a

larger attention map that represents calculated weights of each

observation to each other one within the Transformer TL,N,D(X
(2))

and therefore grows quadratically in computations with every

additional observation. On the other hand, a lower number leads

to a sparser feature map due to a lower density of observations that

covers the considered region. The area that is considered for the

input is limited byH = W = 64 grid points, each with a resolution

of 0.25◦.
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FIGURE 5

Overview of the sparsity invariant CNN module. The input is a D×H×W sparse feature map which is being decoded into a H×W segmentation map

X(13) of classified eddies. Each sparsity invariant convolutional layer reduces the dimension D until D = 3 dimensions represent the probabilities of the

three classes for every grid point H×W. Between each layer, the tanh activation function and layer normalization are applied.

The positional encoding P is added to the input with the factor

q = 0.1. Own experiments show that a larger factor does not lead

to a convergence of the training, assumingly because the positional

encoding is shifting the data within the feature space too much to

be interpretable by the model. The Transformer itself consists of

D = 256 dimensions with L = 3 individual blocks that each have

N = 8 parallel multi-head attention layers that suffice the task of

processing the SLA observations together with its spatiotemporal

information.

The sparsity invariant CNN module consists of eight layers.

The input X(5) with dimension 256× 128× 128 ensures that the

features of the Transformer output are preserved. All convolutional

layers and the sizes of this setup are shown in Figure 5.

5.1.2 Comparison methods
For comparison, we additionally utilized a number of state-

of-the-art methods of different complexity. For two-dimensional

semantic segmentation, we conducted our experiments with the

commonly used method of the geometry-based py-eddy-tracker

algorithm as described in Section 3.2.1. Furthermore, we employed

a U-Net architecture that resembles the EddyNet and is set up and

trained as described by Lguensat et al. (2018). Both methods are

applied on processed two-dimensional SLA grid map data.

To our knowledge, there are no comparable studies that use

one-dimensional AT radar altimetry data directly to infer two-

dimensional segmentation maps. However, we also employed

methods that infer point-wise segmentation and classification of

one-dimensional data. This includes a generic one-dimensional

CNN that consists of eight consecutive modules each with a

convolutional layer with kernel size 5 and a ReLU activation

function. It is trained by optimizing the Dice-loss using theAdamW

optimizer with a learning rate of 10−3 and a batch size of 8.

Additionally, we trained and tested an LSTM model similar to

that of Rußwurm and Körner (2020), which encodes the SLA

AT data along with its normalized spatiotemporal information

in one setup with four bidirectional and in another setup with

four unidirectional LSTM layers. The hidden states are set up to

contain 220 features, and their forward and backward passes are

concatenated to be fed into one dense linear output layer to segment

and classify each AT data point. Furthermore, to compare the one-

dimensional segmentation output to a method of low complexity,

we implemented a k-nearest neighbors (k-nn) algorithm with

Euclidean distances and k = 75, which we found best suited by

empirical investigation. The input length of the AT data throughout

all comparison methods is again G = 4, 000.

5.2 Result evaluation compared to
di�erent methods

With this setup, the model is trained on the dataset from 16

March 2017 to 31 December 2019 with annotations generated as

described in Section 3.2.1 and is tested on the data from 1 January

2017 to 4 February 2017 generated as described in Section 3.2.2.

A sample prediction with the respective input AT observations is

shown in Figure 6.

We compared our results with the results from the py-eddy-

tracker, the EddyNet (Lguensat et al., 2018), and a generic CNN.

All methods are evaluated on two-dimensional reference data. For

methods that use AT data as an input, the semantics only on the

tracks are additionally evaluated. As a basis, the class-wise and

mean Dice score, precision, and recall are calculated. Optimally,

training on the cleaned reference data would lead to a decreased

amount of false negatives, i.e., pixels, where the model predicts

NEs that were labeled as AEs or CEs in the reference data since

for the cleaned reference data set it was attempted to be freed of

wrongly labeled AEs and CEs. The test data are generated with the

aim to have a high rate of occurring AEs or CEs at the cost of some

missing eddies that were too uncertain to annotate as such. The

recall is sensitive to a change in these false negatives andmakes it an

important metric to consider. An overview of all resulting metrics

with the different methods can be seen in Table 1.

Evaluating the test dataset Teddy achieves a mean Dice score

of 59.3% over all three classes, with the score outperforming

that achieved from other methods such as the geometry-based

algorithm py-eddy-tracker and the CNN-based EddyNet with Dice

scores of 57.1% and 55.8%, respectively.

The ability to detect areas with no eddies is the highest here with

a Dice score of 92.2%, which is also the case throughout all methods

for this class. This performance for NE is also similar to other

methods with a Dice score of 91.7% with the EddyNet and 91.3%

with the py-eddy-tracker. The classes AE and CE are more difficult

to infer correctly with Dice scores of 39.0% and 46.5%, respectively.
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FIGURE 6

Input observations, sparse feature map, test and training reference data, and prediction of one sample day (10.01.2017) of the region chosen for

evaluation. (A) Each dot represents one observation of sea level anomaly with the respective timestamp and coordinates within the given spatial and

temporal (± seven days) constraints. (B) Reference data for testing retrieved by photointerpretation (red: AE, blue: CE) overlayed on the sparse

feature map (light red). (C) Reference data for training retrieved with the py-eddy-tracker (red: AE, blue: CE) overlayed on the sparse feature map

(light red). (D) Prediction of Teddy (red: AE, blue: CE) overlayed on the sparse feature map (light red).

Just as in other methods that use SLA data (Lguensat et al., 2018;

Santana et al., 2020), there is a difference in the performance to

detect either CEs or AEs. For our method evaluated on the region

of the northern hemisphere, CEs are slightly easier to classify than

AEs. However, the difference of almost 7.5% is higher than that in

other research studies.

A CNN-based architecture such as the EddyNet performs very

well with a Dice score of 87.4% when tested on a reference data

set generated the same way as the training reference data set,

as it was done in the study of Lguensat et al. (2018). Though

it is important to note that this architecture uses the same two-

dimensional SLA grid maps as an input that is used for reference

data generation this architecture is rather trying to reproduce the

py-eddy-tracker algorithm than to detect eddies more accurately. As

a result, the performance of the EddyNet drops to 55.8%when using

the test reference dataset, as there are fewer annotated eddies in the

reference dataset than the highly correlated and preprocessed SLA

grid maps would imply.

Comparing a sample reference and prediction such as those

shown in Figures 6, it is apparent that Teddy tends to infer

AEs and CEs conservatively, i.e., an eddy is often only classified

when there is also a corresponding eddy in the reference

data. Therefore, the recall could be a more sensitive metric

to show the difference between both reference datasets. With

the test reference, the model infers an output with a recall

of 66.9%.

Comparing Teddy’s output sample with those from other

methods shows that, in some cases, an eddy is identified by Teddy
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TABLE 1 Performances of di�erent works [Teddy, py-eddy-tracker (Mason et al., 2014), and EddyNet (Lguensat et al., 2018) for two-dimensional

segmentation map outputs as well as an LSTMmodel (Rußwurm and Körner, 2020), a baseline CNN, and a k-nearest neighbors algorithm for

one-dimensional segmentation outputs].

Method Dice score [%] Precision [%] Recall [%]

Teddy 59.3 (92.2, 39.0, 46.5) 58.8 (93.4, 42.3, 40.8) 66.9 (91.3, 46.9, 62.6)

Py-Eddy-Tracker 57.1 (91.3, 39.8, 40.1) 56.6 (93.2, 42.7, 33.8) 65.0 (89.7, 47.9, 57.3)

EddyNet 55.8 (91.7, 36.1, 39.8) 56.7 (92.8, 43.6, 33.7) 61.6 (90.7, 38.5, 55.7)

Teddy (AT only) 59.4 (91.8, 39.3, 47.0) 58.8 (93.1, 42.6, 40.8) 67.2 (90.8, 47.3, 63.4)

LSTM (AT only) 49.0 (86.3, 25.7, 35.0) 47.6 (91.0, 25.6, 26.1) 57.6 (82.2, 30.0, 60.6)

1D CNN (AT only) 36.8 (80.3, 16.7, 13.3) 38.2 (90.4, 15.2, 9.1) 41.5 (72.5, 23.8, 28.0)

k-nn (AT only) 46.5 (92.9, 9.8, 36.7) 54.8 (89.4, 32.0, 43.1) 44.8 (96.7, 5.8, 32.0)

The deep-learning architectures are trained and evaluated on the test dataset. Dice scores, precision, and recall metrics are shown as an average over all classes as well as the respective class-wise

values (NE, AE, CE). Note that with an input of two-dimensional SLA grid maps, EddyNet is trained on reproducing the py-eddy-tracker algorithm as best as possible whereas Teddy classifies

eddies from unprocessed less error-prone Level 3 CMEMS along-track sea level anomaly data.

FIGURE 7

Investigation of the ability of Teddy to detect eddies, when there is only sparse along-track data available, compared to a py-eddy-tracker output.

Teddy predicts an eddy from the input data whereas the py-eddy-tracker did not detect one. Sea surface temperature data independently confirm

the existence of an anticyclonic eddy. (A) Input observations (top left), sparse feature map projection (top right), py-eddy-tracker output (bottom

right), and Teddy prediction (bottom left) of one sample day (01.01.2017) and region with high sparsity. (B) Close-up of the eddy area on the sea

surface temperature map, indicating an existing anticyclonic eddy.

FIGURE 8

Dice scores per day evaluated in the test area for the testing time frame (left) and the training time frame (right) on the reference dataset generated

for training and validation as described in Section 3.2.1. A seasonal pattern is visible in which the resulting Dice scores in spring are slightly decreased.
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TABLE 2 Performances of Teddy with di�erent modules disabled: 1. No positional encoding added, 2. Transformer module omitted, 3. Using

conventional CNN instead of a sparsity invariant CNN, 4. No positional Encoding, no Transformer, and using a conventional CNN instead of a sparsity

invariant CNN.

Method Dice score [%] Precision [%] Recall [%]

w/o pos. Encoding 57.6 (91.5, 35.8, 45.4) 56.4 (93.3, 37.1, 38.7) 65.7 (90.0, 44.5, 62.7)

w/o Transformer 58.2 (91.8, 37.2, 45.7) 57.5 (93.4, 41.0, 38.0) 67.0 (90.4, 44.0, 66.5)

No spars. inv. CNN 57.6 (91.7, 36.5, 44.7) 57.0 (93.3, 39.7, 37.9) 65.9 (90.3, 44.7, 62.5)

CNN only 51.9 (90.4, 23.6, 41.8) 51.7 (92.3, 29.1, 33.5) 59.5 (88.8, 24.4, 65.4)

The metrics shown are: Mean Dice scores, mean recall, and mean precision of all classes (in brackets:NE, AE, CE). Every Experiment is trained newly on the training reference dataset and tested

on the test reference dataset.

even though there was no eddy detected by the py-eddy-tracker. In

the example shown in Figure 7, the sparsity in the area is high. The

AT data show high values in this area and make it apparent by the

human eye that there is indeed an eddy. However, the output from

the py-eddy-tracker shows no annotated eddy in this area, since the

SLA grid map production process made these sparse observations

less apparent.

We also calculated the Dice score for only the pixels to which at

least one observation of the AT data can be assigned to. The goal is

to evaluate the classification performance on the AT data positions

alone and how much the sparsity invariant CNN is able to infer

eddies in areas where there are no AT data. Between the Dice scores

evaluated on the grid map and those evaluated on the ATs, there

is only a difference of 0.1%, indicating that Teddy can fill in the

data gaps with semantics sufficiently. As shown in Table 1, with a

mean Dice score of 46.5% and a mean recall of 44.8%, a baseline

method such as the k-nn algorithm is outperformed by Teddy with

a high margin since the spatiotemporal information of the input

data cannot be processed. A one-dimensional baseline CNN and

a state-of-the-art LSTM model infer a segmentation of SLA AT

data with a Dice score of 36.8% and 49.0% and a recall of 36.8%

and 41.5%, respectively. They are therefore also outperformed by

Teddy only evaluated at the GT’s positions (59.4%). In this section,

the results of the bidirectional LSTM are presented. Despite its

lower complexity, the unidirectional setup produces very similar

results with a mean Dice score of 49.4% and a recall of 57.0%.

The difference in performance compared to our method can

again be explained by Teddy’s ability to utilize the spatiotemporal

information more efficiently.

Furthermore, Dice scores are calculated for each day with the

training reference dataset, as shown in Figure 8. Here, a seasonal

pattern is visible in which the resulting Dice scores in spring are

slightly decreased. We speculate that this pattern originates in the

seasonally varying eddy activity.

5.3 Omitting the transformer module and
the sparsity invariant CNN

To investigate the ability of the Transformer to process the

spatiotemporal context, we infer a semantic segmentation map

using only a sparsity invariant CNN architecture on the sparse

feature map (see Table 2 for detailed results). Consequently, only a

meanDice score of 58.2% is achieved. The 1.1% decrease in contrast

to the full Teddy architecture can be explained by the missing

processing of the spatiotemporal context. For the same reason,

omitting the addition of the positional encoding to the Transformer

input decreases the Dice score by 1.7%. Although the spatial context

is restored by the positional decoding (see Section 4.2), the time

information is lost.

Due to the resulting sparsity on a projected two-dimensional

grid map, we utilized the method of a sparsity invariant CNN

introduced by Uhrig et al. (2017). To investigate the gain from such

a network, we compared the results of an experiment with omitted

sparsity invariant CNN with those from the default set-up. Here,

we only reach a mean Dice score of 57.6%, showing the importance

of using a CNN that specializes in sparse data.

Using a standard CNN architecture, without a Transformer

module nor sparsity invariant CNNs, a Dice score of 51.9% is

achieved. The temporal information is not utilized here and the

spatial context is only introduced through the positional decoding.

EddyNet, which is also a CNN-based architecture, has a similar Dice

score of 55.8%. The difference here is that, while EddyNet has a U-

Net structure, it utilizes two-dimensional SLA gridmaps as an input

and therefore does not have the issue of spatial data gaps.

6 Conclusion

In this study, we successfully demonstrated that along-track

sea level anomaly data can be used to create segmentation maps

of classified eddies with higher accuracy and in near real-time

compared to other commonly used methods. As also mentioned,

for example, in a study conducted by Santana et al. (2020),

it is challenging to compare different eddy detection methods

since the performance depends on the study area, data type use,

characterization, and definition of eddies along with the reference

data generation. Therefore, we compared our method to others by

evaluating them on an independent reference dataset. In addition,

we created a framework of a novelmethod that can rely on real-time

and unprocessed satellite data, without the need of using processed

CMEMS sea level anomaly grid maps that is released weeks after

the measurements. This framework increases the timeliness and

accuracy of our method as well as the ability to detect eddies that

are hidden in geometry-based methods, such as the py-eddy-tracker

and reduces the problem of error-prone reference data.

A promising research direction is a combination of along-

track data and two-dimensional observations such as sea surface

temperature or synthetic aperture radar as inputs to a multimodal

network to increase accuracy. Moschos et al. (2022a) demonstrated
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that sea level anomaly data are not entirely reliable for classifying

eddies, so it might be useful to introduce sea surface temperature

maps. However, a comprehensive reference dataset that is

independent and accurate is necessary for a proper evaluation. In

this study, we were only able to solve this problem with a rather

small test dataset. Future research will certainly help the most

in evaluating the methods more accurately to detect and classify

eddies. Our research area was limited to the gulf stream, whereas

the behavior and patterns of eddies might differ in other regions.

Another limitation is the ability to infer eddies in regions with very

sparse or no AT observations. Future research could investigate

Teddy’s performance with varying sparsity.
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