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The dual-channel graph convolutional neural networks based on hybrid features 
jointly model the different features of networks, so that the features can learn 
each other and improve the performance of various subsequent machine learning 
tasks. However, current dual-channel graph convolutional neural networks are 
limited by the number of convolution layers, which hinders the performance 
improvement of the models. Graph convolutional neural networks superimpose 
multi-layer graph convolution operations, which would occur in smoothing 
phenomena, resulting in performance decreasing as the increasing number 
of graph convolutional layers. Inspired by the success of residual connections 
on convolutional neural networks, this paper applies residual connections to 
dual-channel graph convolutional neural networks, and increases the depth of 
dual-channel graph convolutional neural networks. Thus, a dual-channel deep 
graph convolutional neural network (D2GCN) is proposed, which can effectively 
avoid over-smoothing and improve model performance. D2GCN is verified on 
CiteSeer, DBLP, and SDBLP datasets, the results show that D2GCN performs 
better than the comparison algorithms used in node classification tasks.
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1 Introduction

The introduction of Convolutional Neural Networks (CNNs) has brought significant 
improvements to these areas, such as natural language processing, video processing, and image 
classification. However, traditional CNNs can only process European spatial data such as 
image (He et al., 2016), text (Hu et al., 2014), speech (Hinton et al., 2012), etc. A non-European 
spatial data, which is graph data, has attracted much attention for its ubiquity. Many 
applications in real life can be naturally represented by graph data, such as transportation 
networks, worldwide webs, and social networks, etc. How to define CNNs on graph data is 
receiving more and more attention. Drawing on the modeling ability of CNNs to local 
structures and the ubiquitous dependencies in graph data, Graph Convolutional Networks 
(GCNs) became one of the most active research fields. With the wide application of GCNs in 
data mining, such as recommendation system (Monti et al., 2017a; Ying et al., 2018) and point 
cloud segmentation (Li et al., 2019; Wang et al., 2019), researchers will pay more attention to 
the improvement of GCNs performance.

Another key factor behind the success of CNNs is that they can design and train deeper 
CNN models. However, increasing the number of convolutional layers in the graph by GCNs 
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may cause the gradient disappearance, which means that smoothing 
occurs during backpropagation, i.e., the features of all nodes in the 
graph converge to the same value. Thus, GCNs are generally shallow 
structures that contain 2–3 graph convolutional layers. Shallow 
structures limit the performance of the model, because they cannot 
mine higher-order node information. Gradient disappearance poses 
a challenge for the deep GCNs designing.

Gradient disappearance is also a significant factor limiting the 
training of deep CNNs models. ResNet introduces residual 
connections between convolutional layers to construct deep CNNs. 
Residual connections can avoid the gradient disappearance problem 
well by constantly reusing features. DenseNet (Huang et al., 2017) 
further expands ResNet, which introduces more connections between 
convolutional layers. However, as the convolutional layer increases, 
pooling can lead to more spatial information loss, but the convolution 
proposed in literature (Yu and Koltun, 2015) solves this problem. The 
above concepts have driven the rapid development of CNNs, and if 
they are introduced into GCNS, whether the model can get similar 
results to CNNs?

DeepGCNs use ResNet, DenseNet, and Void Convolution to train 
deep neural networks in computer vision to get success in point cloud 
semantic segmentation filed. However, DeepGCNs are a kind of deep 
neural networks based on single-feature training. Because graph 
convolutional networks based on single feature training cannot fully 
depict the relevant characteristics of the graph, and Zhao et al. (2023) 
consider the interaction between features and propose a GCN based 
on dual feature interaction. Therefore, HDGCN adds semantic 
features on top of structural features, which not only enriches the 
diversity of graph information but also enhances node features. 
However, HDGCN is a shallow neural network that can only 
demonstrate excellent performance on simple tasks, and cannot learn 
higher-level features for more abstract and complex data. Therefore, it 
is necessary to deepen the algorithm.

Drawing on the successful experience of using residual 
connections to construct deep GCNs in DeepGCNs, this paper 
successfully constructs deep dual-channel Graph Convolutional 
Networks Based on Hybrid Features (D2GCN) using residual 
connections in HDGCNs. This paper shows how residual connections 
can be combined with multi-layer graph convolution operations to 
construct D2GCN, and the effect of residual connections on the 
accuracy and stability of D2GCN is analyzed. This paper applies 
D2GCN to the task of node classification, the number of neural 
network layers can reach 16, and the performance of D2GCN on the 
three datasets is improved by about 3% compared with SOAT.

In summary, the main contributions of this paper are as follows:

 1 Most of the existing graph neural networks are implemented 
based on single channel neural networks, and few achievements 
of dual-channel graph neural networks have been published. 
However, the relevant achievements of dual-channel deep 
graph neural networks have not been published so far. This 
paper is the first academic paper discussing dual-channel deep 
graph neural networks. The algorithm proposed in this paper 
is verified and introduced by many measure approaches, such 
as theory, experiment, comparative analysis parameter 
sensitivity etc.

 2 To make full use of the feature diversity and complementarity 
on graph, this paper fuses the text features and structural 

features into hybrid features, which enriches the information 
diversity on graph and enhances the feature expression ability 
of the nodes.

 3 Based on text features, structural features and hybrid features, 
three kinds of variation models based on D2GCN are proposed 
by using residual networks, such as D2GCN(structure), 
D2GCN(semantic) and D2GCN(hybrid). D2GCN is only the general 
name of dual-channel deep graph neural network, and 
D2GCN(structure), D2GCN(semantic), and D2GCN(hybrid) determine 
the type of graph features placed in the neural network channel.

2 Related words

Since graphs are ubiquitous in the real world, researches on graphs 
are receiving more and more attention from researchers. Graphs have 
been widely used to represent various domain information, such as 
recommendation system (Monti et  al., 2017b), molecular graph 
structure (Wale et al., 2008; Zitnik and Leskovec, 2017), social network 
(Armeni et  al., 2017), and Linguistics (Bastings et  al., 2017; 
Marcheggiani and Titov, 2017). Graphs have also played a key role in 
deep learning, such as classifying the role of a protein on a 
bio-interaction graph, predicting the role of an author in a cooperative 
network, recommending new friends to users in a cooperative 
network, recommending new friends to users in social networks, 
recommending new friends to users in social networks, and 
recommending ads to users etc. However, most traditional deep 
learning models, such as convolutional neural networks (CNNs) and 
recurrent neural network (RNNs), process data limited to Euclidean 
space and have translational invariance and local connectivity, such as 
images and text. As irregular non-European data, CNNs and RNNs 
cannot be directly applied to the field of graph. The challenge of deep 
learning of graphs lies in encoding the high-dimensional, 
non-Euclidean information into the form of embedding and input 
them into subsequent analysis tasks. Graph Convolutional Neural 
Networks (GCNs) provide a novel direction for processing graph data, 
for example, graphs are used to represent individuals and the 
connections between individuals in social networks, and then high 
irregular graph data in non-European spaces are obtained. GCNs can 
assess the strength of individual connections in social networks, and 
get more accurate evaluation between individuals (Tang and Liu, 
2009). GCNs have many applications in the field of computer vision, 
for example, graphs are used to represent semantic relationships 
between objects, and then objects are detected and segmented, 
semantic relationships between objects are predicted (Qi et al., 2017; 
Xu et al., 2017; Li Y. et al., 2018; Yang et al., 2018) at last. Human joints 
can be represented by graph and then GCNs is used to recognize the 
actions in video (Jain et al., 2016; Yan et al., 2018). GCNs are also the 
perfect approach for dealing with 3D point clouds due to its 
non-structural properties (Chen and Zhang, 2023; Jiang et al., 2023; 
Khodadad et al., 2023; Wang L. et al., 2023). Similarly, GCNs also have 
many applications in the field of natural language processing. In terms 
of sentiment analysis, they are not only applicable to unimodal 
sentiment analysis (Zhang et  al., 2022) but also to multimodal 
sentiment analysis (Firdaus et al., 2023). For example, Huang et al. 
(2023) propose CRF-GCN, a model that utilizes conditional random 
fields (CRF) to extract opinion scopes of specific aspect words and 
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integrates their contextual information into global nodes. These global 
nodes are then introduced into GCNs to effectively address the issue 
of fluctuating model accuracy in sentences with multiple aspect words.

Current GCNs algorithms can be divided into two categories: 
spectral-based and spatial-based methods. Bruna proposed the 
Spectrum CNN based on the convolutional theorem (Bruna et al., 
2014) in 2014, which imitates the characteristics of convolutional 
neural networks by superimposing multi-layer graph convolutions, 
and defines convolutional kernels and activation functions for each 
layer, and form graph convolutional neural networks. Due to its high 
spatiotemporal complexity, Defferrard subsequently proposed 
ChebNet (Defferrard et  al., 2016) in 2016 to reduce the temporal 
complexity by using the Chebyshev polynomial as a convolutional 
kernel. Due to the high complexity of eigenvalue decomposition of 
Laplace matrices, David and Hammond (2011) uses K-order 
truncation of Chebyshev polynomials instead of convolutional 
kernels, converts the modeling range of convolutional kernels from 
the entire graph to the K-order neighbors of the nodes, and reduces 
the number of parameters of convolutional kernels. Kipf and Welling 
(2017) proposes a hierarchical propagation method using a first-order 
approximation ChebNet, where each graph convolutional layer 
aggregates only first-order neighbors, and multiple graph 
convolutional layers can share a convolutional kernel, which can 
significantly reduce the number of parameters. With the increase of 
the number of layers, more information can be  aggregated from 
distant neighbors. These methods are all defined in the perspective of 
the spectral features, while the spatial-based method appears earlier 
and it is more popular at present.

The core idea of the spatial-based approaches is to iteratively 
aggregate the features of neighbor nodes by defining aggregation 
functions, and then to update the features of the current nodes. In 
2009, Gori proposed GNNs (Scarselli et al., 2009) method, which uses 
circular recursive functions as aggregate functions, and each node 
updates its own embedding by aggregating neighbor node 
information. In 2016, DCNN (Atwood and Towsley, 2016) regarded 
graph convolution as a diffusion procedure, and the information 
between nodes spreads with a certain probability, In 2017, Hamilton 
proposed GraphSAGE (Hamilton et al., 2017) method, which gives 
three aggregation functions to update the node state, such as mean 
aggregation, LSTM aggregation and pooling aggregation. Gilmer find 
that all spatial-based graph convolutional networks aggregate 
neighbor’s state in some form to update the state of central node, so a 
framework MPNN (Gilmer et  al., 2017) of spatial-based graph 
convolution is proposed for predicting chemical molecular properties. 
Under the inspiration of spectral-based graph convolutional network, 
the spatial-based graph convolutional network quickly become 
popular, and begin to develop toward a unified framework.

Nowadays, many scholars have solved numerous problems based 
on GCN. Li et al. (2023) propose DMRGCN, a novel bidirectional 
mutually reinforcing GCN, which investigates the semi-supervised 
node classification problem under noisy labels. Wang K. et al. (2023) 
propose mGNN, which extends the imbalanced classification concept 
in the field of machine learning to graph structures and effectively 
improves the classification performance of graph neural networks. 
Zhu et  al. (2023) propose RGCNU, which maps the relationship 
between noisy monitoring data and uncertain residual life. Hou et al. 
(2021) propose ST Trader, which first uses VAE to reduce the 
dimensions of stock related information and convert it into a graph 

structure. Then, GCN-LSTM is used to effectively predict stock 
movements. Despite the rapid development has got for GCNs, most 
of the GCNs are shallow structures. At present, some researchers have 
begun to train deep GCNs using different methods. GraphSAGE 
simultaneously uses node feature and structural feature to obtain 
graph embeddings, which is more scalable. In 2017, Pham proposed 
CLN (Pham et al., 2017) for relational classification, where model 
performance peaks when the depth of CLN reaches 10 layers, and 
model performance decreases as the increasing depth of CLN. In 
2018, Rahimi et  al. (2018) used GCN to integrate user text with 
network structures to achieve a more accurate geolocation of social 
media users. However, the authors find that the model performance 
gradually decreases when the depth of the Highway GCN is 6. Xu et al. 
(2018) proposes Jumping Knowledge Networks, which adjusts the 
range of the aggregated features according to different positions and 
structures of each node on graph, and the model is also limited to a 
six-layer structure. The number of graph convolutional layers limits 
the performance of the above GCNs, for example, the 10-layer graph 
convolution is superimposed, the model performance would decrease. 
In 2018, Li Q. et al. (2018) found that the biggest obstacle to training 
deep GCNs was over-smooth, and other research results (Zhou et al., 
2018; Wu et al., 2019) also proved that the convolution operation of 
multi-layer graphs would lead to vanishing gradient. In order to 
alleviate the occurrence of over-smoothing phenomena, Li proposed 
DeepGCNs in 2019, which adds residual/dense connections to train 
deep GCNs inspired by deep CNNs, such as ResNet, DenseNet, etc. 
Klicpera is based on the intrinsic connections between GCNs and 
PageRank (Page et  al., 1998; Klicpera et  al., 2019a), it designs a 
propagation scheme based on personalized PageRank. In 2020, Rong 
and Zhao proposed DropEdge (Rong et  al., 2019) and PairNorm 
(Zhao and Akoglu, 2020), respectively to migrate Dropout and 
BatcheNorm to GCNs, which can also obtain better embedding and 
classification effects. Zhang et  al. (2023) propose DRGCN, which 
utilizes dynamic block initialization information and employs 
evolution blocks to model the residual evolution patterns between 
layers. This approach effectively alleviates the over-smoothing issue in 
deep GCNs. Yang et  al. (2023) propose EM-GCN, a model that 
introduces the expectation–maximization algorithm and utilizes 
approximate inference to overcome excessive smoothing in topology 
optimization for any GCN.

The approaches of making graph convolutional neural networks 
deeper can also be achieved through some alternative methods, for 
instance, we  can design a high-order graph convolutional neural 
networks. Therefore, many researchers have adopted a shallow 
alternative method, it is that the GCNs consider higher-order 
neighbors in single-layer graph neural networks, for example, k-GNNs 
uses high-order Weisfeiler-Lehman for designing the graph neural 
networks (Morris et al., 2019), the MixHop solves the mixing problem 
of neighboring features at different distances (Abu-El-Haija et al., 
2019), and GDC (Klicpera et al., 2019b) enhances the performance of 
graph neural networks using graph diffusion. These high-order neural 
networks can usually obtain better embedding and classification 
effects, however, the above research is only available for deep neural 
networks based on single-feature training. For the complex 
information on graph, the deep structure of the current graph neural 
network using single feature cannot completely reveal the complex 
information of the graph. In order to reflect the diversity of the graph 
and avoid the over-smoothing phenomenon caused by enlarging 
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receptive field of the graph convolutional networks, this paper uses 
residual networks to construct a dual-channel deep graph 
convolutional network based on hybrid features of the graph.

3 Preliminaries

3.1 Graph convolutional network

In 2017, Kipf further proposed graph convolution with K-order 
Laplace polynomials as follows (Kipf and Welling, 2017):

 
Ug U x U U x L xT
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Here, θ ∈ +RK 1 is a polynomial coefficient vector. If K =1, θ θ0 2= , 
and θ θ1 =- , we  can get a new convolution operation 
g x I A xθ θ∗ = +( )− −

D D
1 2 1 2/ / . Through the renormalization tricks, 

the GCN will replace the expression I A+ − −
D D
1 2 1 2/ /  with 

   P D AD D I A I D I= = +( ) +( ) +( )− − − −1 2 1 2 1 2 1 2/ / / /

n n n , and it gets 

a graph convolutional layer as follows:

 
H
� � ��+( ) ( ) ( )= ( )1 σ PH W .

 
(2)

The σ  is the activation function ReLU. Nodes aggregate high-
order neighbor node information in GNNs, it would cause that nodes 
become indistinguishable with other nodes, and there exists a gradient 
vanishing during backpropagation. In order to avoid over-smoothing 
and gradient vanishing, DeepGCNs use the method adopted by deep 
CNNs to construct the deep structure of GCNs.

3.2 DeepGCNs

In 2019, Li introduced the method of training deep CNNs as 
ResNet, DenseNet, and dilated convolutions to propose DeepGCNs. 
DeepGCNs added the residual/dense network and dilated 
convolutions based on GCNs (Li et al., 2019).

 
H H
� � � ��+( ) ( ) ( ) ( )= ( ) +1 σ PH W .

 
(3)

DeepGCNs use the information flow of different graph 
convolutional layers to reuse features between graph convolutional 
layers by dense connections.
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DeepGCNs obtain the surrounding nodes of the target node when 
the dilated rate d is determined by Dilated KNN:

 N v u u ud( )
+ + −( )×( ) = 1 1 1 1, , , .d k d  (5)

u u u1 2, , , k d ×( )  is an ordered set of k d×  nearest neighbors, 
When the dilated rate is d, u u u1 1 1 1, , ,d k d+ + −( )×( )  is the 
neighbor node of the node v. Since GCNs and DeepGCNs are 
single feature graph convolutional networks, and the graph 
contains much complex information, so the text features are 
integrated based on the structural features of the graph to 
enhance the embedding ability, which meets the diversity of 
graph information.

3.3 HDGCN

In 2021, Li (Yang et al., 2018) proposes HDGCN, which uses a 
dual channel GCNs structure to jointly model the structure and 
semantic features of nodes, complementing and enhancing the 
features of nodes as follows.

 
H Wt t t t

  +( ) ( ) ( )= ( )1 σ PH .

 
(6)

∀ ∈{ }t 1 2, , ,T , the output matrix is H t N dt∈ × , parameter 
matrix is Wt d d∈ × .

Because the semantic features of the nodes contain the 
semantic features of weakly correlated neighboring nodes, it will 
become noise data that affects the training effect of the model. In 
order to reduce the noise interference on model training and 
enhance the feature embedding ability, the dual-channel GCN 
introduces Graph Attention Network and Gateway Recurrent 
Unit as follows:

 z hGAT
v

v v=α , (7)

 z g hG
v

v vRU
=  . (8)

Attention coefficient is

 

αv
v

v
v

e
e

=
( )
( )

∈
∑
exp

exp
.

  

(9)

The relevance is e a lu h bv
T

v= +( )·Re · ,W  the gating embedding 
is g W , ,v vSigmoid h v N= ( ) ∀ ∈{ }· , .1 2  The aT , W , and bare 
attention embeddings, weight parameters, and biases, respectively. 
According to the importance of each node, we give it a corresponding 
weight to reflect its importance. To improve the accuracy of graph 
convolutional networks based on hybrid feature, we  expand the 
receptive field and aggregate the features of the higher-order 
neighboring nodes. To avoid over-smoothing, we  also adopt the 
residual networks.

Since the text features and structural features have different 
influences on the model during training, three kinds of dual-channel 
GCNs models are proposed as follows.
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4 Dual channel graph convolutional 
neural network framework

In this paper, the D2GCN is proposed, which aims at solving the 
fact that current GNNs cannot fully mine the high-order features 
based on dual-channel GNNs. In D2GCN, hybrid features are used as 
the inputs, and the feature matrix of each layer is reused for residual 
networks to avoid gradient vanishing in backpropagation. To enhance 
the feature embedding ability of nodes, the upstream node features are 
con-catenated as the input of the fully connected layer.

4.1 Definition

Graphs G  can be represented by the triplets G , , , ,= ( )v ε ε φ ϕ1 2 , 
where V  are set of unordered nodes, ε1and ε2 represent the edge sets 
of semantic networks and structural networks, φ ε: 1 1→ R  is a 
mapping function based on the node position relationships, 
ϕ ε: 2 2→ R  is a mapping function based on the text content between 
nodes, R1 and R2 are a collection of node relationship types. A and D 
are adjacency matrix and degree matrix, respectively. X R∈ ×n d is the 
feature matrix of the node, each of these nodes corresponds to a d 
dimension feature embedding Xv. Regularized Laplace matrices are 
semi-definite symmetric matrix, defined as L I D D= − −

n A  1 2 1 2/ / . Its 
eigenvalues are decomposed into U UTΛ . › is a eigenvalues diagonal 
matrix of L,U R∈ ×n nis a unitary matrix composed of eigenvectors of 
L.The graph convolution operation between the input signal x and the 
filter g diagγ γ›( ) = ( )  is defined as g x Ug U xTγ γL ›( ) ∗ = ( ) , 
γ ∈Rn is the coefficient vector corresponding to the filters.

The following three networks are the data basis of modeling in this 
paper, so the following explanations are given as follows:

Semantic network: semantic network refers to a network 
composed of texts relationships. If two nodes have the same words in 
their text features, a new edge will be added to these two nodes.

Structure network: structure network is the original network 
structure, in which no new nodes and edges are added.

Hybrid network: semantic network and structural network are 
combined to form a hybrid network.

4.2 Dual-channel deep graph 
convolutional neural network

4.2.1 D2GCN based on structural features 
[D2GCN (structure)]

The framework of D2GCN based on structural features is shown 
in Figure 1.

In this model, the semantic network is trained by shallow neural 
network, and the structural network is trained by deep neural 
network. Finally, the two different embeddings are integrated.

The graph based on hybrid features is used as the input of the 
model, and the input is divided into two single feature graphs 
through the dual-channel GCNs: graph based on structural features 
and graph based on text features, and node embeddings of two 
different types of features is obtained. Because the graph based on 
text features may contain many weak correlations between nodes, 
it becomes noise that affects the performance of the model, and the 

shallow structure of the graph convolutional networks only 
aggregates the neighboring node features. Therefore, the text 
features of the node are used as the input of the shallow structure 
of the graph convolutional network. In addition, the graph based 
on the structural features is used as the input of the deep graph 
convolutional networks, because the deep graph convolutional 
networks can aggregate high-order features. When the scale of the 
graph convolutional network aggregation is gradually expanded to 
all nodes of the graph, the features of the node will become 
indistinguishable, causing the gradient vanishing during the period 
of backpropagation. With the increase of the graph convolutional 
layer, the output of the graph convolutional layer is repeatedly 
reused using residual networks to ensure the difference, the 
D2GCN(structure) can be formulated as follows:

 
H PH W Hstructure
l l l

structure
l

( )
+( )

( )
( ) ( )

( )
( )= ( ) +1 σ 

structure
..

 
(10)

According to theoretical analysis, the main reason for the 
complexity of the D2GCN(structure) model is the residual connection of 
the structural network. The main reason for the complexity of the 
D2GCN(structure) model is the residual connection of the structural 

network. According to formula 10, the complexity of PH Wl l
structure( )
( ) ( )

 

is Ο V 3( ) , where V is the number of network nodes and the 

complexity of H l
structure( )
( )  is Ο V( ). Therefore, the time complexity of 

D2GCN(structure) is Ο V 3( ).
4.2.2 D2GCN based on semantic features 
[D2GCN (semantic)]

The framework of D2GCN based on semantic features is shown 
in Figure 2.

In this model, the structural network is trained by shallow neural 
network, and the semantic network is trained by deep neural network. 
Finally, the two different embeddings are integrated.

For large-scale sparse graphs, nodes belonging to the same type 
may not have a neighboring relationship or even a weak correlation. 
However, there is a greater probability that a node belongs to the same 
type as its neighbors. Thus, the features around the nodes are 
aggregated by the shallow structure of the graph convolutional 
networks. Because the graph based on text features is more dense than 
the graph based on structural features, many nodes of the same type 
without edges in the sparse graph based on structural features may 
establish direct/indirect connections in D2GCN(semantic). Therefore, the 
graph convolution operation is used repeatedly to obtain the global 
structure based on the text feature graph. The local structure and 
global structure of the graph are fused to improve the accuracy of the 
downstream classification tasks. The specific formula is as follows:

 
H PH W Hs mantic
l l l

semantic
l

e semantic( )
+( )

( )
( ) ( )

( )
( )= ( ) +1 σ  .

 
(11)

Similar to the complexity analysis of D2GCN(structure), the time 
complexity of D2GCN(semantic) is Ο V 3( ).
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4.2.3 D2GCN based on hybrid features [D2GCN 
(hybrid)]

The framework of D2GCN based on hybrid features is shown in 
Figure 3.

In this model, the structural network is trained by deep neural 
network, and the semantic network is also trained by deep neural 
network. Finally, the two different embeddings are integrated.

The probability that the interconnected nodes in the sparse graph 
belong to the same type decreases with the increase of distance, so the 
output of the shallow structure of the residual networks that reuses 
graph convolutional neural network is used to obtain the local graph 
structure based on text or structural features. The cross-reuse of text 
features and structural features enables features to complement each 
other and enhance the embedding ability of node features. The specific 
formula is as follows:

 

H H W H HP semantic semanticsemantic str( )
( )

( )
( ) ( )

( )
( )= ( ) +1 0 0 0σ  ,

uucture( )
( )

( )
( ) ( )

( )
( )= ( ) +

1

0 0 0σ PH W Hstructure structure ,  
(12)

 

H H H Hstructure semantic tructuresemantic s( )
( )

( )
( )

( )
( )

( )= +2 1 2
,

22

1 2

( )

( )
( )

( )
( )= +H Hsemantic structure .  

(13)

Then the deep graph convolutional network is constructed by 
the residual network, and the local structure of the graph 
obtained by the convolutional network of the previous layer of 
graph is used as input to obtain the global structure of the graph. 
Finally, the global structure of the two features is fused to obtain 
a probability matrix based on the hybrid features H l

hybrid( )
+( )1 . The 

specific formula is as follows:

 
H PH W H ll

semantic
l l

semantic
l

semantic( )
+( )

( )
( ) ( )

( )
( )= ( ) + ≥1 σ  , 22,

 
(14)

 
H PH W Hl l l l
structure structure structure( )
+( )

( )
( ) ( )

( )
( )= ( ) +1 σ  ,, ,l ≥ 2

 
(15)
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FIGURE 1

Illustration of D2GCN based structural features (“⊕” represents addition operation, which means element-wise addition; “ ” represents vector 
concatenation).
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Illustration of D2GCN based semantic features (The symbol interpretation in this section is the same as in Figure 1).
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H PH W Hl

hybrid
l l

hybrid
l

hybrid( )
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( ) ( )

( )
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(17)

Due to the fusion structure of D2GCN (hybrid), both channels are 
residual connected, resulting in a time complexity of Ο 2

3V( ) and 
simplified to Ο V 3( ).

5 Experimental results and analysis

This section may be divided by subheadings. It should provide a 
concise and precise description of the experimental results, their 
interpretation, as well as the experimental conclusions that can 
be drawn.

5.1 Datasets

To assess the effectiveness of D2GCN, this paper uses three 
reference network datasets, such as CiteSeer, DBLP, and SDBLP. The 
statistics of the datasets are shown in Table 1. Each dataset is divided 

into semantic networks and structural networks. In the semantic 
network, the edge connection relationship between nodes is 
constructed according to the word co-occurrence, if the same word 
appears in the text of each node, there is an edge link between nodes. 
In the structural network, the relationship between nodes is 
determined according to the citation relationship between different 
documents. SDBLP is a simplified dataset of DBLP, in which nodes 
with less than 3 references are deleted, it is that nodes with node 
degree less than 3 will be deleted.

5.2 Baselines

This paper compares D2GCN with the following baseline methods 
designed to generate node embedding:

DeepGCNs(structure): this model inputs the structural features to 
Current DeepGCNs.

DeepGCNs(semantic): this model inputs the semantic features to 
Current DeepGCNs.

D2GCN(JKNet): the use of initial residuals and identity mappings 
can solve the problem of over-smooth. In each layer, the initial 
residuals construct a jump connection from the input layer, while the 
identity map adds the identity matrix to the weight matrix. When 
increasing the depth of the model, these two techniques can prevent 
over-smooth and continuously improve the performance of the model.
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FIGURE 3

Illustration of D2GCN based hybrid feature (The symbol interpretation in this section is the same as in Figure 1).

TABLE 1 Dataset description.

Dataset CiteSeer SDBLP DBLP

Structure Semantic Structure Semantic Structure Semantic

Node 4,610 4,610 3,119 3,119 17,725 17,725

Edge 5,923 819,346 39,516 439,182 105,781 125,360

Training 1,333 1,333 666 666 3,333 3,333

Validation 667 667 334 334 1,667 1,667

Test 2,610 2,610 2,119 2,119 12,725 12,725
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D2GCN(Drop): it proposes a random removal edge strategy using 
DropEdge by a certain ratio, DropEdge increases the diversity of the 
inputs to prevent overfit, and alleviate over-smooth.

HDGCN: it is similar to the dual-channel deep graph neural 
network based on hybrid features proposed in this paper, but the 
depth of the model is only two layers, which is a shallow dual channel 
graph neural network.

D2GCN(structure): the dual-channel deep graph convolutional neural 
network proposed in this paper only considers to model the structural 
features of structure network.

D2GCN(semantic): the dual-channel deep graph convolutional neural 
network proposed in this paper only considers to model the text 
features of semantic network.

D2GCN(hybrid): the dual-channel deep graph convolutional neural 
network proposed in this paper considers to model the hybrid features 
integrated by the structural and semantic features.

5.3 Semi-supervised node classification

This paper compares D2GCN with the following baseline methods 
designed to generate node embedding.

For the semi-supervised node classification task, we randomly 
divide datasets into training/validation/test on CiteSeer, SDBLP, and 
DBLP datasets. This paper applies two Deep GNN models, which are 
GCNII and DropEdge, to HDGCN and GCN. We use Adam SGD as 
an optimizer to train D2GCN, and we  set learning rate as 0.01, 
iterations as 200, dropout ratio as 0.5, weight decay rate as 0.0005, and 
embed dimension as 64. In the experiment, this paper uses D2GCN 
to train hyper-parameters of the model, and divides the training set 
into several small batches of data to update the parameters. In order 
to reduce the error, this paper repeats the experiment for 10 times, and 
the average value of the accuracy is shown in Table 2.

As shown in Table 2, the convolution operation of D2GCN(hybrid) 
at 2, 4, 8, and 16 layers obtains the optimal values compared with the 
baseline methods on the CiteSeer dataset, and the model performance 
increases with the increasing number of graph convolutional layers. 
The model performs best when the graph convolutional layer reaches 
16. The baseline methods shows that the model performance first 
increases and then decreases with the increasing number of 
convolutional layers for the dual-channel deep GCNs, resulting in 
little significance for the deep structure of the model based on 
hybrid features.

Since the SDBLP is a dense network, the probability that the 
central node and its surrounding nodes belong to the same type 
decreases as the increasing distance between the nodes. Therefore, the 
shallow GCN performs best in two-layer graph convolutional 
operation compared to D2GCN(structure), and the text features contain 
many weakly correlated features, which aggregate the information of 
the surrounding node as noise data to interfere center node, and 
classify the center node and its unrelated nodes into the same category. 
Therefore, D2GCN(structure) is better classified than D2GCN(semantic). 
However, the GCN has over-smooth phenomenon and the model 
performance has gradually decreased with the increasing layer of the 
graph convolution. Conversely, D2GCN(structure) aggregates the features 
of high-order neighboring nodes, and with the increase of 
convolutional layers, the accuracy of the model in the classification 
task is continuously improved. The other baseline methods show a 
trend that the accuracy first rises and then decreases with the increase 

of the convolutional layers. The performance of D2GCN(structure) is the 
best when the depth of graph convolution operation is 16.

On the DBLP, deep graph convolutional neural network 
D2GCN(semantic) based on text feature is better than deep graph 
convolutional neural network D2GCN(structure) based on structural 
features. Because the number of neighboring nodes of the central 
node is smaller, but the probability that they belong to the same type 
is higher. Therefore, the baseline methods are better than the proposed 
D2GCN when the number of convolution layer is 2. However, D2GCN 
also increases model performance as the increasing number of graph 
convolutional layers. Other baseline methods show a tendency that 
the accuracy first rises and then decreases in the classification task, or 
show an unstable phenomenon of alternating ascent and descent.

5.4 Visualization

To further illustrate the effectiveness of D2GCN, this paper conducts 
a set of visualization experiments. We use t-SNE to map the embeddings 
of nodes into 2D space on CiteSeer, the embeddings of different depths 
obtained through D2GCN are shown in Figure 4, and different colors 
represent to different node label. Through visual experiments, it can 
be seen that the D2GCN gets better and better as the increasing number 
of convolutional layers. Specifically, the internal similarity becomes higher 
and higher, and the boundaries between different node labels are clearer 
as the increasing depth of the model.

5.5 Hyperparameter analysis

This paper performs a sensitivity analysis for some main 
hyperparameters in D2GCN, as shown in Figure 5.

5.5.1 Final embedding dimension F
This paper first tests the effect of the final embedding dimension 

F, as shown in Figure 5A, when the embedding dimension is 32, the 
model performance increases with the increase of the graph 
convolutional layer. When the embedding dimension is 8, the 
performance decreases as the increasing number of convolutional 
layers. And then when the convolutional layer increases to 16 layers, 
the model performance improves best. Model performance of other 
embedding methods improves with the increase of graph 
convolutional layers, and then the model performance decreases when 
the 16-layer graph convolutional operation is performed. When the 
dimension is 32, the model performs best in the node classification task.

5.5.2 Convolution hyperparameter K
In this paper, the influence of the K-order approximation of the 

local spectral filter on the model is studied, as shown in Figure 5B, the 
model performs stably in the classification task with the increase of 
the graph convolutional layer. When the graph convolutional layer is 
8, the model performance begins to decrease as the increases of 
K. When the graph convolutional layer reaches 16, the model 
performance drops significantly, and at that time, the model 
performance drops the fastest. However, when the hierarchical 
convolution operation is performed, the model performance increases 
with the increase of the graph convolutional layer, and when the graph 
convolutional layer is 16, the model performance reaches the best. 
Therefore, D2GCN, restricts hierarchical convolution operations.
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5.5.3 Feature aggregation operation
In this paper, different feature aggregation operations are also 

studied, as shown in Figure 5C, the model performance is improved 
fast where the embeddings of semantic and structural networks are 
concatenated. However, the model uses the fusion approach of 
averaging and summing methods to lead to performance 
degradation as the increasing number of convolutional layers, when 
the number of graph convolutional layer is 16, the model 

performance decreases the most, especially the summing method. 
The simple concatenation operation continuously improves the 
model performance as the increasing number of graph 
convolutional layers, and the model performs best when the 
number of graph convolutional layer reaches 8. When the number 
of convolutional layer reaches 16, its performance is the best. 
Therefore, this paper uses concatenation method to fuse semantic 
features and structural features.

 Layer 2  Layer 4  Layer 8  Layer 16

A B C D

FIGURE 4

Visualizations of node representations with different numbers of layers on CiteSeer. (A) Layer 2; (B) Layer 4; (C) Layer 8; (D) Layer 16.

TABLE 2 Node classification accuracy with various depts.

Dataset Model Layers

2 4 8 16

CiteSeer Deep GCNs (structure) 77.63 78.12 78.36 77.74

Deep GCNs (semantic) 67.45 67.33 66.51 18.58

D2GCN (JKNet) 81.99 85.13 86.63 85.71

D2GCN (Drop) 83.49 85.33 85.17 84.64

HDGCN 82.30 - - -

D2GCN (structure) 84.15 84.55 85.48 83.41

D2GCN (semantic) 84.15 84.36 84.55 84.95

D2GCN (hybrid) 84.17 86.43 86.77 86.99

SDBLP Deep GCNs (structure) 82.41 82.21 82.51 80.15

Deep GCNs (semantic) 70.03 65.08 34.50 27.70

D2GCN (JKNet) 81.31 81.55 82.23 82.21

D2GCN (Drop) 81.93 82.40 81.69 82.11

HDGCN 81.50 - - -

D2GCN (structure) 81.81 82.14 82.36 83.47

D2GCN (semantic) 81.78 82.36 82.47 83.11

D2GCN (hybrid) 81.62 81.97 82.17 82.93

DBLP

DeepGCNs (structure) 80.70 79.91 79.12 79.80

DeepGCNs (semantic) 67.42 60.70 44.57 44.78

D2GCN (JKNet) 80.46 79.03 79.76 79.01

D2GCN (Drop) 80.42 80.65 80.65 80.28

HDGCN 80.28 - - -

D2GCN (structure) 80.37 80.17 78.29 78.10

D2GCN (semantic) 80.09 80.33 80.61 80.88

D2GCN (hybrid) 80.55 80.30 80.18 80.21

The data in bold in table represents all the results of the best model corresponding to a certain dataset.
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6 Conclusion

In this paper, a dual-channel deep graph convolutional neural 
network (D2GCN) based on hybrid features is proposed. According 
to the text features, the residual connection is used to construct the 
deep graph convolution neural network, and for the structural 
features of the graph, the two-layer graph convolution neural 
network is used, which is the D2GCN(semantic). D2GCN(structure) trains 
a deep graph convolutional neural network with the structural 
features of the graph, in contrast, the shallow structure of the graph 
convolutional neural network is trained based on the text features of 
the graph. In this paper, D2GCN(structure) is constructed using residual 
networks, and the two features of the graph are fused by 
concatenating strategy. D2GCN(hybrid) uses the text features and 
structural features of the graph to simultaneously train a dual-
channel deep graph convolutional neural network constructed by 
residual networks, in which the output of the graph convolutional 
neural network is cross-reused, so that the two features complement 
each other and improve the performance of the model in the node 
classification task. The experimental results in this paper 
demonstrate the effectiveness of D2GCN in node classification task. 
As an efficient way to improve model performance, it is a potential 
research how to incorporate pre-training into D2GCN.
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