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This study assessed the influence of speaker similarity and sample length on

the performance of an automatic speaker recognition (ASR) system utilizing

the SpeechBrain toolkit. The dataset comprised recordings from 20 male

identical twin speakers engaged in spontaneous dialogues and interviews.

Performance evaluations involved comparing identical twins, all speakers in the

dataset (including twin pairs), and all speakers excluding twin pairs. Speech

samples, ranging from 5 to 30 s, underwent assessment based on equal

error rates (EER) and Log cost-likelihood ratios (Cllr). Results highlight the

substantial challenge posed by identical twins to the ASR system, leading

to a decrease in overall speaker recognition accuracy. Furthermore, analyses

based on longer speech samples outperformed those using shorter samples. As

sample size increased, standard deviation values for both intra and inter-speaker

similarity scores decreased, indicating reduced variability in estimating speaker

similarity/dissimilarity levels in longer speech stretches compared to shorter

ones. The study also uncovered varying degrees of likeness among identical

twins, with certain pairs presenting a greater challenge for ASR systems. These

outcomes align with prior research and are discussed within the context of

relevant literature.

KEYWORDS

speech analysis, phonetics, acoustic-phonetics, forensic phonetics, automatic speaker

recognition

1 Introduction

1.1 Automatic speaker recognition through neural
network

Neural network analysis is a machine learning technique that is capable of modeling

highly complex non-linear relationships in data, namely, when changes in one variable are

not directly proportional to the changes in another variable. Through a process known as

training, neural networks can learn complex patterns and relationships in data, where the
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weights of the connections between neurons are adjusted based on

the input and desired output (LeCun et al., 1998; Domingos, 2012;

Jurafsky and Martin, 2023).

Models based on neural networks have various applications

in science, spanning from image recognition, speech recognition,

and natural language processing, among others. Its key advantage

is the ability to learn from complex datasets and to generalize

their learning to new, unseen data. Such ability makes them highly

effective for tasks that involve pattern recognition or classification

(LeCun et al., 2015).

Different studies have applied neural network-based analyses

with speech data to address a range of goals, such as automatic

speech recognition (Graves and Jaitly, 2014; Wu et al., 2020),

automatic speaker recognition (Devi et al., 2020), speech emotion

recognition based on audio (Jiang et al., 2019) and audio-

visual information (Hussain et al., 2022), speech enhancement for

cochlear implants—aiming to improve the clarity and quality of

speech comprehension for individuals with hearing loss (Kang

et al., 2021), and, the assessment of speech/voice impairments in

chronic degenerative disorders (Maskeliūnas et al., 2022).

Concerning the first two tasks mentioned earlier, namely

automatic speech and speaker recognition, it is worth noting that

the acronym ASR is widely employed in both tasks. Nevertheless,

the distinction in their contexts plays a crucial role in separate

technological domains. On the one hand, ASR in the context of

Automatic Speech Recognition regards a technology crafted for

converting spoken language into written text. On the other hand,

ASR in Automatic Speaker Recognition concerns a specialized field

centered on comparing individuals through their distinctive vocal

characteristics. For the purposes of the present study, it is essential

to clarify that the term ASR will specifically pertain to the latter

task—Automatic Speaker Recognition.

In the field of Automatic Speaker Recognition (henceforth,

ASR), the Gaussian Mixture Model-Universal Background Model

(GMM-UBM) has been a widely used technique for several years.

This approach models the spectral characteristics of a speaker’s

voice. It involves analyzing the statistical distribution of acoustic

features, including Mel-Frequency Cepstral Coefficients (MFCCs)

and filterbank energies, which are representations of the energy

distribution across different frequency bands in an audio signal.

The goal of the GMM-UBM method is to discern speaker-specific

characteristics that are crucial for distinguishing between speakers.

The GMM-UBM has been shown to be effective in ASR,

achieving high recognition rates on text-independent data sets. For

instance, in Reynolds and Rose (1995), Gaussian mixture-based

speaker model attained 96.8% recognition accuracy using 5-s clean

speech utterances and 80.8% accuracy using 15-s telephone speech

utterances with a 49-speaker population.

GMM-UBM i-vector, which was proposed to be used in

speaker verification by Dehak et al. (2011), has become the

state-of-the-art technique in the speaker verification field. It

has a compact representation of speaker characteristics derived

from speech signals. It is generated through a two-step process

involving a Universal Background Model (UBM) and a Total

Variability Matrix.

Despite its effectiveness, GMM has been replaced by newer and

more advanced approaches that are able to capture more complex

patterns and contextual information, leading to improved accuracy

and robustness, such as deep neural network-based (DNN) models

like recurrent neural networks (RNNs) and convolutional neural

networks (CNNs).

More recently, a feature extraction method based on neural

networks, called x-vector (Snyder et al., 2018), has been developed

primarily for ASR. It is based on a deep neural network (DNN)

architecture with multiple fully connected layers featuring a

temporal context (referred to as “frames") in each layer. Due to the

broader temporal context, the architecture is termed Time-Delay

Neural Network (TDNN).

In a multi-laboratory evaluation of forensic voice comparison

systems, conducted under conditions that closely resemble those

encountered in real forensic cases (Morrison and Enzinger, 2019),

deep neural network (DNN) systems outperformed Gaussian

mixture model (GMM) approaches. The top-performing GMM

system, based on i-vector, achieved an equal error rate (EER) of

7.0%. However, the DNN system, utilizing x-vector, achieved a

significantly lower EER of 2.2%.

Lately, the approach based on Emphasized Channel Attention,

Propagation and Aggregation in Time Delay Neural Network

(ECAPA-TDNN) (Desplanques et al., 2020) available in

SpeechBrain, which combines the benefits of convolutional

and recurrent neural networks, was found to outperform both

the x-vector and the ResNet-34 (Zeinali et al., 2019) by a large

margin in text-independent speaker verification tasks (Ravanelli

et al., 2021), i.e., without requiring specific spoken text or prompts

from the speakers, only selecting stretches of audio recordings.

In addition, ASR technologies based on deep neural network

(DNN) models also improve the systems’ ability to handle

irrelevant/contextual input variations, focusing on representations

that are selective to the aspects of a signal that are important for

discrimination while invariant to other aspects (LeCun et al., 2015).

However, it is worth noting that DNN systems are not invariant

to relevant aspects, especially those with implications to the forensic

speaker comparison practice, such as the duration of audio samples.

According to Sztahó et al. (2023), while using the ECAPA-TDNN

model, which is employed in the present study, the system’s

performance tended to improve as the sample durations increased.

Conversely, the study found that the ASR system’s performance

does not appear to be affected by mismatched language during

likelihood ratio (LR) calibration between the model and the corpus.

Despite the considerable advances in the past few years, our

understanding of the impact of essential factors, such as the level

of similarity across speakers, on the performance of ASR systems is

still limited, particularly when consideringmore recent approaches.

In the following, we briefly review some studies regarding ASR with

similar (genetically related) subjects.

1.2 Speaker recognition studies with twin
speakers

It is widely understood that ASR systems face significant

challenges when contrasting identical twins’ voices. The main

reason is that these systems rely on identifying the unique

acoustic characteristics of an individual’s voice—like the ones we

mentioned before. However, since identical twins share striking
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similar genetic makeup and sources of environmental exposure,

their speech characteristics can be challenging to differentiate for

ASR systems. Acoustic-phonetic analyses of identical twin’s speech,

as those based on melodic, spectral, and timing parameters, have

consistently revealed a remarkable degree of acoustic similarity,

surpassing that observed in unrelated individuals (Fernández and

Künzel, 2015; Sabatier et al., 2019; Cavalcanti et al., 2021a,b, 2022).

As a result of such a higher level of acoustic-phonetic

similarities, ASR systems can produce errors and reduced accuracy

in speaker recognition, particularly in fields like law enforcement

and security, where speaker recognition is widely used for

authentication purposes. Unarguably, these errors can have serious

consequences, making it crucial to address this challenge and

develop more effective solutions to improve speaker recognition

systems’ reliability and accuracy in differentiating not only related

subjects, but also similar-sounding voices.

Ariyaeeinia et al. (2008) carried out a study aiming to assess

speaker verification technology’s ability to discriminate between

identical twins. The data consisted of 49 pairs of identical twins

(40 pairs of females and nine pairs of males). Two token recordings

were collected for each speaker. The first token was a poem around

60 s long. The second token was the individual’s birth date, spoken

as digits, around 5 s in duration. The tests were conducted using

the “short” and “long” test tokens. For every test, the results were

obtained using the GMM-UBM scoring procedure and used as the

baseline results. The scores obtained this way were then subjected

to unconstrained cohort normalization (UCN) based on a cohort

size of three—a technique used in speaker recognition systems for

score normalization. It adjusts the recognition scores by comparing

them against a cohort of speakers, indirectly helping to account for

variability in the scores that may arise from factors like recording

conditions and background noise.

The authors of that study observed that long utterances led

to lower error rates. Regarding twin comparisons, the EERs are

about 10 and 5% in short and long test tokens, respectively. This

clearly indicates the non-genetic (extraneous) factors influencing

the characteristics of the voices of each pair of twins. The use of

UCN was found to reduce the EERs significantly. According to

the authors, the results seem to agree with the suggested capability

of UCN to reduce the impostor scores in relation to those of

true speakers. As mentioned by the authors, UCN exploits the

non-genetic characteristics of the twins’ voices to enhance the

discrimination capability of ASR.

Künzel (2010) performed an experiment involving nine male

and 26 female pairs of identical twins. Each twin produced one read

and one spontaneous speech sample, which were used to calculate

inter-speaker, intra-twin pair, and intra-speaker likelihood ratio

(LR) distributions using an automatic Bayesian-based system for

forensic speaker comparison called Batvox (version 3.1).

The results showed that under certain conditions, the ASR

system could distinguish even the vast majority of very similar-

sounding voices, such as those of identical twins. However,

the system’s performance was found to be superior for males

compared to female voices. Overall, that study demonstrated the

potential of ASR systems to distinguish between even very similar-

sounding voices, such as those of identical twins. However, the

results also suggested that sex-related differences may affect the

system’s performance.

In their study, Fernández and Künzel (2015) evaluated the

performance of Batvox (Version 4.1) using a sample of 54 Spanish

speakers. The sample included 24 monozygotic (MZ) twins, 10

dizygotic (DZ) twins, eight non-twin siblings (B), and 12 unrelated

speakers between the ages of 18 and 52, all of whom spoke Standard

Peninsular Spanish.

The main hypothesis was that the cepstral features of

the system, which depend largely on anatomical-physiological

variables, would be gene-dependent. Therefore, a higher similarity

in MZ twins would be expected in comparison to the other

groups of speakers. The results supported the hypothesis, showing a

decreasing scale of similarity coefficients: MZ>DZ> B>US. This

pattern corresponded precisely with the decreasing kinship degree

of the four speaker groups. The authors suggested that the features

of the ASR system are largely genetically conditioned, making it

useful and robust for comparing speech samples of known and

unknown origin.

In their study, Sabatier et al. (2019) conducted verification

experiments with 167 pairs of twins, using various train-test

conditions and durations. Participants were asked to read their

random identification number aloud and then the rainbow passage,

followed by an interview portion where they answered pre-

determined questions about themselves. The scripted speech was

∼30 s, while the unscripted speech was ∼70 and 180 s long,

recorded on two different occasions. The GMM-UBMmethod was

used as the reference method for voice matching.

Results showed that standard voice matching algorithms had

more difficulty distinguishing between identical twins than non-

related individuals, as evidenced by consistently lower accuracy

based on comparisons of the equal error rate (EER) from a similarly

collected non-twins database. Female speakers were found to be

more difficult to distinguish than their male counterparts, and

conversational data was associated with poorer twin differentiation

due to higher intra-speaker variability. The same trend was

observed for non-twin subjects.

While previous studies have explored the intersection of ASR

systems and identical twin speech, it is worth emphasizing the

continued relevance of research in this domain. Notably, studies

in this area often exhibit variations in methodological aspects,

including the characteristics of the ASR system employed, the

attributes of the speech material under analysis, and the number

of speakers considered.

The present study adds to the body of knowledge regardingASR

research on twins while adding to the linguistic diversity in ASR

research by focusing on Brazilian Portuguese speakers. Engaging

in research across diverse speaker groups allows us to develop a

more comprehensive knowledge base. The methodological design

adopted in this research not only contributes to grasping the

distinct difficulties associated with comparing between similar

speakers but also facilitates quantifying these challenges in light of

contemporary ASR models.

2 Materials and method

The present study, registered under protocol

95127418.7.0000.8142, was evaluated and approved by the

ethical committee at Campinas State University (UNICAMP). All
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participants voluntarily agreed to be part of the research verbally

and by signing a participant consent form.

2.1 Participants

The participants were 20 speakers comprising 10 identical male

twin pairs, all of them Brazilian Portuguese (BP) speakers from the

same dialectal area. The participants’ age ranged between 19 and

35 years, with a mean of 26.4 years. All identical twin pairs were

codified with letters and numbers, such as A1, A2, B1, B2, C1, C2,

D1, D2, and so on. The same letters indicate that the speakers are

identical twins and, therefore, related.

Regarding the comparison of non-genetically related

participants, this was achieved using a cross-pair comparison

approach (e.g., A1 × B1; A1 × B2; A2 × B1, A2 × B2, and so

on). Overall, 190 speaker pair combinations were carried out for

comparisons involving all speakers (including twins), and 180 pair

combinations for comparisons of non-genetically related speakers

(excluding twins).

It is important to highlight that twin speakers constitute only

about 5% of the total number of speakers in the data set for

comparisons encompassing all participants, including non-twin

pairs. Despite being a relatively small subset, the inclusion of twin

speech data is anticipated to introduce a greater level of complexity

in the task of speaker discrimination. This addition is likely to make

the process of distinguishing between speakers more challenging.

The inclusion of only male participants in this study is

attributed to the reliance on a pre-existing database (Cavalcanti,

2021). The emphasis onmale speakers in this database was designed

to mirror the gender distribution observed in specific categories of

crimes, where a substantial proportion of suspects or persons of

interest tend to be male.

2.2 Recordings

All recordings were made with a sample rate of 44.1 kHz

and 16-bit, using an external audio card (Focusrite Scarlett

2i2) and two headset condenser microphones (DPA 4066-B).

The recordings were undertaken in silent rooms in the cities

where the speakers resided. The recordings were made in two

different sessions, as described below. Approximately 5–10 min of

unedited conversational speech (dialogue) and 3–5min of unedited

interview speech were available per speaker.

2.2.1 Session I
In the first recording session, the speech materials comprised

spontaneous mobile smartphone conversations (dialogues)

between twin brothers who were very familiar with each other. The

participants themselves decided the topics of discussion.

The recording took place with the speakers in separate

rooms, communicating via mobile phones without visual contact.

The speakers were prompted to initiate the conversation using

mobile phones while high-quality microphones recorded the

exchange. The resulting unedited and unfiltered audio signals

were processed and registered in two channels, preserving their

acoustic characteristics.

2.2.2 Session II
During the second recording session, the researcher

interviewed the speakers and asked them to describe their

daily routine, from waking up to going to bed and their leisure

activities. Following this, the participants were asked to describe

their routines from previous weeks, including a week, a month,

and a year ago, and how their routines had changed over the course

of the year.

Besides the fact that a different speaking style was elicited,

an important aspect of this step was the intentional reduction of

familiarity between the interviewer and the participants, which

aimed to simulate the setting of forensic speaker comparison, where

an unfamiliar interviewer questions individuals.

2.3 Analysis

In the present study, we applied the SpeechBrain toolkit

for ASR analyses. The SpeechBrain toolkit is an open-source,

comprehensive solution for speech processing tasks. Its primary

objective is to enable research and development of neural network-

based speech technologies through its flexible, user-friendly, and

well-documented design (Ravanelli et al., 2021).

ASR using SpeechBrain refers to applying machine learning

algorithms, namely, neural networks. The system was evaluated by

obtaining the LR scores using logistic regression based on scikit-

learn (Pedregosa et al., 2011) package adopting a cross-validation

technique using two different methods: the leave-one-speaker-out

and leave-two-speaker-out methods.

The cross-validation using the leave-one-speaker-out method

was applied for testing recordings of the same speakers (intra-

speaker) but in varying speaking styles, i.e., interview vs. dialogue.

This approach involved using each speaker’s recording as a test

case once, with the recordings from all other speakers forming the

training set. Additionally, the leave-two-speaker-out method was

applied to assess recordings from different speaker pairs (inter-

speakers). In this scenario, each time a pair of speakers was tested,

recordings from all remaining speakers in the database were used

to create the training set.

A high-level overview of the steps adopted in the analyses is

presented in the following:

• The wave PCM format recordings from the twin siblings were

resampled at 16 kHz in order to adapt them to the neural

network model used.

• Two audio recordings were selected, each containing 60 s of

net speech from each of the siblings, one from Session I and

another from Session II, totaling 40 recordings.

• Each of these recordings was divided into samples of 5, 10, 15,

20, and 30 s, resulting in 12 samples of 5 s, six samples of 10 s,

four samples of 15 s, three samples of 20 s, and two samples of

30 s per speaker.
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• All of these audio samples were processed by the ECAPA-

TDNN model (Desplanques et al., 2020) provided by the

Speechbrain project (Desplanques et al., 2021), which was pre-

trained using the training data from the Voxceleb1 (Nagrani

et al., 2017) and Voxceleb2 (Chung et al., 2018) databases,

obtaining a 192-dimensional embedding vector for each

sample.

• Specifically for assessing the level of similarity between twin

speakers, mean and standard deviation similarity scores were

computed as a function of twin pairs and sample sizes. The

cosine similarity was used to calculate the level of similarity

between the embedding vectors of each audio pair, which

ranges from −1 to +1. Here, a value of +1 indicates identical

feature vectors, a value of 0 indicates orthogonal vectors (no

similarity), and a value of −1, though rare in this context,

would indicate completely dissimilar vectors. The similarity or

even dissimilarity between the audios are based on the acoustic

features judged relevant by the model. It’s worth noting that

the similarity measure is based on the feature vectors extracted

from the audio, not the audio themselves.

• After computing all the scores between the speakers in all

scenarios, the system was assessed using two discriminatory

performance metrics: Equal Error Rate (EER) (Equation 1)

and log-likelihood-ratio cost (Cllr) (Equation 2), as outlined

below.

The EER is a commonly used metric in speaker recognition

tasks and is defined as the point at which the false acceptance rate

(FAR) and false rejection rate (FRR) are equal (Conrad et al., 2012).

EER is calculated through the Equation (1):

EER =
1

2

(

FAR+ FRR

2

)

(1)

In Equation (1), The FAR is the rate at which the system

incorrectly accepts an impostor as the target speaker, while the FRR

is the rate at which the system rejects the target speaker incorrectly.

By computing the EER, we can determine the point at which the

system is equally likely to make both types of errors.

The Log-likelihood-ratio cost (Cllr) is an empirical estimate

of the precision of likelihood ratios proposed by Brümmer and

Du Preez (2006). According to Morrison et al. (2011), such an

estimate has the desired properties of being based on likelihood

ratios, being continuous, and more heavily penalizing worse results

(i.e., providing less support for the consistent-with-fact hypothesis

or more support for the contrary-to-fact hypothesis). Cllr is

calculated through the Equation (2):

Cllr =
1

2





1

Nss

Nss
∑

i=1

log2

[

1+
1

LRssi

]

+
1

Nds

Nds
∑

j=1

log2

[

1+ LRdsj

]





(2)

In Equation (2), Nss and Nds are the number of same-speaker

and different-speaker comparisons, respectively, whereas LRss and

LRds are the likelihood ratios derived from same-speaker and

different-speaker comparisons, respectively. A same-origin penalty

value is log2(1 + 1/LRs), and a different-origin penalty value is

log2(1+ LRd).

Probabilistic Linear Discriminant Analysis (PLDA) is

commonly used in ASR systems for modeling speaker and channel

variability distributions. It generally benefits from multiple

recordings per speaker, aiding the model in capturing the nuanced

variations in a speaker’s voice. However, the existing database has

only one recording per speaker for each analyzed speaking style.

Given this constraint, the decision was made to employ cosine

similarity, as it allows for comparisons between single samples.

2.3.1 Speaker comparisons
ASR analyses were applied to three types of speaker

comparisons. The first concerns comparisons performed between

speakers of the same twin pair (i.e., intra-twin pair), the second

regards comparisons among all subjects in the study, twins and

non-twins, and the third comprises comparisons of non-twin

speakers only (i.e., unrelated speakers).

It is worth noting that, in terms of restricted population

characteristics, the last type of speaker comparison is the closest

to what may be observed in real-life scenarios, given that the

twin population is over-represented in the second type. However,

the first and second comparison settings serve experimental ends,

namely, understanding how ASR systems perform in challenging

adverse conditions. In this regard, by examining both realistic

and controlled conditions, researchers can develop and refine ASR

technologies to achieve more accurate and reliable results.

3 Results

Tables 1–3 present the results of the ASR performances as

a function of speech sample length in three different-speakers

(DS) comparison scenarios. The same-speaker (SS) and different-

speaker (DS) tests were conducted using data from distinct

speaking styles: interview and spontaneous dialogue.

Table 1 depicts the system performance obtained from

analyzing data from identical twins through SS and DS limited

to twin siblings. Table 2 shows system performance when the

comparisons were made among all speakers in the corpus,

including twin speakers in DS comparisons. Finally, Table 3

displays the system performance considering comparisons carried

out across all subjects, excluding identical twins in DS comparisons.

The distributions of scores obtained in SS and DS comparisons

are visually represented in Figure 1 for samples of 5, 15, and 30 s

duration. The histograms depicting scores for SS comparisons are

presented in blue, while those for DS comparisons encompassing all

subjects, including twin speakers, are depicted in red. Additionally,

histograms displaying scores solely fromDS comparisons involving

identical twin pairs are shown in green. It is possible to observe

considerable overlap between the blue histograms (SS) and

green histograms (DS from comparisons between twin siblings),

illustrating higher EER and Cllr for this scenario.

Moreover, Figures 2A, B visually depict the results related to

the analysis of intra-twin pair cosine similarity based on sample

size. Figure 2A shows the mean intra-twin pair cosine similarity

in ascending order, while Figure 2B illustrates their respective

standard deviations in descending order. For a more detailed

numerical evaluation of these figures, please refer to Table 4.
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TABLE 1 System performance limiting DS comparisons to twin siblings.

Samples EER Cllr

12× 5 s 0.20 0.63

6× 10 s 0.17 0.52

4 x× 15 s 0.16 0.47

3× 20 s 0.15 0.44

2× 30 s 0.10 0.45

TABLE 2 System performance considering the comparison of all pairs of

DS in the study, including comparisons between twin pairs.

Samples EER Cllr

12× 5 s 0.02 0.08

6× 10 s 0.01 0.05

4× 15 s 0.01 0.05

3× 20 s 0.01 0.04

2× 30 s 0.00 0.04

TABLE 3 System performance considering the comparison of all speakers

in the study, excluding comparisons between twin pairs.

Samples EER Cllr

12× 5 s 0.01 0.03

6× 10 s 0.00 0.01

4× 15 s 0.00 0.01

3× 20 s 0.00 0.01

2× 30 s 0.00 0.01

In addition, Figures 2C, D visually represent the results

concerning the analysis of intra-speaker cosine similarity based

on sample size. Figure 2C presents the mean intra-speaker cosine

similarity in ascending order, while Figure 2D illustrates their

respective standard deviations in descending order. For a more

in-depth numerical assessment of these figures, see Table 5.

Note that sorting the similarity scores in ascending order

in Figure 2A provides insights into the degree of likeness or

dissimilarity among pairs. This allows us to evaluate which acoustic

parameters related to voice quality could effectively elucidate this

dissimilarity in future studies. Conversely, organizing the standard

deviation values of similarity scores in Figure 2B in descending

order provides insights into the degree of variability observed in

the similarity estimation. This ordering spans from pairs with the

highest variability to those with the lowest. The same reasoning

applies to the assessment of intra-speaker (same-speaker) cosine

similarity in Figures 2C, D.

A common trend depicted in Tables 1–3 regards the

observation that longer speech samples yielded better

performances, as suggested by the comparison of EER and Cllr

values. However, after a certain point, the level of improvement for

Cllr appeared to approach stabilization between the 10 and 15 s

threshold.

FIGURE 1

Blue histograms depict the distribution of scores obtained in SS

comparisons, while the red histograms represent scores from DS

comparisons for all speakers, including twin pairs. Additionally, the

green histograms specifically represent DS scores for identical twin

pairs, for samples of 5, 15, and 30 s long.

When comparing Tables 1, 2, it becomes apparent that the

system faced a considerable challenge when processing data from

twin speakers, as opposed to when data from all speakers was used.

In the case of twin speakers, the system’s performance ranged from
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A

B

C

D

FIGURE 2

Intra-pair cosine similarity (A), standard deviation of intra-pair cosine similarity (B), intra-speaker cosine similarity (C), and standard deviation of

intra-speaker cosine similarity (D) as a function of sample size.
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TABLE 4 Mean and standard deviation (SD) values of cosine similarity for intra-identical twin pair (di�erent-speakers) comparisons as a function of

sample sizes in increasing order of similarity—ordered by the first numeric column (5 s).

Sample size

5 s 10 s 15 s 20 s 30 s

Twin pair Mean SD Mean SD Mean SD Mean SD Mean SD

G1-G2 0.31 0.06 0.35 0.06 0.37 0.05 0.38 0.05 0.39 0.05

C1-C2 0.46 0.09 0.52 0.08 0.55 0.08 0.57 0.08 0.58 0.08

H1-H2 0.47 0.07 0.55 0.07 0.58 0.07 0.59 0.07 0.62 0.08

E1-E2 0.49 0.06 0.54 0.05 0.56 0.04 0.57 0.04 0.59 0.04

I1-I2 0.50 0.06 0.59 0.05 0.61 0.05 0.63 0.05 0.66 0.05

B1-B2 0.51 0.06 0.58 0.04 0.60 0.04 0.62 0.03 0.64 0.02

A1-A2 0.57 0.06 0.63 0.04 0.66 0.04 0.67 0.04 0.69 0.03

D1-D2 0.61 0.06 0.71 0.05 0.74 0.04 0.75 0.05 0.77 0.04

J1-J2 0.65 0.06 0.72 0.04 0.75 0.03 0.76 0.04 0.78 0.03

F1-F2 0.69 0.05 0.75 0.04 0.78 0.02 0.79 0.02 0.81 0.01

TABLE 5 Mean and standard deviation (SD) values of cosine similarity for intra-speaker (same-speaker) comparisons as a function of sample sizes in

increasing order of similarity—ordered by the first numeric column (5 s).

Sample size

5 s 10 s 15 s 20 s 30 s

Speaker Mean SD Mean SD Mean SD Mean SD Mean SD

C2 0.59 0.06 0.67 0.05 0.72 0.05 0.74 0.02 0.75 0.01

I2 0.64 0.06 0.74 0.04 0.77 0.04 0.80 0.03 0.83 0.02

H1 0.65 0.06 0.74 0.04 0.79 0.02 0.82 0.03 0.84 0.01

G1 0.65 0.06 0.73 0.04 0.77 0.03 0.79 0.02 0.82 0.02

I1 0.66 0.05 0.77 0.04 0.79 0.04 0.83 0.04 0.86 0.02

A2 0.68 0.07 0.77 0.06 0.81 0.06 0.83 0.06 0.85 0.05

H2 0.68 0.07 0.77 0.05 0.80 0.04 0.83 0.04 0.85 0.03

D2 0.70 0.06 0.81 0.03 0.85 0.03 0.87 0.02 0.90 0.01

C1 0.71 0.07 0.78 0.05 0.82 0.05 0.84 0.05 0.87 0.05

E2 0.71 0.06 0.79 0.05 0.81 0.04 0.83 0.05 0.84 0.03

B1 0.71 0.07 0.79 0.06 0.83 0.06 0.85 0.05 0.87 0.04

D1 0.72 0.05 0.82 0.03 0.85 0.02 0.87 0.01 0.89 0.01

E1 0.72 0.04 0.81 0.03 0.84 0.02 0.86 0.02 0.88 0.01

F1 0.74 0.05 0.82 0.03 0.86 0.02 0.87 0.02 0.89 0.01

J2 0.74 0.04 0.83 0.03 0.87 0.02 0.88 0.03 0.90 0.01

G2 0.74 0.05 0.82 0.04 0.86 0.02 0.87 0.03 0.90 0.02

A1 0.75 0.06 0.83 0.03 0.86 0.02 0.87 0.02 0.90 0.00

B2 0.75 0.05 0.84 0.03 0.88 0.02 0.90 0.02 0.92 0.01

F2 0.77 0.05 0.83 0.03 0.86 0.02 0.87 0.01 0.90 0.02

J1 0.78 0.05 0.86 0.04 0.88 0.03 0.90 0.03 0.92 0.02

10% (0.10) to 19% (0.20) EER and from 0.45 to 0.63 Cllr. However,

when comparing all subjects, including twin pairs, the system’s

performance ranged from practically 0% (0.004) to 1% (0.016) EER

and from 0.04 to 0.08 Cllr.

Figure 1 provides a graphical representation of how the system’s

performance is influenced by the attributes of the individuals

being compared. One can observe that the red histograms—which

correspond to comparisons made across all speakers—are the

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2024.1287877
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Cavalcanti et al. 10.3389/frai.2024.1287877

farthest from the blue histograms, representing the distributions of

comparisonsmade between the same speaker. In contrast, the green

histograms—which represent comparisons between twin pairs—

are the closest to the blue histograms, indicating the utmost degree

of challenge when distinguishing between them.

It is worth noting that removing twin speakers from the list of

DS comparisons had a minor effect on the EER and Cllr values, as

shown in Table 3. The impact was characterized by a slight decrease

in already low EER and Cllr values, resulting in even lower scores.

Comparing Tables 2, 3, it was evident that EER values were below

1% for all testing conditions when no twin speakers were included,

whereas when they were included, EER values were below 2%.

Regarding the similarity/dissimilarity levels observed between

identical twin pairs as presented in Table 4, the high cosine

similarity scores are unsurprising and suggest that twin speakers

are more similar than dissimilar. As may be recalled, these scores

are based on cosine similarity, which ranges from −1 to +1.

Here, a value of +1 indicates identical feature vectors, a value

of 0 indicates orthogonal vectors (no similarity), and a value

of −1, though rare in this context, would indicate completely

dissimilar vectors.

However, the results depicted in Figure 2A and summarized in

Table 4 suggest that some twin pairs were more similar than others

regarding their acoustic properties. As can be seen, across all pairs,

G1–G2 was found to be the most dissimilar one, while F1–F2 was

the twin pair presenting the highest level of similarity as reflected in

their intra-pair cosine similarity scores across various sample sizes.

Furthermore, examining standard deviation values in Figure 2B

and Table 4 across various sample sizes reveals a distinct pattern.

There is a noticeable trend of lower standard deviation values

associated with larger samples as opposed to smaller ones. This

tendency becomes more evident when comparing 5 and 30 s

intervals, indicating reduced variability in the estimation of speaker

similarity/dissimilarity levels over longer durations of speech

compared to shorter ones.

Upon examining Figure 2A, it becomes evident that with an

increase in sample size, twin pairs exhibit a slight increase in

dissimilarity, as indicated by a numerical rise in similarity scores

from 5 s to 30 s samples. Regarding standard deviation values in

Figure 2B, as previously noted, larger speech sample sizes tended to

exhibit reduced variability in estimating similarity scores.

A similar pattern is observed in the examination of

intra-speaker similarity. As illustrated in Figure 2C, intra-

speaker similarity values surpass those of inter-speaker

similarity depicted in Figure 2A. Furthermore, these values

escalate with an augmentation in sample size, aligning with

heightened same-speaker similarity. Additionally, larger

speech sample sizes tend to demonstrate a notable decrease

in variability associated with the assessment of same-speaker

similarity. Tables 4, 5 allow a detailed numeric comparison of

such trends.

4 Discussion

In this current study, the duration of speech samples has been

demonstrated to influence the performance of Automatic Speech

Recognition (ASR). This outcome is compatible with previous

findings presented in the literature, as they suggest an advantage

in performance for longer speech samples in comparison to shorter

(Gelfer et al., 1989; Reynolds and Rose, 1995; Sztahó et al., 2023).

For instance, a study by Reynolds and Rose (1995) found

that a GMM speaker comparison model attained 96.8% accuracy

using 5-s clean speech utterances and 80.8% accuracy using 15-

s telephone speech utterances. ASR performance also seemed to

improve with increasing training data. The largest increase in

performance occurred when the utterance length increased from

30 to 60 s. Increasing the utterance length to 60 s improved the

performance only marginally. The outcomes of that study suggest

that longer speech samples are particularly important when dealing

with lower audio-quality data.

A study by Gelfer et al. (1989) found that speech samples

of 10 s or more are generally needed for accurate speaker

recognition. However, they also showed that recognition rates

could be improved with longer speech samples. Moreover, a recent

study by Sztahó et al. (2023), using the same ECAPA-TDNNmodel

employed in this study, showed that the performance tends to

improve as the duration of the sample increases, and in the best

scenario, samples of 10 s duration achieved an EER of 0.2%.

The impact of speech sample duration on ASR performance

varies based on factors like signal quality, system complexity,

and speaker characteristics (Künzel, 2010; Poddar et al., 2018;

Sabatier et al., 2019). Generally, longer speech samples in

ASR systems yield higher accuracy, capturing comprehensive

information about voice characteristics and speech patterns. Longer

speech stretches also appear to allow the stabilization of internal

variation, reducing uncertainty in speaker comparison, especially

in mismatched speaking styles. Conversely, shorter speech samples

show more pronounced variation, increasing uncertainty in voice

comparisons. Research on the temporal stability of acoustic-

phonetic parameters, such as fundamental frequency, suggests

stabilization within around 30 s of recorded speech, with a median

time of∼10 s (Arantes and Eriksson, 2014).

A crucial point to note in the context of the present study is that,

as the sample size increased, twin pairs showed a slight increase

in similarity, seemingly conflicting with the overall improvement

in the discriminatory system’s performance. However, a plausible

explanation lies in the simultaneous rise in intra-pair similarity,

which corresponds with an increase in already higher intra-speaker

similarity scores. The conjunction of heightened intra-speaker

similarity and a reduced standard deviation associated with its

calculation may provide insight into this outcome.

It should be noted that the benefit of longer speech samples

on accuracy is expected to reach a certain limit where it

tends to stabilize. In the current study, when comparing Cllr

scores in Tables 1–3, very similar results were obtained for

speech samples that were 15, 20, or 30 s long. However,

there was a more significant difference between the 5- and

30-s speech samples. This suggests that while longer speech

samples can provide a considerable improvement in accuracy,

there may be a point where additional speech information

is not as useful. Based on the specific characteristics of

the data used in this study (i.e., high-quality recordings), a

threshold between 10–15 s seems promising. However, further

analyses that take into consideration various speaker groups

are necessary.
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The observed slight enhancement in performance, achieved by

excluding identical twins’ speech data, aligns with expectations,

given the presumption of greater similarity in twins’ voices

compared to unrelated speakers. Acoustic-phonetic analyses

conducted on the same speaker group, as addressed in this

study, have consistently demonstrated significantly heightened

acoustic similarity among identical twin speakers in comparison to

unrelated individuals, cf. Cavalcanti et al. (2021a,b, 2022).

While the research by Cavalcanti et al. (2021a,b, 2022, 2023)

predominantly focused on analyzing male voices, limiting broader

generalizations, studies incorporating more representative samples

of both sexes suggest that the elevated similarity among twin

subjects, in contrast to unrelated subjects, is not exclusive to a

specific gender group (cf. Przybyla et al., 1992; Nolan and Oh,

1996; Van Lierde et al., 2005; Weirich, 2012). Despite the potential

influence of sex on the difficulty of differentiating twin pairs, as

proposed by Sabatier et al. (2019), the overall trend of increased

similarity extends across gender boundaries.

Including twin voices in the ASR task may increase the

system’s complexity and potentially challenge its performance.

This can result in lower performance metrics, such as higher

error rates and greater Cllr. Nevertheless, this practice can

be advantageous in some experimental settings, as it can

lead to less optimistic outcomes, especially when dealing with

high-quality recordings that may not represent the reality of

real-world forensic practice. Researchers can obtain a more

comprehensive understanding of the system’s performance under

diverse conditions by intentionally introducing challenging factors

into the analysis, such as twin voices.

As pointed out by Sabatier et al. (2019), the issue of

speaker variability becomes more pronounced when the number

of speakers in the evaluation set increases, as there is a

higher probability that two voices may sound more alike. The

differentiation of intra-twin pairs’ voices can benefit general ASR

systems because the inclusion of their voices in the training

procedure can simulate such an effect. This is because their shared

voice similarities stretch the limits of the potential inter-speaker

similarities one would expect in a large speaker database.

The observation that certain twin pairs exhibit varying degrees

of similarity in their acoustic properties is consistent with the

idea of a continuum of inter-speaker similarity, as suggested in

Cavalcanti (2021). While identical twins may generally share a high

degree of similarity in their voice/speech acoustic outcomes, the

magnitude of intra-twin pair similarity can differ depending on the

specific twin dyad being compared. This implies that the level of

similarity between twin speakers is not necessarily uniform but can

vary based on individual differences within twin pairs.

4.1 Threats to validity and future work

This study acknowledges the limitations inherent in its focus

solely on male twins. We recognize that this choice may have

implications for the findings and potentially limits the scope and

applicability of our results. In future research, incorporating a more

diverse participant pool, including female twins, could significantly

enhance the breadth and applicability of the findings.

Additionally, while this study did not delve into the

role of dialects in ASR performance, we understand the

importance of such a factor. Expanding future research to include

participants speaking different dialects could offer valuable insights,

contributing to a more holistic understanding of the nuances in

ASR technology.

Another avenue for further research could be to explore the

effects of including twin data in the training of ASR models.

However, our study shows that excluding twin voices results in

improved ASR performance; it is possible that incorporating twin

data in the training procedure could lead to better performance for

speaker recognition for other twin pairs and the general population.

Finally, future studies could build on the present study’s

findings by exploring the impact of including twin voices on other

speech tasks, such as reading or retelling. It would be interesting

to investigate whether the inclusion or exclusion of twin data has

a greater impact on ASR performance for certain speaking styles,

where the degree of variation in speech patterns may differ.

5 Conclusions

In summary, the present study has shown that the inclusion

of twin speakers in the ASR task can significantly challenge the

performance of the system, with EER values ranging from 10 to

20% in the case of twin speakers, compared to values below 1%

for testing conditions where no twin speakers were involved. The

findings also suggest that specific twin pairs exhibit a greater degree

of similarity than others, possibly due to variables that are beyond

the scope of this research. This variability in the level of similarity

between twin speakers could imply that some individuals pose a

greater challenge for ASR systems.

The impact of speech sample duration on ASR performance

has also been verified. It was observed that longer speech samples

tended to produce lower EER and Cllr values, underscoring the

relevance of sample duration in achieving more precise outcomes.

Additionally, the results indicated a noticeable trend toward lower

standard deviation values for both intra and inter-speaker similarity

scores for larger samples compared to shorter ones. This trend

was supported by the comparison between the 5 and 30 s sample

sizes, suggesting that there is less variability in estimating speaker

similarity/dissimilarity levels in longer stretches of speech than in

shorter ones.

Furthermore, as the sample size increased, twin pairs

demonstrated a marginal uptick in similarity, as indicated by

a numerical rise in similarity scores from 5 to 30 s samples.

Nevertheless, a parallel trend was observed in same-speaker

comparisons: with a growing sample size, participants exhibited an

increase in intra-speaker similarity. This result could clarify why,

even though they exhibited a slight increase in similarity with larger

sample sizes, the system achieved better separation between them.

Considering the significant drop in performance for different-

speakers (DS) analyses restricted to twin pairs, in a hypothetical

forensic application where there is a dispute between two identical

twin brothers regarding the authorship of the questioned speech, it

is recommended to use a voice database involving identical twin

siblings, as applied in this research, in order to avoid obtaining

artificially inflated likelihood ratios and high false positive rate.
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