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Support Vector Machines (SVMs) are a type of supervised machine learning
algorithm widely used for classification tasks. In contrast to traditional methods
that split the data into separate training and testing sets, here we propose an
innovative approach where subsets of the original data are randomly selected
to train the model multiple times. This iterative training process aims to
identify a representative data subset, leading to improved inferences about the
population. Additionally, we introduce a novel distance-based kernel specifically
designed for binary-type features based on a similarity matrix that e�ciently
handles both binary and multi-class classification problems. Computational
experiments on publicly available datasets of varying sizes demonstrate that
our proposed method significantly outperforms existing approaches in terms
of classification accuracy. Furthermore, the distance-based kernel achieves
superior performance compared to other well-known kernels from the literature
and those used in previous studies on the same datasets. These findings
validate the e�ectiveness of our proposed classification method and distance-
based kernel for SVMs. By leveraging random subset selection and a unique
kernel design, we achieve notable improvements in classification accuracy.
These results have significant implications for diverse classification problems in
Machine Learning and data analysis.
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1 Introduction

Support vector machines (SVMs), proposed to solve binary classification problems and
further extended for regression (Cortes and Vapnik, 1995; Wang et al., 2021), grouping,
and multiclass classification problems (Vapnik, 1995, 1998), are a supervised machine
learning (ML) technique used in the field of artificial intelligence and data mining to solve
classification and regression problems (Boser et al., 1992; Cortes and Vapnik, 1995).

SVMs offer greater flexibility and better performance in high-dimensionality problems,
and their performance in classification problems is comparable to other ML algorithms
(Roy et al., 2015). The classical SVMs are based on finding a hyperplane in a higher
dimensional space that can optimally separate the different classes of data (Vapnik, 1995,
1998). To deal with high dimensionality, SVMs base their operation on the use of a kernel
function. A kernel is a mathematical function that transforms high-dimensional input data
into a higher-dimensional space in which an optimal hyperplane effectively separates the
data. The optimal hyperplane is a geometric surface, which can be a boundary line or a
plane, and depends on the type of kernel and the number of variables (i.e., features). Once
this hyperplane has been found, it can be used to predict the class of new data.

Different research has been conducted to improve and obtain better classification
results, including either different variations of SVMs or proposing a new kernels.
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Several types kernels are available in the literature and can be
used in SVMs, each with different properties and applications.
Some common examples of kernels include the linear kernel, the
polynomial kernel, and the radial basis kernel. Choosing the right
kernel depends on the problem and requires a certain amount of
experimentation and testing to find the one that best suits the
needs. In addition to choosing an appropriate kernel for the data,
the computational complexity in SVMs is O(n3) (Cervantes et al.,
2008). This constitutes one of themain drawbacks when developing
and validating predictive models based on this ML algorithm, and
limits their application to big data sets.

In this article, we propose (1) a new distance-based kernel for
a SVM classifier and (2) an innovative method to obtain the best
subset of the original data that achieves the maximum accuracy in
the testing data. In contrast to classical ML, we randomly selecting
subsets of the training data that have great potential for correctly
classifying instances over the test data, while making sure that the
size of the training data set is smaller than the size of the test data.
Furthermore, instead of applying the kernel on the full training data
set, usually 70 or 80% of the sample size, we compute a distance
matrix from the small training subset and use it as the kernel in
SVM. This approach offers great computational advantages both
in the training stage and in the final implementation. The paper is
organized as follows. Section 2 presents the theoretical background,
Section 3 the related work, Section 4 describes our proposal, and in
Section 5 we present our results. Finally, in Section 6 we present our
conclusions and discussion.

2 Background

2.1 SVMs

In SVM, a distinction is made between linearly separable and
non-linearly separable cases. Given a set of elements represented
by the tuple (xi, yi) where xi are the vectors containing the features
and yi the classes for xi. In the case of having two classes and
if all the elements can be correctly separated, then the dataset is
said to be separable. Given a separable set: X = {xi, yi} where
i = 1, · · · , n, xi∈ R and yi ∈ {−1, 1}. A separation hyperplane is
a linear function capable of separating said function without error
given by H (xi) = (w1x1 + · · · + wnxn) + b(w, xi). However, it
is not always possible to design a linear function that allows to
separate all the cases correctly. Hence, the solution is to create a
representation or mapping of the dataset to a space with a higher
number of dimensions, known as feature space. In this space, a
linear function can be designed and used for classification and that
can be expressed by φ = X → Rn. The element φ can be a very
complex function, but it is not necessary to know or calculate the
function since, a kernel can express it.

In the feature space defined by φ, f (x) = wTφ(xi) is obtained.
The Lagrangian dual function of f (x) can expressed as Ld =

∑

ai−
1
2

∑

aiajyiyj
[

φ (xi) · φ
(

xj
)]

, where ai and aj denotes the Lagrange
multipliers associated with the support vectors, and yi and yj are the
class labels. The kernel trick is embedded in the expression [φ (xi) ·

φ
(

xj
)

]. The dot product of the feature vectors in the transformed
space is expressed implicitly through the kernel function K

(

xi, xj
)

avoiding the need to explicitly compute the transformation φ.

TABLE 1 Confusion matrices for (A) binary and (B) multiclass

classification problems.

(A) Confusion matrix for binary classification

Predicted class Data class

Yes No

Yes a, TP b, FP

No c, FN d, TN

(B) Confusion matrix for multiclass classification

Predicted class Data class

1 2 3 4 5

1 n11 n12 n13 n14 n15

2 n21 n22 n23 n24 n25

3 n31 n32 n33 n34 n35

4 n41 n32 n43 n44 n45

5 n51 n32 n53 n44 n55

In (B), five classes are present in the data.

In other words, K
(

xi, xj
)

is a kernel function that calculates the
dot product of the transformed feature vectors without explicitly
calculating the transformed vectors. Therefore, Ld incorporates the
kernel trick to efficiently handle high-dimensional feature spaces,
making SVMs computationally more tractable.

The kernel function is essential in SVMs to perform the ML
process, being the linear and polynomial kernels themost common.
The linear kernel is effective when the data are linearly separable
(Cortes and Vapnik, 1995), and is represented by K

(

xi, xj
)

= xTi xj.
The polynomial kernel, on the other hand, allows introducing
non-linearity in the feature space and is given by K

(

xi, xj
)

=
(

γ xTi xj + r
)d
, where xi and xj are the feature vectors, γ is a

parameter that controls the influence of the linear part of the kernel,
r is the intercept term, and d is the degree of the polynomial. Thus,
data that are not linearly separable can be separable in the original
space can be separated using this kernel. If d = 1, the polynomial
kernel resembles a linear kernel. However, as d increases, the ability
to model non-linear relationships in the input data also increases
(Cortes and Vapnik, 1995).

A characteristic of the SVM algorithm is the use a regularization
parameter known as C, which influences the penalty that is applied
to the error when training (James et al., 2013). If the C parameter
is too low, it can result in underfitting; if C is low, the algorithm
chooses a hyperplane with a higher training error but good
generalization, which this is known as a smooth hyperplane. On
the other hand, when C is high, the algorithm selects a hyperplane
with a lower training error, making it a better fit for the training
data, and when C is set too high, it can lead to overfitting.

Let x = (x1, · · · , xn) and y = (y1, · · · , yn) be binary vectors
representing the predicted and data classes of n individuals or
instances, respectively. By comparing x and y, a confusion matrix
can be computed as in Table 1A. Each instance can be classified
into one of the following categories: (a) True Positive or TP, when
it is correctly classified as “Yes”; (b) False Positive or FP, when it is
incorrectly classified as “Yes”; (c) False Negative or FN, when it is
incorrectly classified as “No”; and (d) True Negative or TN, when
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TABLE 2 Performance metrics commonly used in binary classification.

Metric Formula Description

Accuracy (ACC) TP+TN
T

Describes the ratio of correct predictions to the total number of predictions made. Higher
values are better.

Sensitivity (SEN), recall or true positive
rate (TPR)

TP
TP+FN

It represents the ability of a model to correctly identify positive instances. Higher values are
better.

Specificity (SPE) or true negative rate
(TNR)

TN
TN+FP

It represents the ability to correctly identify negative cases among all the actual negative
instances. Higher values are better.

Precision or positive predictive value
(PPV)

TP
TP+FP

It indicates the proportion of true positives regarding all the elements identified as positive.
Higher values are better.

Negative predictive value (NPV) TN
TN+FN

Proportion of true negatives in relation to all predictions that were evaluated as negative.
Lower values are better.

False discovery rate (FDR) FP
FP+TP

Proportion of incorrect positive results among all predicted positive results. Lower values
are better.

False negative rate (FNR) FN
TP+FN

Proportion of positive cases that were incorrectly labeled as negative in relation to the total
number of positive cases. Lower values are better.

False positive rate (FPR) FP
FP+TN

Proportion of negative instances that are incorrectly classified as positive. Lower values are
better.

Lift TP/(TP+FP)
(TP+FN)/N Ratio between the response rate obtained by the model and the average response rate in the

general population. It represents the harmonic average of Precision and Sensitivity metrics.
Indicates whether the model’s accuracy is compromised in datasets with uneven
distribution. Higher values are better.

F1-score 2·TP
2·TP+FP+FN Combines the precision and recall measures into a single value. Higher values are better.

T, total number of instances.

it is correctly classified as “No”. Note that, in an ideal scenario, FP
and FN would be zero.

For more than two classes, that is, for a multiclass classification
problem (Hossinm and Sulaiman, 2015), the confusion matrix is
shown in Table 1B. Let nii and nij be the number of instances
correctly classified in class i, and the number of instances in class
j classified in class i, respectively. Under this notation, the total
number of correctly classified instances is

∑k
i=1 nii, the FN for class

i is
∑k

i=1 nij, i > j, and the FP for class i is
∑k

i=1 nij, i < j. Of course,

the total number of instances is T =
∑k

i=1

∑k
j= 1 nij.

2.2 Performance metrics

Based on the values of TP, TN, FN, and FP, it is possible to
assess the performance of a binary classifier using different metrics.
Table 2 shows the most commonly used performance metrics in
binary classification problems, their formulas and description.

If the number of classes is k > 2, the confusion matrix is
of dimensions k × k as in Table 1B. For class i, the elements on
the main diagonal are the correctly classified elements, and the
elements outside the main diagonal are the incorrectly classified
elements. The values of TPi, FPi, FNi and TNi can be determined
as follows: TPi are the elements of class i that is part of the main
diagonal; FPi is the sum of column i, excluding the TPi value; FNi

is the sum of the values in row i, excluding the TPi value; TNi is
the sum of the values of all rows and columns, excluding row i and
column i. In multiclass classification, we calculate the ACC as the
ratio between correctly classified elements and all classifications. It
is also possible to compute other metrics using macro-averaging,

where a measure is the average of the same measure for all classes
(Sokolova and Lapalme, 2009).

2.3 Distance and similarity metrics

A distance is a mathematical function d(x, y) where all x, y ∈ X

and fulfills the following properties (Deza and Deza, 2013):

(i) d
(

x, y
)

≥ 0;

(ii) d
(

x, y
)

= d(y, x);

(iii) d (x, x) = 0; and

(iv) d (x, z) ≤ d
(

x, y
)

+ d
(

y, z
)

.

To assess the similarity between data sets of binary nature, the
Jaccard index, the Jaccard distance, and the Rogers and Tanimoto
(1960), and Sokal and Michener (1958) similarity coefficients are
commonly used (Table 3). The Jaccard index compares two data
sets and determines how many members are common in the sets
and which are dissimilar; the Jaccard distance is based on the
Jaccard index and represents a measure of dissimilarity. On the
other hand, Rogers-Tanimoto coefficient, is useful to penalize false
positives on binary sets. Finally, the Sokal-Michener coefficient is
calculated by dividing the intersection of the sets by the sum of
their sizes plus their intersection (Table 3). To obtain a measure of
dissimilarity between two instances x and ywith n binary attributes,
we subtract the value of the similarity coefficient from 1. Thus,
values closer to 0 indicate greater similarity, values closer to 1
indicate greater dissimilarity, and a value of one indicates that the
two data sets have no elements in common.
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TABLE 3 Similarity measures.

Name Formulaa

Jaccard similarity index (Jaccard, 1901) Ij
(

x, y
)

=
p

p+q+r

Jaccard distance Dj

(

x, y
)

= 1− Ij
(

x, y
)

Rogers-Tanimoto coefficient (Rogers
and Tanimoto, 1960)

DRT

(

x, y
)

=
p+s

p+s+2(q+r)

Sokal-Michener coefficient (Sokal and
Michener, 1958)

DSM

(

x, y
)

=
p+s

p+q+r+s

aHere, p is the number of attributes where xk = yk = 1, q is the number of instances where

xk = 1 and yk = 0, r is the number of attributes where xk = 0 and yk = 1, and s is the number

of attributes where xk = yk = 0.

3 Related work

Considerable work has been conducted for binary classification
and kernels using SVMs. For instance, Zhang et al. (2022) use a
SVM model called DB-SVM to predict N6-methyladenine DNA
modification. DB-SVM takes a sequence alignment and generates
a distance matrix, which is used as the kernel. The authors reached
>92% a level of accuracy in two independent data sets of different
nature. Despite the satisfactory results, the evaluation of the DB-
SVMmodel is limited to only two data sets.

Based on the Kernel Ridge Regression (KRR), Hazarika
et al. (2021), proposed the Kernel Ridge Regression Based on
Intuitionistic Fuzzy Membership (IFKRR) for binary classification.
In this method, each training sample is assigned an intuitionistic
fuzzy number to determine its membership. The degree of
membership is given by the distance to the center of the
corresponding class, while the degree of non-membership is
given by the ratio between the number of heterogeneous points
and the total number of points in their neighborhood. These
authors also proposed the Affinity-based Fuzzy KRR (AFKRR)
(Hazarika and Gupta, 2023) model for binary classification with
unbalanced data. However, neither of these proposals do not
consider multiclass classification.

One significant drawback of SVMs is the latency in their
response (Zhou, 2021). An attempt to enhance response speed
involves creating subsets of the original data through clustering
techniques before applying SVMs (Gao et al., 2019). However,
this strategy may suffer from poor performance, as the generated
groups might overfit due to class imbalance. To tackle this issue,
Fayed and Atiya (2021) propose a supervised clustering technique
that aims to achieve almost balanced groups. The main concept
involves dividing the densest class into k clusters, identifying
those closest to the decision boundary, and expanding them to
incorporate the closest patterns from all classes. This ensures an
equal representation of both classes. Although this approach has
shown satisfactory results compared to SVM, Random Forest, and
Adaboost (Fayed and Atiya, 2021), it currently cannot handle
multiclass classification.

On the other hand, it has also been suggested to combine
SVMs with other techniques to tackle highly complex tasks. For
example, Zhang et al. (2019) propose an approach to identify weed
species in crop fields using machine vision and SVMs. First, the
Grabcut algorithm and K-means clustering are used to remove the
background and segment the weed images. Further, LocalWeighted

Maximum Margin Discriminant Analysis (LWMDP) is utilized
to extract highly discriminative features from the images, taking
advantage of both local and class information from the data. Finally,
a SVM is used to identify week species, achieving remarkable
accuracy levels.

Other studies in the literature use publicly available data
sets to perform classification based on several features (i.e.,
variables). These data sets include (i) the Cleveland Heart Disease
(Cleveland HD) (Janosi et al., 1989), which are 13 features and
303 instances; (ii) the divorce data set (Mustafa Yntem, 2019)
includes 170 instances (0: non-divorce, n = 86; 1: divorce, n = 84)
representing responses to a total of 54 questions/features valued
on a scale ranging from 0 to 4; (iii) the Spambase data set (Mark
Hopkins, 1999) is a collection of 4,601 instances (1,813 spam
and 2,788 non-spam instances) and 57 attributes; (iv) the Rice
dataset (Koklu and Cinar, 2019b) has 3,810 instances classifying
two species of rice grains (n = 2,180, Osmancik species; n =
1,630, Cammeo species) and seven attributes representing different
morphological characteristics of the rice grains extracted from
images obtained through image processing (Koklu and Cinar,
2019a); and (v) the Banknote dataset (Lohweg, 2012), which
was derived from 1,372 images of both genuine (55%) and
counterfeit (45%) banknotes and measured four distinct attributes.
These data sets are publicly accessible from the UCI machine
learning repository (Markelle et al., n.d.) and will further be
used to evaluate our method and compare our results with those
previously reported.

Latha and Jeeva (2019) used the Cleveland HD data set and
fitted an ensemble ofmultiple classifiers to increase accuracy. In this
ensemble, the authors included Boosting, Bagging, Stacking and
Majority vote, while using Bayes Network, Naive Bayes, Random
Forest, C4.5, Multilayer Perceptron and Part as classification
techniques (Latha and Jeeva, 2019). By utilizing this ensemble, the
total accuracy improved between 5.94 and 7.26%, with the Majority
vote achieving the best accuracy. Feature selection techniques have
also been applied to improve accuracy for this data set. Verma et al.
(2016) proposed a hybrid data mining model. Using clinical data, a
selection of features is conducted using Correlation-based Feature
Selection (CFS) and Particle Swam Optimization (PSO). Then,
supervised learning algorithms such as multi-layer perceptron
(MLP), multinomial logistic regression (MLR), fuzzy unordered
rule induction algorithm (FURIA) and C4.5 were integrated into
the hybrid model. This hybrid model achieved a 90.28% accuracy
when applied to the Cleveland HD data set.

Similarly, Alotaibi (2019) used RapidMiner (https://
rapidminer.com/) as well as five different machine ML (i.e.,
Naive Bayes, Decision Tree, Random Forest, Logistic Regression
and SVM). These models are cross validated with 10 iterations. The
results reveal that the Decision Tree model reaches an accuracy of
93.19%, followed by SVM with 92.30%. The Random Forest model
obtains an accuracy of 89.17%, while Logistic Regression and
Naive Bayes obtain 87.36 and 87.27% accuracy, respectively. Khan
et al. (2017) used the Weka (https://www.cs.waikato.ac.nz/ml/
weka/) to study several classification techniques using this data set.
The authors applied a specialized algorithm for feature selection,
while the instances with missing data were eliminated to ensure
the integrity of the analysis (Khan et al., 2017). Techniques such
as RIPPER, Decision Tree, Artificial Neural Networks (ANNs)
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and SVMs were used. The results show that SVM reaches 84.12%
accuracy, followed by RIPPER with 81.08%, ANNs with 80.96%,
and Decision Tree with 79.05%.

Using the divorce data set (Mustafa Yntem, 2019), Sharma
et al. (2021) implemented several classifiers (i.e., Perceptron,
Decision Tree, Random Forest, Naive Bayes, K-NN and SVMs) to
predict divorce cases. SVM was applied with a tolerance value of
0.001, and a polynomial kernel with 3 degrees of freedom. The
results revealed that the Perceptron classifier achieved the highest
accuracy with a 98.53% using a 60/40 proportion for the training
and testing data. Interestingly, with these same proportions,
accuracy values between 95.59 and 98.53% were achieved for
the remaining classifiers. Simanjuntak et al. (2020) used the
Reverse Propagation Neural Network (BPNN) algorithm. For a
deeper evaluation, they contrasted the results by implementing
various feature selection techniques (i.e., Information Gain, Gain
Ratio, Relief-F and Correlation). Without feature selection, the
authors reached an accuracy of 98.24%; the accuracy ranged
between 98.82 and 99.41% when feature selection was applied.
Juarez-Lopez et al. (2021) present a comparative analysis of
C4.5, JRip, K-NN and SVM with a linear kernel, while using
the full data set and CFS. The authors used 2/3 of the full
data set for training and 1/3 for testing (Juarez-Lopez et al.,
2021).

Ghosh and Senthilrajan (2023) used the Spambase data
set (Mark Hopkins, 1999) to develop a framework for email
evaluation. The research focuses on the comparison of the
performance of 13 different classifiers, including SVMs,
considering a set of only eight attributes. According to their
results, Random Forest achieves the highest accuracy with
99.93%, while Naïve Bayes achieves the lowest, with an accuracy
of 79.53%.

On the other hand, Ilhan et al. (2021) used Deep Neural
Networks (DNNs) to classify the rice varieties present in
the Rice data set. The data were normalized to improve the
performance of multilayer neural networks; the authors used
10-fold cross-validation and achieved an average accuracy
of 93.04%. Similarly, Koklu and Cinar (2019a) conducted a
study to evaluate the performance of various classification
techniques, including Logistic Regression, MLP, SVM, Decision
Trees, Random Forests, Naïve Bayes and K-NN. All available
features were used for evaluation and 10-fold cross-validation
approach was used for all models. The best performance
was obtained with Logistic Regression (93.02% accuracy),
while the lowest performance was achieved with K-NN
(88.58% accuracy).

Finally, Yadav et al. (2021) used six classification
techniques (i.e., SVM, Random Forest, Logistic Regression,
Naïve Bayes, Decision Tree, and K-NN) to discriminate
banknotes using the Banknote dataset (Lohweg, 2012). The
authors considered three combinations of training/testing
proportions (i.e., 80/20, 70/30, and 60/40). Through a feature
selection process, all features were found to be important.
For the 80/20 percentage, K-NN achieved the highest
accuracy at 100%, while Naïve Bayes had the lowest accuracy
at 84%.

Inputs:

X: binary dataset, size n×m

y: classification vector, size n× 1

N: integer, testing set size

C: integer, regularization parameter

distance: string, distance metric

Procedure:

01 dX1 ← calculate dissimilarity matrix (X, distance)

02 best_accuracy = 0.0

03 wait = 0

04 while (wait < 100) do

05 wait← wait + 1

06 Xtrain, Xtest , ytrain, ytest ← split(X, y, N)

07 SVMtemp ← svm(kernel = proposed, C)

08 SVMtemp.fit(Xtrain , ytrain)

09 predicted← SVMtemp .predict (Xtest)

10 if (accuracy_score(ytest , predicted) > best_accuracy) then

11 best_accuracy← accuracy_score(ytest , predicted)

12 best_X← Xtrain

13 best_y ← ytrain

14 end if

15 end while

16 best_SVM← svm(kernel = proposed, C = C)

17 best_SVM.fit(best_X, best_y)

Algorithm 1. Main procedure.

3.1 Proposed method

SVM training can be slow due to factors such as large data

size. To address this challenge, we proposed, instead of using
the complete dataset in the training process as other research

similar proposal using SVM suggest (Li et al., 2014, 2023; Dudzik
et al., 2022), to randomly select smaller data subsets through

multiple iterations. This iterative approach seeks to identify
representative data subsets that capture the essence of the total

set, which, in turn, seeks to facilitate the classification process.
This proposal has no limitations on the number of features or
instances in the dataset. As a result of this method, the training
is performed with smaller subsets of data but seeks to obtain high
classification performance.

The proposed method, presented in Algorithm 1, is an SVM
with a kernel based on dissimilarity measures and is given by
K

(

x, y
)

= 1 − dissimilarity_matrix(xi, xj, distance). Initially, the
data must be preprocessed and converted to binary data, and
the response vector Y must only have two classes. Next, the five
arguments for the proposed method are defined: (1) X, a binary
data set of dimensions n × m; (2) a classification vector Y of
size n × 1; (3) N, the value of the testing size; (4) the value
of the regularization parameter C, which influences the penalty
applied to the error during the training process; and (5) a distance
or dissimilarity metric used by the proposed kernel. These five
arguments correspond to the inputs to the process (Figure 1),
and we save Xtrain if a better accuracy is obtained or until the
process finishes. Of note, the distance or dissimilarity metric must
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FIGURE 1

Diagram process. The inputs are the data X, the classification vector y, the size of training set, the value of the C parameter and the name of the
distance for the kernel.

be selected according to the nature of the binary data (for some
options, see Table 3).

Figure 1 shows the process diagram. From the initial data set
X, the dissimilarity matrix is calculated. The result is a square
matrix of size n × n. To improve the visual representation of
the information in this square matrix, we use multidimensional
scaling (MDS), a statistical technique used for dimensionality
reduction and exploratory data analysis using the dissimilarity
between instances (Borg et al., 2013). When MDS is applied with
two components, a matrix of dimension n × 2 is obtained, which
can be used for further analysis, including visualization.

First, the proposed method starts by creating two variables
called best_accuracy = 0 and wait = 0. In a repetitive cycle that
will be executed up to 100 times, our goal is to find the best set of
the training data that generates the best_accuracy, while respecting
the percentage split of training and testing entered by the user.
Interestingly, an heuristic analysis where tests were conducted with
different numbers of runs showed that, for a greater number of
iterations in the repetitive cycle, the execution time increased but
no improvement in accuracy was observed.

The variable wait is increased by one unit and the following
procedure is performed. Starting from X and Y the training
and testing subsets are randomly generated, that is, Xtrain, Ytrain,
Xtest and Ytest are created. With these subsets, an instance SVM
is created using the proposed kernel and the parameter C.
Next, the model is fitted using Xtrain and Ytrain, and predictions
are made with Xtest . At this stage, we check the prediction
accuracy; if it improves, we assign the variable wait a value
of zero, update the value of the variable best_accuracy, and
retain the values of the parameters C, Xtrain, and Ytrain. If
the wait counter is below the defined threshold, Xtrain, Ytrain,
Xtest and Ytest are randomly generated once again. If the

best_accuracy is maintained for the defined threshold, the iterations
are terminated.

At the end of the iterations, the algorithm saves the values of C,
X_train and Y_train exhibiting the best accuracy when usingX_test
and Y_test. Based on the value ofC and the proposed kernel, a SVM
classifier is generated, which will be called best_SVM and will be
adjusted with X_train and Y_train. best_SVM is the classifier with
better accuracy in training and will be used to make predictions.
From each of these predictions the corresponding metrics are
calculated to evaluate their performance.

4 Numerical experiments

4.1 Datasets

Table 4 lists the datasets used for the validation of the proposed
method. All datasets are publicly accessible in the UCI machine
learning repository (Markelle et al., n.d.). Additional information
about these data sets is presented in Section 3.

Of note, to protect privacy, the attributes in the Spambase
dataset (Mark Hopkins, 1999) do not contain actual message
information but instead indicate the frequencies of certain words
and characters, the number of uppercase letters in the message,
among other characteristics. On the other hand, attributes include
in the Rice dataset (Koklu and Cinar, 2019b) include information
about area, perimeter, major axis length, minor axis length,
eccentricity, convex area, and extent of the grains. It is worth
noting that these attributes were extracted from images obtained
through image processing (Koklu and Cinar, 2019a). Table 5
presents the relevant characteristics of the Cleveland HD dataset.
The classification column vector contains values from 0 to 4, values
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TABLE 4 Datasets used and the number of attributes before and after preprocessing.

Dataset Attributes Instances Attribute type Attributes after binarization

Cleveland heart disease 13 303 Categorical, integer, real 37

Divorce 54 170 Integer 216

Spambase 57 4,601 Integer, real 169

Rice 8 3,810 Real 21

Banknote 5 1,372 Real 12

TABLE 5 Description of features in the Cleveland HD dataset.

Feature Description Range of values

age Age in years 29–77

sex Sex (1 male, 0 female) 0–1

cp Chest pain type (1= typical angina, 2= atypical angina, 3= non-anginal pain, 4= asymptomatic) 1–4

trestbps Resting blood pressure (in mm Hg on admission to the hospital) 94–200

chol Serum cholesterol in mg/dl 126–564

fbs Fasting blood sugar > 120 mg/dl (0= false, 1= true) 0–1

restecg Resting electrocardiography results (0= normal, 1= ST-T wave abnormality, 2= showing probable
or definite left ventricular hypertrophy by Estes’ criteria)

0–2

thalach Maximum heart rate achieved 71–202

exang Exercise induced angina (0= no, 1= yes) 0–1

oldpeak ST depression induced by exercise relative to rest 0–6.2

slope The slope of the peak exercise ST segment (1=upsloping, 2= flat, 3= downsloping) 1–3

ca Number of major vessels (0–3) colored by fluoroscopy 0–3

thal Thallium scan (3= normal, 6= fixed defect, 7= reversable defect) 3–7

num Class attribute 0–1

from 1 to 4 are different cardiovascular disease (CVD) risks, and
value 0 is no CVD risk.

4.2 Data preprocessing

This section describes the procedure applied to each dataset
with the aim of transforming its attributes into a binary
representation, which will allow its use in accordance with the
technique proposed in this article. The dimensions of each data set
after binarization are specified in Table 4.

The Cleveland HD dataset contains 303 instances, siz contain
missing values from the time of testing. We removed the instances
with missing values, leaving a total of 297 instances. Categorical
features were converted into “dummy variables”. Thus, each
numerical feature was converted into categorical variables by
generating three ranges from the original feature, hence splitting
the values into three parts, to avoid creating numerous additional
values for each feature. The resulting dataset is further used to test
binary classification andmulticlass classification.When performing
binary classification, the values in the class vector, which range from
0 to 4 are grouped into two categories: the original values of 0
remain unchanged, while the original values of 1–4 are grouped

into category 1. For multiclass classification, the original class is
used. The features after preprocessing are summarized in Table 6.

The Spambase, Rice, and Banknote datasets are distinguished
by their continuous numerical attributes. To use the proposed
method in this article, it is necessary to appropriately binarize these
attributes. The binarization process was conducted as follows: a
parameter called “bins” is set, determining the number of ranges
into which each column of the dataset will be divided. Using the
minimum and maximum values of each column, the range limits
are defined, ensuring that the total range is evenly divided into the
specified number of bins. Subsequently, binarization is applied to
each column of the dataset using the previously calculated ranges.
As a result of this process, a new dataset is generated, consisting of
binary columns corresponding to each bin. This procedure enables
the transformation of continuous numerical attributes into binary
columns, thereby facilitating their subsequent analysis and the
application of specific techniques within the context of this study.

Finally, the Divorce dataset is characterized by features on a
Likert scale, ranging from 0 to 4. To align these attributes with the
proposed method, a binarization process is performed. In this case,
it is unnecessary to establish range limits, as the possible values for
each attribute are predetermined and discrete. Consequently, each
attribute is transformed into a series of binary columns, with each
column representing one of the potential attribute values. Thus,
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TABLE 6 Description of features in the Cleveland HD dataset after preprocessing.

Feature Dummy variables
generated

Description

age 3 age < 45, 45 < age < 66, age >66

sex 2 0= female, 1=male

cp 4 1= typical angina, 2= atypical angina, 3= non-anginal pain, 4= asymptomatic

trestbps 3 trestbps < 129, 129 < trestbps < 164, trestbps > 164

chol 3 chol < 272, 272 < chol < 418, chol > 418

fbs 2 0= false, 1= true

restecg 3 0= normal, 1= ST-T wave abnormality, 2= showing probable or definite left ventricular
hypertrophy by Estes’ criteria

thalach 3 thalach < 114, 114 < thalach < 157, thalach > 157

exang 2 0= no, 1= yes

oldpeak 3 oldpeak < 2, 2 < oldpeak < 4, oldpeak > 4

slope 3 1= upsloping, 2= flat, 3= downsloping

ca 3 ca < 1, 1 < ca < 2, ca > 2

thal 3 3= normal, 6= fixed defect, 7= reversable defect

binarization is accomplished by assigning a value of 1 to the column
corresponding to the specific attribute value, while the columns
corresponding to other potential values are assigned a value of 0.

4.3 Computational experiments

The process described in Algorithm 1 is ran iteratively
by combining the different parameters. All experiments were
performed in Python version 3.9.2 using NumPy and sklearn
libraries. Because of the nature of our data (i.e., binary data),
we used the implementations of the Jaccard, Rogers-Tanimoto
and Sokal-Michener distances (Table 3) in the sklearn library.
In our experiments, the size of the test data was N =

{60%, 70%, 80%, 90%} of the original data, and the values
of the regularization parameter for the SVM were C =

{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. As a result, for each
dataset, a total of 120 parameter combinations (N, C, and kernel
configuration) for were considered.

5 Results

This section presents the results obtained by implementing the
proposed method and varying its parameters. The classification
capability of the proposed approach was evaluated on the training
and test data set and calculating several metrics. Tables 7, 8 present
the different combinations of N and C that allow us to obtain the
best performance in the training and testing processes, respectively.
For example, value 40/20 in the third row and third column of
Table 7 represents the size testing data set as a percentage of the
full data set (N = 40%) and the parameter C (C = 20). The next

row corresponds to the achieved metric (ACC = 1.000) according
to the selected distance/dissimilarity. Similarly, Table 8 presents the
different combinations of N values and C that allow us to obtain a
greater predictive capacity in the testing process.

Table 9 shows the combinations of data set, distance, test size
and value of C as well as the performance metrics when the
maximum accuracy is achieved. For the Cleveland HD dataset the
maximum precision is 96%, and occurs when N = 60, C = 90
and the Rogers-Tanimoto distance is used. For this combination
of parameters, the sensitivity, specificity, PPV, NPV, FDR, FNR and
lift are 93, 98.9, 98.7, 93.8, 1.2, 6.9, and 1.803, respectively.

For the Divorce dataset, the maximum precision is 100%, and
occurs in different combinations of distance, test size and C; this
result has been previously achieved by other authors (Juarez-Lopez
et al., 2021). With the Spambase dataset, the maximum precision
is 96.5% and occurs when N = 60, C = 30 and the Jaccard
distance is used. Under these settings, the sensitivity, specificity,
PPV, NPV, FDR, FNR and lift are 98.6, 99.6, 99.4, 99, 0.5, 1.3,
and 1.647, respectively. When testing our approach with the Rice
data set, the maximum accuracy achieved was 89%, and occurs
when N = 60 and C = 70 and the Sokal-Michener distance
is used. The sensitivity, specificity, PPV, NPV, FDR, FNR and lift
performance measures at this set up were 88.3, 90, 92.5, 84.7, 7.4,
11.6, and 2.086, respectively. Finally, in the Banknote dataset, the
maximum achieved accuracy was 94.9% when N = 60 and C =

40, and Sokal-Michener distance is used. In this case, sensitivity,
specificity, PPV, NPV, FDR, FNR and lift are 93.2, 96.2, 95.2, 94.6,
4.7, 6.7, and 1.695, respectively. In general, these results indicate
that the proposed method produces remarkable performance with
accuracy, sensitivity, specificity, PPV and NPV above 84%, FDR
and FNR values below 12% and lift values > 1.5 for the set of
test data.
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TABLE 7 Combinations N/C (N is the test size in percentage, and C is the parameter that controls the penalty for classification errors) resulting in the

best possible performance for our proposal on the subset of training data.

Dataset Combination Performance measure

Distance ACC SEN SPE PPV NPV FDR FNR Lift

Cleveland HD N/C 40/20 40/20 40/20 40/20 40/20 40/20 40/20 10/20

Jaccard 1.000 1.000 1.000 1.000 1.000 0.000 0.000 2.636

N/C 20/60 20/60 20/60 20/60 20/60 20/60 20/60 20/60

Roger-Tanimoto 1.000 1.000 1.000 1.000 1.000 0.000 0.000 2.458

N/C 40/50 40/50 40/50 40/50 40/50 40/50 40/50 40/50

Sokal-Michener 1.000 1.000 1.000 1.000 1.000 0.000 0.000 2.145

Divorce N/C 40/10 40/10 40/10 40/10 40/10 40/10 40/10 10/70

Jaccard 1.000 1.000 1.000 1.000 1.000 0.000 0.000 3.400

N/C 10/60 10/60 10/60 10/60 10/60 10/60 10/60 10/60

Roger-Tanimoto 1.000 1.000 1.000 1.000 1.000 0.000 0.000 3.400

N/C 20/90 20/90 20/90 20/90 20/90 20/90 20/90 20/90

Sokal-Michener 1.000 1.000 1.000 1.000 1.000 0.000 0.000 2.615

Spambase N/C 10/80 10/80 10/80 10/80 10/80 10/80 10/80 10/100

Jaccard 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.749

N/C 10/90 10/90 10/90 10/90 10/90 10/90 10/90 10/100

Roger-Tanimoto 0.984 0.972 0.992 0.988 0.982 0.011 0.027 1.707

N/C 10/100 10/100 10/90 10/90 10/100 10/90 10/100 10/100

Sokal-Michener 0.989 0.984 0.996 0.993 0.988 0.006 0.015 1.679

Rice N/C 30/60 20/80 30/60 30/60 10/90 30/60 20/80 10/20

Jaccard 0.872 0.833 0.909 0.923 0.855 0.076 0.116 2.214

N/C 40/100 40/50 10/100 10/100 40/50 10/100 40/50 20/40

Roger-Tanimoto 0.872 0.881 0.914 0.943 0.844 0.056 0.118 2.199

N/C 40/30 20/100 10/60 10/60 20/20 10/60 20/100 10/100

Sokal-Michener 0.870 0.870 0.929 0.934 0.847 0.065 0.129 2.172

Banknote N/C 40/60 10/40 40/80 40/100 10/20 40/100 10/40 40/100

Jaccard 0.932 0.931 0.948 0.942 0.952 0.057 0.068 1.813

N/C 30/90 30/20 20/40 20/40 30/20 20/40 30/20 20/10

Roger-Tanimoto 0.931 0.932 0.958 0.949 0.946 0.050 0.067 1.756

N/C 40/60 10/50 30/10 30/10 10/50 30/10 10/50 30/70

Sokal-Michener 0.932 0.946 0.959 0.949 0.960 0.050 0.053 1.793

ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; FDR, false discovery rate; FNR, false negative rate.

5.1 Comparison with other kernels

A comparative analysis assessing the performance
of the proposed kernel against other kernels known
in the literature was performed. Experiments were
conducted setting N = {60%, 70%, 80%, 90%} and
C = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} using
different kernels. Table 10 shows the main results for the Cleveland
HD dataset.

Overall, the accuracy, sensitivity, specificity, PPV and NPV
values above 80%, FDR and FNR values below 18% and lift
values > 1.5 for the dataset. However, the proposed method

obtained the higest accuracy at 96.1% when the 60% test size is
used, C = 90 and the Rogers-Tanimoto distance is utilized. For
this combination of parameters, the sensitivity, specificity, PPV,
NPV, FDR, FNR and lift are 93, 98.9, 98.8, 93.9, 1.2, 7.0 and
1.804, respectively.

To determine the influence of the experiment parameters
on the achieved accuracy for the Cleveland HD data set, an
Analysis of Variance (ANOVA) was conducted. The effects of
the parameter “kernel,” “distance,” “C,” and “test size”, as well
as their two-interactions were evaluated. Our results suggest that
factors “kernel” (P < 2.2 × 10−16), “test size” (P < 2.2 ×
10−16), the interaction between “kernel” and “test size” (P <
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TABLE 8 Combinations N/C (N is the test size in percentage, and C is the parameter that controls the penalty for classification errors) that result in the

best possible performance for our proposal on the subset of testing data.

Dataset Combination Performance measure

Distance ACC SEN SPE PPV NPV FDR FNR Lift

Cleveland HD N/C 90/20 60/20 60/70 60/70 60/20 60/70 60/20 60/80

Jaccard 0.927 0.963 0.957 0.948 0.966 0.051 0.036 1.856

N/C 60/90 60/50 60/90 60/90 60/50 60/90 60/50 60/40

Roger-Tanimoto 0.960 0.946 0.989 0.987 0.959 0.012 0.053 1.833

N/C 60/60 60/90 60/20 60/20 60/90 60/20 60/90 90/80

Sokal-Michener 0.927 0.953 0.980 0.971 0.953 0.028 0.046 1.416

Divorce N/C 70/80 70/80 70/80 70/80 70/80 70/80 70/80 60/80

Jaccard 1.000 1.000 1.000 1.000 1.000 0.000 0.000 2.125

N/C 60/50 60/50 60/50 60/50 60/50 60/50 60/50 60/10

Roger-Tanimoto 1.000 1.000 1.000 1.000 1.000 0.000 0.000 2.170

N/C 70/80 70/80 70/80 70/80 70/80 70/80 70/80 60/50

Sokal-Michener 1.000 1.000 1.000 1.000 1.000 0.000 0.000 2.081

Spambase N/C 60/30 90/80 90/80 90/80 90/80 90/80 90/80 90/100

Jaccard 0.965 1.000 1.000 1.000 1.000 0.000 0.000 1.749

N/C 60/80 70/90 60/80 60/80 70/90 60/80 70/90 90/60

Roger-Tanimoto 0.950 0.928 0.969 0.950 0.954 0.049 0.071 1.479

N/C 90/60 70/80 90/50 60/40 60/80 60/40 70/80 60/100

Sokal-Michener 0.926 0.934 0.934 0.950 0.957 0.049 0.065 1.561

Rice N/C 60/20 80/80 90/50 60/40 60/20 60/40 80/80 70/90

Jaccard 0.887 0.885 0.905 0.925 0.857 0.074 0.114 2.069

N/C 60/30 80/50 60/20 60/20 60/30 60/20 80/50 80/10

Roger-Tanimoto 0.888 0.885 0.907 0.926 0.853 0.073 0.114 2.067

N/C 60/70 60/70 60/30 60/30 60/10 60/30 60/70 60/70

Sokal-Michener 0.890 0.883 0.910 0.928 0.850 0.071 0.116 2.086

Banknote N/C 60/80 70/50 60/80 70/80 70/50 70/80 70/50 60/70

Jaccard 0.947 0.942 0.960 0.950 0.955 0.049 0.057 1.722

N/C 60/90 60/90 60/80 70/80 60/90 70/80 60/90 80/50

Roger-Tanimoto 0.946 0.945 0.929 0.944 0.955 0.055 0.054 1.721

N/C 60/40 80/60 60/70 60/70 80/60 60/70 80/60 60/10

Sokal-Michener 0.949 0.932 0.966 0.958 0.955 0.041 0.055 1.736

Conventions as in Table 7.

2.2 × 10−16), and the interaction between “kernel” and “C” (P
= 0.00683) statistically significantly contribute to the achieved
accuracy. This, overall, indicates that the selection of the kernel,
the test size and the C parameter in SVM have a significant
impact on the achieved accuracy. Interestingly, we found that the
“C” parameter alone is not statistically significant (P = 0.232).
Figure 2 depicts the accuracy results for the proposed kernel in
the Cleveland HD dataset when the parameters C and N are
changed. Note that optimal accuracy is primarily achieved when
N decreases.

5.2 Comparison with similar studies

Table 11 shows the comparison of our proposal with other
approaches in the literature using previously published data sets
(Table 4). To the best of our knowledge, a detailed configuration
of all experiments does not exist in the literature for all cases.
Hence, here we use the accuracy for comparison purposes.
Overall, our method performs reasonably well in all datasets
compared to other approaches in the literature. In particular,
our method outperforms other approaches using the Cleveland
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TABLE 9 Combinations distance, N and C that result in the best accuracy.

Dataset Distance N/C Performance measure

ACC SEN SPE PPV NPV FDR FNR Lift

Cleveland HD Jaccard 60/20 0.927 0.963 0.896 0.887 0.966 0.112 0.003 1.765

Roger-Tanimoto 60/90 0.960 0.930 0.989 0.987 0.938 0.012 0.069 1.803

Sokal-Michener 60/60 0.927 0.906 0.942 0.918 0.933 0.081 0.093 1.566

Divorce Jaccard 70/80 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.983

Roger-Tanimoto 60/50 1.000 1.000 1.000 1.000 1.000 0.000 0.000 2.125

Sokal-Michener 60/20 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.888

Spambase Jaccard 60/30 0.965 0.986 0.996 0.994 0.990 0.005 0.013 1.647

Roger-Tanimoto 60/80 0.950 0.920 0.969 0.950 0.950 0.049 0.079 1.510

Sokal-Michener 60/80 0.953 0.933 0.966 0.947 0.957 0.052 0.066 1.547

Rice Jaccard 60/20 0.887 0.884 0.890 0.911 0.857 0.088 0.115 2.006

Roger-Tanimoto 60/30 0.888 0.885 0.893 0.917 0.853 0.082 0.114 2.042

Sokal-Michener 60/70 0.890 0.883 0.900 0.925 0.847 0.074 0.116 2.086

Banknote Jaccard 60/80 0.947 0.930 0.960 0.944 0.950 0.055 0.069 1.614

Roger-Tanimoto 60/50 0.946 0.931 0.957 0.942 0.949 0.057 0.068 1.624

Sokal-Michener 60/40 0.949 0.932 0.962 0.952 0.946 0.047 0.067 1.695

Conventions as in Table 7.

TABLE 10 Best accuracy obtained when di�erent kernels for the Cleveland HD dataset.

Kernel Distance N/C Performance measures

ACC SEN PE PPV NPV FDR FNR Lift

Proposed Jaccard 60/20 0.927 0.963 0.897 0.888 0.967 0.112 0.037 1.765

Roger-Tanimoto 60/90 0.961 0.930 0.989 0.988 0.939 0.012 0.070 1.804

Sokal-Michener 60/60 0.927 0.907 0.942 0.919 0.933 0.081 0.093 1.567

Linear Jaccard 60/40 0.899 0.901 0.898 0.880 0.917 0.120 0.099 1.640

Roger-Tanimoto 60/20 0.894 0.852 0.934 0.926 0.867 0.074 0.148 1.691

Sokal-Michener 70/10 0.889 0.873 0.906 0.899 0.881 0.101 0.127 1.716

RBF Jaccard 60/100 0.939 0.959 0.925 0.897 0.970 0.103 0.041 1.591

Roger-Tanimoto 60/70 0.927 0.889 0.959 0.947 0.913 0.053 0.111 1.646

Sokal-Michener 60/70 0.944 0.951 0.939 0.928 0.958 0.072 0.049 1.730

Sigmoid Jaccard 90/50 0.873 0.841 0.901 0.883 0.865 0.117 0.159 1.600

Roger-Tanimoto 70/30 0.846 0.816 0.873 0.851 0.842 0.149 0.184 1.553

Sokal-Michener 90/10 0.858 0.836 0.877 0.850 0.865 0.150 0.164 1.539

Polynomial Jaccard 60/40 0.927 0.944 0.910 0.914 0.942 0.086 0.056 1.902

Roger-Tanimoto 60/100 0.939 0.951 0.929 0.917 0.958 0.083 0.049 1.727

Sokal-Michener 60/90 0.922 0.905 0.937 0.927 0.918 0.073 0.095 1.710

RBF, radial basis function. The degree of the polynomial kernel function was d = 3. Conventions as in Table 7.
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FIGURE 2

Accuracy for the Cleveland HD dataset, when using our proposed kernel, as a function of the C and “test size” parameters.

HD, Divorce and Spambase datasets, and achieves competitive
performance with accuracy values above 89% for the Rice and
Banknote datasets (Table 11). Interestingly, our method reaches
this level of performance while using the proportion 40/60
for the training and testing data sets. This result could be or
remarkable importance, especially when training SVM models in
large datasets.

5.3 Multiclass classification

Table 12 shows the results of applying our approach
to the Cleveland HD dataset without binarizing the
class target variable, leaving a total of five classes
(Janosi et al., 1989). However, the attributes are
binarized following the approach previously mentioned
in Section 3, since a binary matrix is required for
the calculation of the dissimilarity matrix in our
proposed method.

According to our results, the proposed method yields an
overall accuracy of 89.39% in the testing dataset (Table 12A).
This occurs when N = 60%, C = 20 and the Jaccard
distance used as kernel. In this same combination of parameters,
the average the sensitivity, specificity, PPV, NPV, FDR, FNR
and lift for all classes are 0.734, 0.974, 0.829, 0.975, 0.171,
0.267, and 1.169, respectively. These multiclass classification
results are satisfactory since there is a high probability of
correctly identifying positive and negative cases. Interestingly,
our proposed method showed superior performance for the
binary classification (96.08% accuracy, Table 9) than for multiclass

classification (89.39%), which is comparable with other results in
the literature.

6 Conclusions and future work

Here we present and illustrate an innovative distance-based
kernel for binary classification using SVMs as well as an
iterative procedure to identify the best training/testing data sets
combination maximizing the accuracy. We also showed that our
approach is easily extended to multiclass classification situations.
The effectiveness of the classification approach is evaluated through
variations in parameters, and the use of four data sets with
different number of instances and features. When evaluating the
effectiveness of our approach, we conducted comparative analyses
against prevalent methodologies documented in the literature.
Remarkably, even without selectively choosing specific attributes,
our method exhibited comparable, and, in certain instances,
superior performance than established approaches previously
published. These findings validate the credibility and effectiveness
of our proposed method. Moreover, the statistical significance of
the kernel as a determining factor in result quality became evident
after comparing several kernels. By tackling both binary and
multiclass classification tasks, our model exhibited an outstanding
ability to handle both modalities successfully, thus highlighting its
versatility and proficiency in a variety of classification scenarios.

The main contributions of our work are: (i) we describe in
detail an algorithm to determine the best subset of the original
dataset to represent the data and fit the model; (ii) propose a
novel distance-based kernel method, implement it in a SVM, and
apply it to well-known publicly available datasets (Janosi et al.,
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TABLE 11 Accuracy comparison of our proposal and other approaches in the literature using the previous datasets.

Dataset References Method Accuracy

Cleveland HD Verma et al., 2016 Ensemble of Majority vote with Naive Bayes, Bayes Net, Random Forest, and Multi
perceptron

85.48%

Verma et al., 2016 Hybrid model [multi-layer perceptron (MLP), multinomial logistic regression (MLR), fuzzy
unordered rule induction algorithm (FURIA) and C4.5] with CFS (correlation-based feature
subset) and PSO (particle swam optimization) feature selection.

90.28%

Subhadra and
Vikas, 2019

MLP neural network 93.39%

Alotaibi, 2019 Decision tree 93.19%

Khan et al., 2017 SVM 84.12%

This proposal (40% training) 96.08%

Divorce Sharma et al., 2021 Perceptron (60–40 split) 98.53%

Simanjuntak et al.,
2020

Backpropagation neural netwok (BPNN) 99.41%

Juarez-Lopez et al.,
2021

C4.5 (2/3 for training, 1/3 for testing) 95.60%

Juarez-Lopez et al.,
2021

KNN 100%

This proposal (40% training) 100%

Spambase Awad and Foqaha,
2016

Combination of radial basis function neural networks (RBFNN) and particles swarm
optimization (PSO).

91.4%

Ghosh and
Senthilrajan, 2023

Random forest 99.93%

Lee et al., 2010 Random forest 95.00%

This proposal (40% training) 96.5%

Rice Ilhan et al., 2021 Deep neural networks 93.04%

Ilhan et al., 2021 Logistic regression 93.02%

This proposal (40% training) 89.06%

Banknote Yadav et al., 2021 Decision tree (80% training) 99%

Yadav et al., 2021 Naive Bayes (70% training) 83.1%

Yadav et al., 2021 Logistic regression (70% training) 99%

Yadav et al., 2021 SVM (60% training) 98%

This proposal (40% training) 94.9%

1989; Mark Hopkins, 1999; Lohweg, 2012; Koklu and Cinar, 2019b;
Mustafa Yntem, 2019) achieving remarkable performance; and
(iii) conduct computational experiments with such data sets and
show that our proposal overcomes, in terms of performance,
other kernel methods and classification models available in
the literature.

As part of future research perspectives, three key areas are
proposed. First, it is essential to determine the performance
of the current model through a careful feature selection
process. This will allow the identification of the most relevant
variables and will contribute to a greater efficiency and precision
in classification problems. Secondly, the implementation of

a specific improvement process for the existing multiclass
classification system should be assessed. This involves algorithm
optimization, hyperparameter tuning, and continuous evaluation
to ensure optimal performance in multiclass scenarios. Finally, we
strongly suggest expanding our proposal toward an unsupervised
classification system. This would open the door to automatically
identify emerging patterns and structures in the data, which
could have applications in the exploration of complex data
sets, and subsequently detect potential anomalies. These research
directions represent crucial steps to advance the efficiency and
versatility of classification models in the current context of
data analysis.
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TABLE 12 (A) Confusion matrix for the Cleveland HD dataset when using the proposed method. (B) Performance metrics obtained at this configuration.

(A) Confusion matrix

Real class

Predicted 0 1 2 3 4

0 102 0 0 0 0

1 0 27 1 2 0

2 0 5 14 2 0

3 0 1 4 13 0

4 0 1 2 2 3

(B) Performance metrics

ACC SEN SPE PPV NPV FDR FNR LIFT

1.000 1.000 1.000 1.000 1.000 0.000 0.000 2.325

0.942 0.900 0.953 0.794 0.979 0.206 0.100 0.980

0.928 0.670 0.955 0.667 0.956 0.333 0.333 0.755

0.944 0.720 0.962 0.684 0.969 0.316 0.278 0.765

0.974 0.380 1.000 1.000 0.972 0.000 0.625 1.017

(A) Here, N = 60% and C = 20 and the kernel is based on the Jaccard distance. (B) Conventions as in Table 7.
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