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Leveraging di�usion models for
unsupervised out-of-distribution
detection on image manifold

Zhenzhen Liu*†, Jin Peng Zhou*† and Kilian Q. Weinberger

Department of Computer Science, Cornell University, Ithaca, NY, United States

Out-of-distribution (OOD) detection is crucial for enhancing the reliability of

machine learning models when confronted with data that di�er from their

training distribution. In the image domain, we hypothesize that images inhabit

manifolds defined by latent properties such as color, position, and shape.

Leveraging this intuition, we propose a novel approach to OOD detection

using a di�usion model to discern images that deviate from the in-domain

distribution. Our method involves training a di�usion model using in-domain

images. At inference time, we lift an image from its original manifold using a

masking process, and then apply a di�usion model to map it towards the in-

domain manifold. We measure the distance between the original and mapped

images, and identify those with a large distance as OOD. Our experiments

encompass comprehensive evaluation across various datasets characterized

by di�erences in color, semantics, and resolution. Our method demonstrates

strong and consistent performance in detecting OOD images across the

tested datasets, highlighting its e�ectiveness in handling images with diverse

characteristics. Additionally, ablation studies confirm the significant contribution

of each component in our framework to the overall performance.

KEYWORDS

out-of-distribution detection, di�usion models, score-based models, generative

modeling, manifold learning

1 Introduction

The goal of out-of-distribution (OOD) detection is to ascertain if a given data point
comes from a specific domain. This task is crucial given that machine learning models
generally require that the distribution of test data mirrors the distribution of the training
data. In cases where the test data deviates from the training distribution, the models can
generate meaningless or deceptive results. This could be especially harmful for tasks in
high-stake areas like healthcare (Hamet and Tremblay, 2017) and criminal justice (Rigano,
2019).

The OOD detection task has been examined under settings with access to
varied amount of information. These settings can be categorized as supervised
and unsupervised. Among supervised settings, the most informed scenario makes
the assumption that exemplar out-of-domain data are available. One can then
incorporate them in the training of neural networks to enhance their ability
to recognize out-of-domain inputs (Hendrycks et al., 2018; Ruff et al., 2019).
Various methods excel on identifying out-of-domain data when that resemble
the training examples, but their performance deteriorates on out-of-domain
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inputs that are not represented in the training process. In practical
applications, inputs are often highly diverse, and it is challenging
to construct a truly representative set of out-of-domain examples.
A more feasible setting is to only leverage in-domain classifiers or
class labels (Hendrycks and Gimpel, 2016; Liang et al., 2017; Lee
et al., 2018; Huang et al., 2021; Wang et al., 2022). Although this
setting is less restrictive, it still requires two essential conditions:
well-defined categorization of the in-domain data and an adequate
amount of labeled data. These conditions do not hold for many
tasks. In contrast, the fully unsupervised setting only require access
to unlabeled in-domain data, which can often be obtained with low
cost and in abundant quantities. As a result, it is ideal to develop
OOD detectors under the fully unsupervised setting.

Recently, the diffusion models (DMs), a type of generative
models, have received increasing attention in the machine learning
community (Ho et al., 2020; Song et al., 2020). DMs operate on
two procedures: The forward operation performs iterative noise
addition to an image’s pixels and transforms it into a sample drawn
from a noise distribution. The backward operation—performed
by a dedicated neural network—gradually removes noise from the
image, guiding a noise image toward a specific image manifold.

In this paper, we show that we can leverage DMs as a
mapping to amanifold, and use it for unsupervised OOD detection.
Conceptually, if an image is lifted from its manifold, a diffusion
model trained over the same manifold can guide it back to its
original manifold. However, if the diffusion model has been trained
on a different manifold, it would lead the lifted image toward its
own training manifold, resulting in a substantial distance between
the original and the mapped images. Therefore, we can identify
out-of-domain images based on this distance.

To this end, we introduce an innovative unsupervised method
for out-of-distribution detection, Lift, Map, Detect (LMD), that
embodies the aforementioned concept. Lifting is performed
through image corruption. For instance, a face image that has
been masked in the center will no longer fit into the face image
category. Previous research by Song et al. (2020) and Lugmayr et al.
(2022) have demonstrated that the diffusion model can perform
inpainting, i.e., restoring missing areas in an image with visually
convincing content, without the need for additional training.
This allows us to map the mapped image via inpainting with
a in-domain diffusion model. We can employ a conventional
image similarity metric to calculate the distance between the
original and mapped images, and detect an out-of-domain image
when there is a significant distance. In Figure 1, we provide
an example: A diffusion model trained with face images maps
a lifted in-domain face image closer to its original location,
while moving an lifted fire hydrant, an out-of-domain image,
further away.

Our main contributions include: (1) We propose an innovative
unsupervised OOD detection technique, Lift, Map, Detect (LMD),
that utilizes of the inherent manifold mapping capacity of
diffusion models, and incorporates design choices that enhance
the distinguishability between in-domain and out-of-domain data.
(2) We conduct extensive experiments on various image datasets
with different characteristics to illustrate the versatility of LMD.
(3) We present in-depth analysis, visualizations and ablations to
confirm LMD’s underlying hypothesis and provide insights into
LMD’s behaviors.

FIGURE 1

The intuition behind LMD. In essence, LMD leverages a di�usion

model as a mapping toward the in-domain manifold. It applies a

mask to the image to lift it from its original manifold, and uses the

di�usion model to guide it toward the in-domain manifold. If an

image is in-domain, it would generally have smaller distance

between the original and mapped locations than out-of-domain

images.

2 Materials and methods

2.1 Preliminaries

Problem formulation. Formally, we define the unsupervised
out-of-distribution (OOD) task as follows: We aim to build a
detector to identify data points x that deviate from a distribution of
interest D. The detector should be built using only unlabeled data
x1, · · · , xn sampled fromD. It should assign anOOD score s(x) that
positively correlates with the likelihood of x not belonging toD.

Diffusion models. In this section, we present a brief summary
of the concepts behind the diffusion model (DM). It is a class of
generative models that can learn complex distributions. It involves
a forward process of diffusion and a backward process of denoising.
Diffusion corrupts the original data with noise, while denoising—
performed by a learned neural network—progressively reduces
noise from the corrupted image. There are various formulations
of diffusion models, such as score-based generative models (Song
and Ermon, 2019) and stochastic differential equations (Song et al.,
2020). A comprehensive review can be found in Yang et al. (2022).

LMD is agnostic to the different DM variants. Here, we describe
one prominent variant: the Denoising Diffusion Probabilistic
Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020).
DDPM’s diffusion process begins with a data sample x0, and injects
Gaussian noise at every subsequent step t = 1, 2, · · · ,T following
Equation (1)

q(xt|xt−1) = N (xt;
√

1− βtxt ,βtI) (1)

where βt adheres to a predetermined variance schedule. The
denoising process has a prior distribution xT ∼ N (0, 1), and
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Input: test image x, in-domain diffusion model θin

Output: OOD score of test image x

for i = 1 to r do

Mi ← Get_Mask(i)

x′i ← Inpaint(x,Mi, θin)

di ← Distance(x, x′i)

end for

return Aggregate(d1, . . . , dr)

Algorithm 1. Lift, Map, Detect (LMD).

formulates the process following Equation (2)

pθ (xt−1|xt) = N (xt−1;µθ (xt , t),6θ (xt , t)) (2)

where both µθ (xt , t) and 6θ (xt , t) are parametrized by a neural
network θ .

2.2 Lift, Map, Detect

Lift, Map, Detect (LMD) is inspired by the observation that a
diffusion model maps images toward the manifold it is trained on.
Concretely, it leverages a diffusion model trained over unlabeled
in-domain data. Given a test image, LMD applies corruption
techniques to lift it from its original manifold, and utilizes the
diffusionmodel to map it toward the in-domainmanifold on which
the model is trained. As depicted in Figure 1, if the image is indeed
in-domain, the model can map it back to its manifold close to its
original location. Conversely, if the image belongs to a different
manifold, then the diffusion model would redirect it toward the in-
domainmanifold, moving it further away from its original location.
Hence, out-of-domain images often have larger distance between
the original and mapped images than in-domain images, and LMD
identifies images with large distance as OOD. Figure 2 presents the
general framework of LMD in Figure 2, and Algorithm 1 provides a
succinct representation of the LMD algorithm. Subsequent sections
explain each component of LMD in detail.

2.2.1 Lifting and mapping images
LMD lifts an image by masking parts of it, and maps it

by inpainting over the masked area. For convenience, we also
refer the lifted and mapped images as masked and reconstructed
images, respectively. Masking provides a straightward way of
controlling the extent to which an image is lifted, as larger
masked area generally corresponds to larger deviation from the
manifold. Furthermore, recent studies have shown that vanilla
diffusion models can perform inpainting without the need for
retraining, regardless of the size or shape of the masked regions.
This highlights masking and inpainting as an intuitive strategy.
Algorithm 2 describes the high-level process of inpainting with
diffusion models. Additionally, we observe that an alternative way
of lifting and mapping an image is to just add noise to it and then
denoise with the diffusion model. We compare this instantiation
with masking and inpainting in Table 4.

LMD operates based on the assumption that in-domain images
have smaller reconstruction distance than out-of-domain images.

Input: original image xorig, binary mask M where 0

indicates region to be inpainted, diffusion model θ

Output: inpainted image xinp

for t = T to 1 do

if t == T then

xinp ← sample from noise distribution

end if

x′orig ← diffuse(xorig ; θ) to step t − 1

xinp ← denoise(xinp; θ) to step t − 1

xinp ← x′orig ·M + xinp · (1−M)

end for

return xinp

Algorithm 2. Inpaint.

In practice, the validity of this assumption depends on two
factors. First of all, inpainting with a diffusion model is stochastic.
This occasionally leads to unfaithful in-domain reconstructions
or faithful out-of-domain reconstructions. Consequently, a single
reconstruction distance provides a noisy signal for identifying
OOD images. To mitigate the randomness, we perform multiple

reconstructions for each image, and use the median reconstruction
distance as the OOD score. Our experiments in Section 3.4.3 show
that this can significantly improve the detection performance.

Another factor to consider is the amount of information
removed from an image. In the extreme case where the whole image
is masked out, the reconstruction would be a random image from
the in-domain manifold. This could lead to large reconstruction
distance for both in-domain and out-of-domain images, especially
when the in-domain distribution is diverse. Conversely, if only one
pixel is removed from an image, then both in-domain and out-
of-domain reconstructions would be highly faithful. Therefore, a
mask should ideally provide sufficient clues for the diffusion model
to map a lifted in-domain image close to its original location,
while creating enough space to produce dissimilar out-of-domain
reconstructions.

In this regard, we propose to use the alternating checkerboard
N × N mask (Figure 3). For simplicity, we assume that images are
square-shaped with size L × L; extension to rectangular-shaped
images is straightforward. The checkerboard mask divides the
image into an N × N grid of patches, where each patch has
size L

N ×
L
N . It masks out every other patch in a checkerboard-

like fashion, covering 50% of an image in total. During
multiple reconstructions, the masked and unmasked patches are
flipped at each reconstruction attempt. This ensures that salient
characteristics of an out-of-domain images are covered at some
attempts. We default to N = 8. Experiments with different values
of N can be found in Table 2.

2.2.2 Measuring reconstruction distance
We use the Learned Perceptual Image Patch Similarity

(LPIPS) (Zhang et al., 2018) metric to measure the distance
between the original and reconstructed images. LPIPS utilizes
calibrated intermediate activations of a pretrained neural network
as features, and measures the normalized ℓ2 distance between
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FIGURE 2

Overview of the LMD process. LMD utilizes a di�usion model trained over the in-domain manifold. It repeatedly lifts an image from its manifold by

masking, and maps it toward the di�usion model’s training manifold by inpainting. It measures the median distance between the original and the

mapped images, and considers images with larger distance as out-of-domain.

FIGURE 3

The alternating checkerboard mask. We flip the masked and unmasked regions at each reconstruction attempt. The example in the figure is 8× 8.

the features of two images. This yields a value between 0 and
1, where lower value indicates higher similarity. We employ the
version with AlexNet (Krizhevsky et al., 2012) backbone pretrained
on ImageNet.1 LPIPS has been observed to align with human
perception of image similarity (Zhang et al., 2018), and has been
applied in research on a wide range of tasks (Karras et al., 2019;
Alaluf et al., 2021; Meng et al., 2021) and image modalities (Gong
et al., 2021; Lugmayr et al., 2022; Toda et al., 2022). Experiments
with alternative metric choices in Table 3.

3 Results

3.1 Experiment settings

We benchmark LMD against existing unsupervised OOD
detection methods on widely used datasets. We provide fine-
grained analysis and visualizations of the reconstructed images to
better understand LMD’s performance. Additionally, we perform
ablation studies to analyze the individual components of LMD.

1 We use the implementation of https://github.com/richzhang/

PerceptualSimilarity.

3.1.1 Baselines
We compare LMDwith seven existing baselines, covering three

mainstream classes of methods: likelihood-based, reconstruction-
based and feature-based. For likelihood-based methods, we
consider Likelihood (Likelihood) (Bishop, 1994), Input
Complexity (IC) (Serrà et al., 2019) and Likelihood Regret
(LR) (Xiao et al., 2020). We obtain the likelihood from the
diffusion model using Song et al. (2020)’s approach.2 We adapt
the official GitHub repository of Likelihood Regret3 for both
Likelihood Regret and Input Complexity. For Input Complexity,
we leverage the likelihood from the diffusion model to ensure
fairness in comparison; we have experimented with both the
PNG compressor and the JPEG compressor, and we report the
results from the PNG compressor due to its superior performance.
For reconstruction-based methods, we consider Reconstruction
with Autoencoder and Mean Squared Error loss (AE-MSE),
AutoMahalanobis (AE-MH) (Denouden et al., 2018) and AnoGAN
(AnoGAN) (Schlegl et al., 2017). For feature-based method, we
consider Pretrained Feature Extractor + Mahalanobis Distance

2 https://github.com/yang-song/score_sde_pytorch

3 https://github.com/XavierXiao/Likelihood-Regret
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(Pretrained) (Xiao et al., 2021). We use our own implementation
as we did not find any existing implementation to our
best efforts.

3.1.2 Evaluation
We evaluate the performance of LMD and the baselines using

the area under Receiver Operating Characteristic curve (ROC-
AUC), following the practice of existing works (Hendrycks and
Gimpel, 2016; Ren et al., 2019; Xiao et al., 2021). OOD detection
methods commonly produce numeric OOD scores, and apply a
decision threshold to classify data as in-domain or out-of-domain.
The ROC curve plots the true positive rate against the false positive
rate at various decision thresholds, and ROC-AUC measures the
area under the curve. ROC-AUC ranges between 0 and 1, with
higher values indicating better performance. A detector achieves
ROC-AUC > 0.5 when it in general assigns higher OOD scores to
out-of-domain images than in-domain images. Conversely, it yields
ROC-AUC < 0.5 when it in general assigns higher OOD scores for
in-domain images.

3.1.3 Datasets
For quantitative evaluations, we consider pairwise

combinations of CIFAR10 (Krizhevsky, 2009),
CIFAR100 (Krizhevsky, 2009) and SVHN (Netzer et al., 2011),
and pairwise combinations of MNIST (LeCun et al., 2010),
KMNIST (Clanuwat et al., 2018), and FashionMNIST (Xiao et al.,
2017), as the in-domain and out-of-domain datasets. This yields
12 pairs in total. For qualitative evaluations, we further present
visualizations on two pairs of in-domain vs. out-of-domain datasets
with higher image resolutions: CelebA-HQ (Karras et al., 2017)
vs. ImageNet (Russakovsky et al., 2015), and LSUN bedroom (Yu
et al., 2015) vs. LSUN classroom (Yu et al., 2015). We standardize
these images to 256× 256.

3.1.4 Implementation details of LMD
We build LMD on top of Song et al. (2020)’s implementation.

For datasets in Table 3, we use DDPM++ models with SubVP
SDE. We take Song et al. (2020)’s pretrained CIFAR10 checkpoint,
and train from scratch for the other datasets. We use alternating
checkerboard 8×8 mask (Figure 3), reconstruction distance metric
LPIPS and 10 reconstructions per image for LMD.

For the higher resolution datasets, we use NCSN++ models
with VE SDE.We take Song et al. (2020)’s pretrained FFHQ (Karras
et al., 2019) checkpoint for CelebA-HQ vs. ImageNet. This is to
avoid model memorization concerns given that the CelebA-HQ
checkpoint is pretrained over the whole dataset. We use Song et al.
(2020)’s pretrained LSUN bedroom checkpoint for LSUN bedroom
vs. LSUN classroom. For these datasets, we consider a checkerboard
4 × 4 mask, a checkerboard 8 × 8 mask and a square-centered
mask, with one reconstruction per image. We additionally report
the ROC-AUC from our default configuration of alternating 8 × 8
checkerboard and 10 reconstructions per image as a reference. We
use LPIPS as the distance metric.

3.2 Quantitative results and analysis

We present the OOD detection performance of LMD and
the baselines on 12 dataset pairs in Table 1. LMD attains the
highest ROC-AUC on five pairs, while demonstrating consistent
and strong performance on others. Specifically, on CIFAR100
vs. SVHN, it attains 10% higher ROC-AUC than the best
baseline performance. LMD also attains the highest average
ROC-AUC of 0.907, which is 9% higher than the best average
performance among the baselines. We visualize examples of the in-
domain and out-of-domain reconstructions of LMD in Figure 4.
In general, in-domain reconstructions resemble their original
images, while out-of-domain reconstructions are fragmented
and noisy.

We further conduct fine-grained analysis to understand
LMD’s performance. We observe that each dataset in Table 1
consists of images from multiple distinct semantic categories,
forming a diverse data distribution. For example, CIFAR10
comprises 10 different objects or animals, and SVHN comprises
10 digits. We seek to understand whether LMD performs similarly
across different semantic categories, or if certain categories
are more challenging for LMD than the others. Specifically,
we group the images by their ground truth classes, and
examine the distinguishability of the OOD scores for each
pair of classes of the in-domain vs. out-of-domain datasets.
We present the results for CIFAR10 vs. SVHN and SVHN
vs. CIFAR10 in Figure 5. On CIFAR10 vs. SVHN, all pairs of
classes are highly distinguishable, with ROC-AUC ranging from
0.97 to 1. This is unsurprising given that LMD attains strong

performance of ROC-AUC 0.992 on this pair. On SVHN vs.

CIFAR10, pairwise performance shows visible variation, with

ROC-AUC ranging from 0.84 to 0.97. Specifically, the ROC-

AUC is relatively low when the in-domain class is “3” or “5,”

and when the out-of-domain class is “deer” or “frog.” This

suggests that the reason behind LMD’s satisfactory but suboptimal

performance on SVHN vs. CIFAR10 is primarily attributed to
the relative difficulty in distinguishing between some of the
semantic categories.

3.3 Qualitative studies on higher resolution
images

We show qualitative results on images with resolution 256×256
for two in-domain/out-of-domain pairs: CelebA-HQ vs. ImageNet
(Figure 6) and LSUN bedroom vs. LSUN classroom (Figure 7).
The ROC-AUCs in the images correspond to LMD’s performance
with only one reconstruction attempt. As a reference, under our
default configuration of alternating checkerboard 8 × 8 mask and
10 reconstruction attempts, CelebA-HQ vs. ImageNet has a ROC-
AUC of 0.993, and LSUN bedroom vs. LSUN classroom has a
ROC-AUC of 0.927.

For CeleA-HQ vs. ImageNet, LMD performs competitively
under all three mask choices, and achieves ROC-AUC ranging from
0.991 to 1 even without multiple reconstructions. Given the highly
structured nature of human faces, the in-domain reconstructions
under all three masks are accurate. For the out-of-domain images,
reconstructions under the checkerboard masks contain local
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TABLE 1 ROC-AUC of LMD and the baselines.

ID OOD Likelihood IC LR Pretrained AE-MSE AE-MH AnoGAN LMD

CIFAR10 CIFAR100 0.520 0.568 0.546 0.806 0.510 0.488 0.518 0.607

SVHN 0.180 0.870 0.904 0.888 0.025 0.073 0.120 0.992

CIFAR100 CIFAR10 0.495 0.468 0.484 0.543 0.509 0.486 0.510 0.568

SVHN 0.193 0.792 0.896 0.776 0.027 0.122 0.131 0.985

SVHN CIFAR10 0.974 0.973 0.805 0.999 0.981 0.966 0.967 0.914

CIFAR100 0.970 0.976 0.821 0.999 0.980 0.966 0.962 0.876

MNIST KMNIST 0.948 0.903 0.999 0.887 0.999 1.000 0.933 0.984

FashionMNIST 0.997 1.000 0.999 0.999 1.000 1.000 0.992 0.999

KMNIST MNIST 0.152 0.951 0.431 0.582 0.102 0.217 0.317 0.978

FashionMNIST 0.833 0.999 0.557 0.993 0.896 0.868 0.701 0.993

FashionMNIST MNIST 0.172 0.912 0.971 0.647 0.804 0.969 0.835 0.992

KMNIST 0.542 0.584 0.994 0.730 0.976 0.996 0.912 0.990

Average 0.581 0.833 0.783 0.821 0.651 0.679 0.658 0.907

Higher value is better. We use the default configuration of alternating checkerboard 8× 8, LPIPS metric and 10 reconstructions per image for all experiments. LMD consistently demonstrates

strong performance and attains the highest average ROC-AUC. The bold values mean the best performance, i.e., the highest ROC-AUC, among the evaluated methods in each setting, where a

setting is either an in-domain vs. out-of-domain dataset pair or the average across all dataset pairs.

FIGURE 4

Example reconstructions from three pairs of dataset. “Orig.” is the original image and “Inp.” is the inpainted image. Generally, the in-domain

reconstructions are faithful while the out-of-domain reconstructions are noisy and dissimilar.

distortions, while reconstructions under the center mask tend to
hallucinate faces. As a result, in this case, the in-domain and out-of-
domain reconstructions become more discernible when employing
larger patches in masking.

For LSUNbedroom vs. LSUN classroom, the checkerboard 8×8
mask attains strong results, while the checkerboard 4× 4 mask and
the center-squared mask demonstrate suboptimal performance.

This is because bedroom images exhibit greater variation and
contain more intricate details. Consequently, when large patches
are masked, the diffusion model may fill in plausible yet different
content, resulting in significant reconstruction discrepancies for
in-domain images. In fact, even with the checkerboard 8 × 8
mask, the diffusion model may hallucinate or alter elements in the
bedroom inpaintings. Moreover, the complex and diverse nature
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FIGURE 5

Per-Class ROC-AUC for CIFAR10 vs. SVHN and SVHN vs. CIFAR10. The classes for CIFAR10 are: 1, airplane; 2, automobile; 3, bird; 4, cat; 5, deer; 6,

dog; 7, frog; 8, horse; 9, ship; and 10, truck. (A) CIFAR10 vs. SVHN. (B) SVHN vs. CIFAR10.

of bedroom images poses substantial challenges for the diffusion
model to accurately learn the in-domain distribution; samples and
inpaintings from the LSUN bedroom model generally have lower
quality than those from the CelebA-HQ model.

Results from these two dataset pairs collectively demonstrate
that LMD could scale to higher resolution images with richer
details. They also highlight the checkerboard 8 × 8 mask as a
versatile default choice, as it is effective for both structured and
diverse in-domain distributions. For further discussions on mask
choices, please refer to Section 3.4.1.

3.4 Ablation studies

3.4.1 Mask choice
Table 2 presents the performance of LMD under alternative

mask choices. Besides our default mask, we consider alternating
checkerboard 4× 4, alternating checkerboard 16× 16, a fixed 8× 8
checkerboard for which we do not perform the flipping operation,
a square-centered mask, and a random patch mask following (Xie
et al., 2022).4 Figure 8 visualizes the mask patterns. We experiment
on three dataset pairs: CIFAR10 vs. CIFAR100, CIFAR10 vs. SVHN
and MNIST vs. KMNIST. For all the mask choices, we perform
10 reconstructions per image and use LPIPS as the reconstruction
distance metric.

Our default mask choice of alternating checkerboard
8 × 8 shows consistent and strong performance. Alternating
checkerboard 16 × 16 mask, fixed checkerboard 8 × 8 mask and
the random patch mask are competitive but underperform the

4 https://github.com/microsoft/SimMIM

default choice. Nevertheless, alternating checkerboard mask is
recommended over fixed checkerboard mask or random patch
mask, as it ensures that all parts of the image are covered in
some of the reconstruction attempts. Alternating checkerboard
4 × 4 and square-centered masks show suboptimal performance
on MNIST vs. KMNIST. This is because they mask out too
much information from the images, and therefore lead to
unfaithful reconstructions for both in-domain and out-of-domain
images.

3.4.2 Reconstruction distance metric
We study the effect of using alternative metrics for measuring

the reconstruction distance. We consider two popular metrics,
Mean Squared Error (MSE) and Structural Similarity Index
Measure (SSIM) (Wang et al., 2003), both of which have been
widely used for image comparison (Zhang et al., 2019; Bhat
et al., 2021; Saharia et al., 2022). We further observe that Xiao
et al. (2021) uses features from a ResNet-50 pretrained with
SimCLRv2 (Chen et al., 2020) on ImageNet, and achieves superior
performance on CIFAR10 vs. CIFAR100. Thus, we also consider a
SimCLRv2-based metric, in which we calculate the cosine distance
between the SimCLRv2 features of the original and reconstructed
images.

We present the performance of LMD under different distance
metrics in Table 3. MSE and SSIM demonstrate poor performance
when SVHN is the out-of-domain dataset. Our default choice
LPIPS demonstrates strong and consistent performance, and
attains the highest average ROC-AUC. SimCLRv2 is competitive
but underperforms LPIPS. This suggests that deep feature based
metrics are in general effective, and LPIPS is suitable as a default
choice.
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FIGURE 6

Examples of image reconstruction from CelebA-HQ (in-domain) and ImageNet (out-of-domain). For out-of-domain reconstructions, the

checkerboard masks result in local inconsistencies, while the center mask hallucinates faces. In this case, employing larger masked patches slightly

improves the performance.

3.4.3 Number of reconstructions per image
We examine LMD’s performance under different number of

reconstructions per image. Figure 9 plots the ROC-AUC against
the number of reconstructions per image for MNIST vs. KMNIST
and KMNIST vs. MNIST. LMD’s performance improves as the
number of reconstructions increases, regardless of the choice of
distance metric. The improvement is especially obvious for the
first 5 attempts, and gradually plateaus as the number of attempts
approaches 10. This suggests that it is generally sufficient to
perform 10 attempts per image.

3.4.4 Alternative instantiation of lifting and
mapping

We observe that another intuitive way of lifting and mapping
images with a diffusion model is to lift by diffusion to an
intermediate step t in the noise schedule, and denoising back to
the image distribution. We refer to this alternative instantiation as
diffusion/denoising, and compare it with our default instantiation
of masking/inpainting. Given that the image distribution is at t = 0
and the noise distribution is at t = T, the larger t we diffuse to,
the further away we lift an image from the manifold. We consider
different lifting distances with t = 250, t = 500, and t =

750, where the full schedule has T = 1000. We use our default

alternating checkerboard 8 × 8 mask for masking/inpainting. We
use 10 reconstructions per image and the LPIPS metric for both
diffusion/denoising and masking/inpainting.

We present the performance in Table 4. Diffusion/denoising
with t = 250 and t = 750 demonstrate suboptimal performance on
several pairs, indicating that the lifting distance is too small or too
large for the in-domain and out-of-domain to be distinguishable.
t = 500 is competitive but underperforms masking/inpainting.
This suggests that while LMD is robust to alternative choices
of lifting and mapping, masking/inpainting is the recommended
instantiation.

3.4.5 Alternative choices for the inpainting model
We perform qualitative evaluation on using other classes of

inpainting models in the LMD framework. We consider Masked

Autoencoder (MAE) (He et al., 2022) trained on CIFAR10,5 and
LaMa (Suvorov et al., 2022),6 a GAN-based inpainting model,
trained on CelebA-HQ. We perform one reconstruction per image,
as both MAE and LaMa are deterministic.

5 https://github.com/IcarusWizard/MAE

6 https://github.com/advimman/lama
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FIGURE 7

Reconstruction examples from LSUN bedroom (in-domain) and LSUN classroom (out-of-domain). As bedroom images are diverse and contain

richer details, a mask with smaller patches is preferrable.

TABLE 2 Performance of ROC-AUC on three dataset pairs with di�erent mask types.

Mask type CIFAR10 vs. CIFAR100 CIFAR10 vs. SVHN MNIST vs. KMNIST

Alternating checkerboard 4× 4 0.594 0.987 0.923

Alternating checkerboard 8× 8 0.607 0.992 0.984

Alternating checkerboard 16× 16 0.597 0.981 0.997

Fixed checkerboard 8× 8 0.601 0.990 0.974

Center 0.570 0.978 0.479

Random patch 0.591 0.990 0.912

The alternating checkerboard 8× 8 shows strong and consistent results. The bold values mean the best performance, i.e., the highest ROC-AUC, among the evaluated methods in each setting,

where a setting is either an in-domain vs. out-of-domain dataset pair or the average across all dataset pairs.

FIGURE 8

Masks used in the mask ablation. The random patch mask in the figure is just one example; a di�erent pattern is sampled each time.
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TABLE 3 ROC-AUC performance under di�erent reconstruction distance metrics.

ID OOD MSE SSIM LPIPS SimCLRv2

CIFAR10 CIFAR100 0.548 0.624 0.607 0.713

SVHN 0.155 0.329 0.992 0.970

CIFAR100 CIFAR10 0.549 0.551 0.568 0.523

SVHN 0.157 0.258 0.985 0.924

SVHN CIFAR10 0.987 0.998 0.914 0.933

CIFAR100 0.979 0.995 0.876 0.928

MNIST KMNIST 0.998 0.997 0.984 0.983

FashionMNIST 0.995 0.999 0.999 0.999

KMNIST MNIST 0.835 0.922 0.978 0.920

FashionMNIST 0.802 0.979 0.993 0.995

FashionMNIST MNIST 0.993 0.960 0.992 0.961

KMNIST 0.998 0.988 0.990 0.977

Average 0.750 0.800 0.907 0.902

LPIPS demonstrates consistent and robust results, while other metrics exhibit performance fluctuations. The bold values mean the best performance, i.e., the highest ROC-AUC, among the

evaluated methods in each setting, where a setting is either an in-domain vs. out-of-domain dataset pair or the average across all dataset pairs.

FIGURE 9

ROC-AUC vs. the number of reconstruction attempts. More reconstruction attempts enhances the OOD detection performance, irrespective of the

distance metric. (A) MNIST vs. KMNIST. (B) KMNIST vs. MNIST.

Bothmodels demonstrate lower performance than the diffusion
model in various scenarios. Figure 10 shows LaMa’s performance
on CelebA-HQ vs. ImageNet. LaMa attains reasonable results, but it
underperforms diffusion models. LaMa hallucinates faces with the
center mask, but unlike the diffusion model, the color and texture
of the hallucinated faces are very consistent with the surroundings.

Figure 11 shows MAE’s performance on CIFAR10 vs. SVHN.
Both in-domain and out-of-domain reconstructions are accurate
when the individual masked patch sizes are small, while both
deviate from the originals when the patch sizes are large.
Performance-wise, inpainting with MAE only attains ROC-AUC
0.065 for checkerboard 8 × 8 mask, 0.178 for checkerboard 4 × 4
mask and 0.403 for center mask.

The suboptimal performance of alternative inpainting models
can be attributed to their ability to leverage various sources of
information—from not only its understanding of the training
distribution, but also color or texture of unmasked parts of
an image. Models like LaMa and MAE employ specialized loss

functions and large masked ratios during training, and thus
excel at inferring missing regions from known ones regardless
of semantics. Consequently, these models are more prone to
producing reasonable out-of-domain inpaintings, especially with
simpler out-of-domain images. In contrast, a vanilla diffusion
model is not specifically trained for inferring missing regions
from the surroundings. It primarily relies on its understanding of
the training distribution to perform inpainting, and thus attains
robust performance.

4 Discussion

4.1 LMD’s relationship with existing works

In the unsupervised setting, existing works generally follow
one of the three paradigms: likelihood-based, reconstruction-
based and feature-based. LMD is a reconstruction-based
approach. Typically, reconstruction-based methods involve
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TABLE 4 ROC-AUC performance of using di�usion/denoising vs. masking/inpainting.

ID OOD Denoising
(t = 250)

Denoising
(t = 500)

Denoising
(t = 750)

Inpainting

CIFAR10 CIFAR100 0.583 0.600 0.589 0.607

SVHN 0.967 0.976 0.954 0.992

CIFAR100 CIFAR10 0.568 0.524 0.436 0.568

SVHN 0.949 0.957 0.904 0.985

SVHN CIFAR10 0.861 0.966 0.957 0.914

CIFAR100 0.847 0.949 0.957 0.876

MNIST KMNIST 0.956 0.993 0.715 0.984

FashionMNIST 0.998 0.998 0.927 0.999

KMNIST MNIST 0.645 0.972 0.721 0.978

FashionMNIST 0.998 0.994 0.943 0.993

FashionMNIST MNIST 0.428 0.941 0.876 0.992

KMNIST 0.567 0.943 0.862 0.990

Average 0.781 0.901 0.820 0.907

Diffusion/denoising with t = 500 achieves reasonable performance but underperforms diffusion/inpainting. The bold values mean the best performance, i.e., the highest ROC-AUC, among the

evaluated methods in each setting, where a setting is either an in-domain vs. out-of-domain dataset pair or the average across all dataset pairs.

training a model using in-domain samples, and assessing the
reconstruction quality of a test data point under the model.
Prior works commonly use autoencoders (Sakurada and
Yairi, 2014; Xia et al., 2015; Zhou and Paffenroth, 2017; Zong
et al., 2018) or GANs (Schlegl et al., 2017; Li et al., 2018).
One concurrent work (Graham et al., 2022) utilizes diffusion
models, and considers image reconstructions under varying
numbers of diffusion and denoising steps. This contrasts with
LMD, which repeatedly performs masking and inpainting with
fixed number of steps. These two approaches are orthogonal
and complementary.

The likelihood-based paradigm has been extensively explored,
with early contributions dating back to Bishop (1994). The core
idea is to approximate the in-domain distribution with a generative
model that has likelihood computation capability (Salimans et al.,
2017; Kingma and Dhariwal, 2018). Intuitively, the model should
assign higher likelihood to in-domain data than out-of-domain
data, but various studies have observed that such assumption
often does not hold (Choi et al., 2018; Nalisnick et al., 2018;
Kirichenko et al., 2020). One line of work addresses this issue
under a typicality test framework (Ren et al., 2019; Serrà et al.,
2019; Xiao et al., 2020). Essentially, they view likelihood as a
model statistic rather than a literal measure of how likely a data
point is in-domain. They examine the extent to which the model
statistic of a test data point deviates from the typical distribution of
model statistics for in-domain data. Notably, this is complementary
to LMD, as the reconstruction distance can also be viewed
as a model statistic. Other likelihood-based approaches include
adjusting the likelihood by background likelihood (Ren et al.,
2019), image complexity (Serrà et al., 2019) or the likelihood under
optimal model configurations (Xiao et al., 2020), or improving the
generative model architectures (Maaløe et al., 2019; Kirichenko
et al., 2020).

The feature-based paradigm usually involves extracting lower-
dimensional features from the data from unsupervised sources,
such as autoencoders (Denouden et al., 2018), generative
models (Ahmadian and Lindsten, 2021), self-supervised
training (Hendrycks et al., 2019; Bergman and Hoshen, 2020;
Tack et al., 2020; Sehwag et al., 2021) or pretrained feature
extractors (Xiao et al., 2021). They then perform detection in
lower-dimensional space, typically with simple techniques like
fitting one-class Support Vector Machines or Gaussian Mixture
Models.

4.2 Limitation and future work

One limitation of LMD is the speed. Vanilla diffusion models
have a time-consuming denoising process that involves a large
number of sampling steps. Therefore, similar to other diffusion-
based approaches for various tasks (Meng et al., 2021; Lugmayr
et al., 2022; Saharia et al., 2022), LMD is currently not well-
suited for real-time OOD detection. Several recent works have
proposedmethods to accelerate the sampling process of pre-trained
diffusion models through noise rescaling (Nichol and Dhariwal,
2021), sampler optimization (Watson et al., 2022), or numerical
methods (Liu et al., 2022; Wizadwongsa and Suwajanakorn, 2023).
One future direction is to harness these methods to expedite LMD’s
detection.

Another potential extension is to utilize more advanced
methods for aggregating reconstruction distances from multiple
reconstructions, or even under different masks or distance metrics.
As briefly discussed in Section 4.1, this can involve integrating
typicality test approaches such as multiple hypothesis testing or
learning density models (Nalisnick et al., 2019; Morningstar et al.,
2021; Bergamin et al., 2022).
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FIGURE 10

Reconstruction examples from CelebA-HQ (in-domain) and ImageNet (out-of-domain) using LaMa, a GAN-based inpainting model. Unlike the

di�usion model, LaMa produces less visible artifacts. Even though it also introduces face-like artifacts with the center mask, the faces have the colors

and textures of the surrounding unmasked regions.

FIGURE 11

Reconstruction examples from CIFAR10 (in-domain) and SVHN (out-of-domain) using MAE. Di�erentiating between in-domain and out-of-domain

inpaintings are hard, because reconstructing SVHN from only known regions is relatively simple, and because MAE is trained to have strong capability

of inference from known regions.

5 Conclusion

We propose a novel method, Lift, Map, Detect (LMD), for
unsupervised out-of-distribution detection. LMD leverages the

diffusion model’s strong ability in mapping images onto its training
manifold, and detects images with large distance between the
original and mapped images as OOD. Our extensive experiments
and analysis show that LMD achives strong performance for
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various image distributions with different characteristics. Some
future directions of improvement include accelerating LMD’s
speed and leveraging advanced aggregation for reconstruction
distance.
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