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Since the advent of deep learning (DL), the field has witnessed a continuous

stream of innovations. However, the translation of these advancements into

practical applications has not kept pace, particularly in safety-critical domains

where artificial intelligence (AI) must meet stringent regulatory and ethical

standards. This is underscored by the ongoing research in eXplainable AI (XAI)

and privacy-preserving machine learning (PPML), which seek to address some

limitations associated with these opaque and data-intensive models. Despite

brisk research activity in both fields, little attention has been paid to their

interaction. This work is the first to thoroughly investigate the e�ects of privacy-

preserving techniques on explanations generated by common XAI methods

for DL models. A detailed experimental analysis is conducted to quantify the

impact of private training on the explanations provided by DL models, applied

to six image datasets and five time series datasets across various domains. The

analysis comprises three privacy techniques, nine XAI methods, and sevenmodel

architectures. The findings suggest non-negligible changes in explanations

through the implementation of privacymeasures. Apart from reporting individual

e�ects of PPML on XAI, the paper gives clear recommendations for the choice

of techniques in real applications. By unveiling the interdependencies of these

pivotal technologies, this research marks an initial step toward resolving the

challenges that hinder the deployment of AI in safety-critical settings.

KEYWORDS

deep learning, explainability, attribution, privacy, federated learning, di�erential privacy

1 Introduction

In recent years, a wide variety of deep learning (DL) approaches have achieved

outstanding performance in a wide range of application domains (Liu et al., 2019;

Sujatha et al., 2021). The versatile applications of deep neural networks in areas such as

image processing (Hemanth and Estrela, 2017), object segmentation (Chen et al., 2013),

document analysis (Gilani et al., 2017), time series classification (Ismail Fawaz et al., 2019),

time series prediction (Lim and Zohren, 2021), layout classification (Binmakhashen and

Mahmoud, 2019), sensor analysis, and other areas have contributed to immense growth.

Intelligent and automated decision-making bears the potential to improve and transform
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a row of critical application domains, including finance, healthcare,

transportation, and administration. However, DL-based systems

rely on complex, data-driven black-box methods whose exact

working mechanisms are still widely unexplained in the scientific

community (Hassija et al., 2024), while the secure application of

algorithms in safety-critical domains requires transparency and

traceability of decisions (Khalid et al., 2023). Furthermore, data

security is a serious concern in domains involving critical and

personal data. DL methods are data-driven, often requiring the

transmission, processing, and storage of large amounts of data

in multiple remote locations. Various works showed, that even

after training, neural networks can leak sensitive information about

training data (Fredrikson et al., 2015; Chen and Campbell, 2021).

The lack of explainability and privacy of modern DL systems are

some of the main challenges that prevent the practical use of these

powerful methods in safety-critical domains (Maple et al., 2023;

Shaik et al., 2023; Velev and Zlateva, 2023).

The field of eXplainable AI (XAI) seeks to unveil the decision-

making processes of black-box models and has been thoroughly

researched recently (Das and Rad, 2020; Vilone and Longo, 2020;

Hassija et al., 2024). Depending on the area of application, different

methods have been developed that attempt to explain the prediction

of networks as well as their underlying decision-making process

(Simonyan et al., 2013; Zeiler and Fergus, 2013; Springenberg et al.,

2014; Ribeiro et al., 2016; Shrikumar et al., 2016, 2017; Lundberg

and Lee, 2017; Sundararajan et al., 2017; Zhang and Zhu, 2018).

Especially in image processing, so-called attribution methods are

commonly used (Simonyan et al., 2013; Zeiler and Fergus, 2013;

Sundararajan et al., 2017; Nielsen et al., 2021). These methods

generate heatmaps that highlight the areas of the input that were

significantly involved in the network prediction.

Some properties of DL-based models (i.e., gradients) are of

great importance for decision explanation (Simonyan et al.,

2013; Springenberg et al., 2014; Shrikumar et al., 2016, 2017;

Sundararajan et al., 2017). However, these properties also provide

interfaces for the targeted retrieval of sensitive information. It has

been shown that only limited model access suffices to completely

reconstruct models and steal their training data (Fredrikson

et al., 2015). Moreover, providing additional explanations has

been shown to even increase the vulnerability of models in

some cases (Shokri et al., 2021). This constitutes a major

risk for the deployment of AI in safety-critical applications.

Moreover, it is a significant threat to individuals contributing

to a model’s training data and users alike (Liu et al., 2020).

To prevent this, many methods have been designed to protect

neural networks from attacks during the training process and

to reduce data leakage during later deployment (Abadi et al.,

2016; Konečnỳ et al., 2016; Aono et al., 2017; Liu et al., 2020).

These methods also open new opportunities for collaboration

between multiple parties, allowing for better predictions based

on larger amounts of data (Konečnỳ et al., 2016; Mercier et al.,

2021).

While XAI methods aim to increase the transparency and

intelligibility of a model’s decision-making behavior (Hassija

et al., 2024), privacy-protection techniques aim to prevent the

leakage of sensitive information (Liu et al., 2020). However,

the safe deployment of data-driven systems in safety-critical

areas is only possible if one can reconcile both goals. To

the best of our knowledge, there has been no work that

investigates and describes the qualitative and quantitative

impact of different privacy-preserving methods on the quality

of explanations on a wide range of different deep learning

models. Understanding the trade-off between both concurring

objectives is crucial to improve XAI methods and assure

their correct interpretation in a privacy-preserving setting,

constituting an important step in the practical applicability of

DL.

This work is the first to thoroughly analyze the influence

of privacy-preserving machine learning (PPML) techniques on

the explanations generated by XAI methods. In an extensive,

multivariate analysis, three different privacy techniques

[Differential Privacy (DP) (Abadi et al., 2016), Federated

Learning (FedAVG) (Konečnỳ et al., 2016), and Differential

Private Federated Learning (FedAVG-DP) (Mercier et al., 2021)]

are combined with nine different XAI attribution methods,

and applied to seven different model architectures trained

on 11 different datasets from various domains including

document image, natural image, medical image, as well as

time series analysis. The evaluation qualitatively and quantitatively

highlights the varying but non-negligible impact of PPML

methods on the quality of explanations. An overview of

the extensive analysis conducted in the scope of this work

is presented in Figure 1. The conducted analysis reveals

several important relationships between private training and

XAI:

• Differential Privacy hampers the interpretability of

explanations.

• Federated Learning often facilitates the interpretation of

generated explanations.

• The Fidelity of explanations is potentially deteriorated when

using DP.

• The negative effects introduced by DP can be moderated by

combining it with FedAVG.

• Perturbation-based XAI methods are less affected by DP-

based training procedures.

The remainder of this paper is structured as follows. Section 2

gives an overview of relevant XAI methods and PPML techniques.

The various datasets used throughout this study are introduced in

Section 3. In Section 4 the complete experimental setup is outlined,

followed by the presentation of the respective results in Section 5.

Trends and findings of this analysis are discussed throughout

Section 6 and the manuscript is concluded in Section 7.

2 Related work

In the following section, the most common methods in the

fields of XAI and PPML will be briefly outlined. A full review of

methods is beyond the scope of this work. The interested reader

can find extensive reviews of XAI and PPML in Boulemtafes et al.

(2020) and Vilone and Longo (2020), respectively.
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FIGURE 1

Overview of the conducted analysis on the impact of privacy methods on explainability. The 11 datasets, consisting of time-series and image data

from various domains, are first standardized and then split into training and test portions, as well as further training subsets representing di�erent

distributed data partitions. The datasets are used to independently train seven model architectures in a non-private baseline as well as three private

training settings. Nine di�erent XAI methods are then applied to generate explanations for the resulting 128 models, and qualitatively and

quantitatively evaluated using di�erent measures.

2.1 eXplainable AI

In the field of XAI, attribution methods are very widely used

due to their versatility and comprehensibility. Attribution maps

approximate the relevance of input features or feature groups to

the local model decision and belong to the group of so-called post-

hoc methods (Fan et al., 2021), which are mainly characterized by

their ability to explain models that have already been trained. In

2013, Saliency (Simonyan et al., 2013) was published as one of the

first methods in this field based on the backpropagation (LeCun

et al., 2015) algorithm used to train networks. An extension

of this method is InputXGradient (Shrikumar et al., 2016), in

which the coherence of input features is additionally considered.

Other methods that work similarly to the aforementioned methods

include GuidedBackpropagation (Springenberg et al., 2014) and

IntegratedGradients (Sundararajan et al., 2017). All these methods

are so-called gradient-based methods and need access to the

networks’ internals to compute explanations.

In contrast, perturbation-based methods are usually model-

agnostic, therefore not requiring any specific model architecture to

work on. The Occlusion (Zeiler and Fergus, 2013) method removes

input areas sequentially and reevaluates each manipulated input to

measure the influence of single regions on the network prediction.

Another subgroup of perturbation-based algorithms derives

surrogatemodels from the local model behavior. Local Interpretable

Model-Agnostic Explanations (LIME) (Ribeiro et al., 2016), for

instance, applies perturbations to an input sample to obtain a

local linear model from these inputs and the respective model

predictions. Shapley Additive Explanations (SHAP) (Lundberg and

Lee, 2017) has been proposed as a related method, with additional

constraints based on game theory to provide certain mathematical

guarantees.

For the sake of completeness, it should be mentioned that

there are several other approaches besides the discussed post-

hoc attribution methods. Prototype-based (Li et al., 2018), patch-

based (Chen et al., 2019), and concept-based methods (Kim et al.,

2018), for instance, have also been used previously.

2.2 Privacy-preserving machine learning

Different techniques have been developed to protect data and

model privacy during the training and in the subsequent inference
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phase. Anonymisation techniques [e.g., K-anonymity (Hellani

et al., 2015)] were among the first approaches developed to ensure

privacy in model training. Meanwhile, there have been outstanding

breakthroughs in the area of privacy attacks. Membership (Rahman

et al., 2018) or model inversion attacks (Fredrikson et al., 2015)

allow reconstructing training data with extremely limited access to

themodels. Therefore, simplistic techniques such as anonymization

are no longer sufficient.

A promising training technique that leads to a high degree

of privacy for data and model is Homomorphic Encryption (Aono

et al., 2017). However, this method is rarely applicable to modern

DL-based systems, due to its massive computational overhead.

Another, more frequently used technique is Differential Privacy

(DP) (Abadi et al., 2016). Here, a certain amount of noise is added

to the training signal of deep networks to prevent its parameters to

capture information held by specific training samples but instead

focus on the general characteristics of the whole population. One

advantage of this method is that it can be applied to a wide variety

of architectures and requires only minimal changes to the training

setup. Another prominent technique used to account for data-

privacy is Federated Learning (FedAVG) (Konečnỳ et al., 2016).

In FedAVG, local models are trained on a data-owner’s subset of

training samples, and only the locally computed gradients are sent

to a centralized server. There, the average is calculated to obtain a

global model. This way, sensitive data does not need to leave the

institution, but multiple institutions can collaborate to leverage a

bigger training set for the global model. Moreover, FedAVG can be

combined with DP to prevent the risk of data leakage from model

gradients. Out of the many other privacy techniques (Liu et al.,

2020), DP and FedAVG stand out as the most commonly used.

Several attempts have been made at combining explanations

and privacy preservation (Franco et al., 2021; Rahman et al.,

2021; Bárcena et al., 2022; Ariffin et al., 2023). Some works

investigated the impact of XAI on privacy and found that the

privacy of models can indeed be compromised, depending on the

XAI method used (Zhao et al., 2021; Goethals et al., 2023; Lucieri

et al., 2023; Spartalis et al., 2023; Yan et al., 2023). As a result,

methods defending the privacy of explainable models have been

proposed (Montenegro et al., 2021; Nguyen et al., 2023; Pentyala

et al., 2023). The effect of privacy-preserving training methods on

explanations is far less studied (Naidu et al., 2021; Patel et al.,

2022; Bozorgpanah and Torra, 2024). This present study tackles the

lack of work investigating the overall influence of private training

on feature-based explanations in deep learning for different data

modalities.

3 Datasets

To comprehensively analyze the impact of privacy-preserving

methods on explanations, various datasets from different domains

in time series and image analysis were utilized, as listed in Table 1.

3.1 Time series datasets

The first modality that is evaluated is time series data. Time

series data is usually acquired using some type of sensor and

differs from image data in various characteristics, such as locality

constraints and their dependence on a sequential order.

Except for the Anomaly Detection dataset (Siddiqui et al.,

2019), the datasets for the time series analysis come from

the UEA & UCR repository.1 This selection includes both

univariate and multivariate time series with different numbers

of classes, namely Character Trajectories (Williams et al., 2006),

ECG5000 (Goldberger et al., 2000), FordA (Bagnall et al., 2017), and

Wafer (Olszewski, 2001). The Anomaly Detection dataset and the

FordA dataset consider the task of anomaly detection. TheAnomaly

Detection dataset deals with point anomalies and the FordA dataset

with sequence anomalies. Point anomalies are very interpretable

for humans, as in their case the data is more or less noise and

contains a large peak that indicates the anomaly. Even without the

annotation, it is possible to understand whether the explanation for

such a sample is correct or not. This is not the case for the FordA

data, as the sequences are very long and there is no annotation.

In this dataset, the anomaly can be a long part of the sequence

that varies from the expected behavior. The Character Trajectories

dataset was selected as it is possible to transform it back to the

2D input space to understand the explanation. It consists of three

channels covering the acceleration within the x and y direction

and the pen force. Therefore, it is a real-world dataset that enables

precise identification of whether an explanation is good or not. In

addition, it is important to mention that the dataset size of the

time series datasets differs significantly, to properly represent the

influence of data volume.

3.2 Image datasets

Image datasets range from specialized domains such as facial

recognition, medical image analysis, and document analysis to toy

datasets covering a varying number of classes, channels, and dataset

sizes.

3.2.1 Natural image datasets
The Real-world Affective Faces Database (RAF-Database) (Li

and Deng, 2019) is a collection of 15,339 face images with

crowdsourced annotations. It classifies images in one of seven facial

expressions (Surprise, Fear, Disgust, Happiness, Sadness, Anger,

Neutral). Caltech-256 (Griffin et al., 2007) is a natural image

classification dataset comprising a total of 30,607 labeled images

with 256 unique object classes.

3.2.2 Medical image datasets
The International Skin Imaging Collaboration (ISIC) provides

a large publicly accessible library of digital skin images2 and

hosts annual challenges. The ISIC dataset used in this work is a

cleaned combination of all ISIC challenge datasets. The datasets

have been merged and freed from duplicates according to the

recommendations in Cassidy et al. (2022). All images are labeled

1 Accesible under https://timeseriesclassification.com/.

2 The ISIC Archive is accessible at https://www.isic-archive.com.
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TABLE 1 Datasets used to evaluate the impact of privacy-preserving training techniques on attribution methods.

Modality and dataset Domain Train Test Dimensions Channels Classes

Time series

Anomaly detection Synthetic 50,000 10,000 50 3 2

Character trajectories Communication 1,422 1,436 182 3 20

ECG5000 Medical 500 4,500 140 1 5

FordA Manufacturing 3,601 1,320 500 1 2

Wafer Information 1,000 6,164 152 1 2

Images

RAF-Database Facial expressions recognition 12,271 3,068 2242 3 7

Caltech-256 Natural image classification 24,485 6,122 2242 3 256

ISIC Medical image analysis 26,521 2,947 2242 3 8

SCDB Synthetic 6,000 1,500 2242 3 2

RVL-CDIP Document analysis 3,20,000 40,000 3842/2242 3 16

Tobacco3482 Document analysis 2,782 700 3842/2242 3 10

The datasets cover the tasks of natural image, document image, medical image, and time series classification.

as either Melanoma (MEL), Nevus (NV), Basal Cell Carcinoma

(BCC), Actinic Keratosis (AK), Benign Keratotic Lesion (BKL),

Dermatofibroma (DF), Vascular Lesion (VASC), or Squamous

Cell Carcinoma (SCC). The classification is based on complex

combinations of distributed and overlapping biomarkers, posing

particular challenges for the explanation of automated decisions.

The seven-point checklist criteria dataset (Derm7pt) proposed

in Kawahara et al. (2019) consists of clinical and dermoscopic

images of 1.011 skin lesions with extensive annotation. In this

work, only the subset of dermoscopic images along with the

respective diagnosis annotations for pre-training of ISIC classifiers

is considered in experiments involving DP. The SCDB (Lucieri

et al., 2020) dataset is a synthetic toy dataset inspired by the

problems of skin lesion analysis. Images are classified into one of

two classes based on the combinations of shapes present in a base

shape, depicting the skin lesion. The shapes can be overlapping

and redundant, but classification evidence is sparse and localized.

Along with the class label, each image is supplemented by shape

annotation maps, serving as ground truth explanations.

3.2.3 Document image datasets
Business documents are a fundamental component of modern

industry. Recent advances in deep learning have sparked a

growing interest in automating document processing tasks such

as document search, and extraction of document information.

However, business documents often contain highly personal

user data and sensitive information pertaining to a company’s

intellectual property, which makes the secure application of Deep

Learning in this area a major concern. On the other hand, deep

learning-based decision-making processes have been shown to be

susceptible to learning biases in the data (Ntoutsi et al., 2020). An

example of such a system involves automatically analyzing resumes

to make hiring decisions, which may lead to discrimination against

women or members of minority groups. Explainability of such

systems is therefore of paramount importance for their safe and

practical deployment.

To analyze the interdependence between PPML and XAI for

document domain, two popular document benchmark datasets are

utilized in this study. RVL-CDIP (Harley et al., 2015) is a large-scale

document dataset that has been extensively used as a benchmark

for document analysis tasks. The dataset contains a total of 400,000

labeled document images with 16 different categories and consists

of training, testing, and validation split of 320,000, 40,000, and

40,000 images respectively. Tobacco3482,3 is another popular but

small-scale dataset with 3,482 labeled document images. Since there

is no split defined for this dataset, training, testing, and validation

splits of sizes 2,504, 700, and 278 images were defined. Since

both of these datasets are subsets of a bigger dataset, there exists

some overlap between them. Therefore, for all the experiments, the

overlapping images were removed from the RVL-CDIP dataset. The

two datasets were used in combination to analyze the effects of

transfer learning on the privacy and explainability aspects of the

models.

4 Experimental setup

A broad experimental basis, covering various domains,

applications, and configurations is necessary, to make general

statements about the impact of privacy techniques on explanations.

Therefore, a selection of state-of-the-art classifiers is trained on

a range of different datasets and applications covering both time

series and image domains. Each combination of model and dataset

is trained in four different settings, including training without

privacy (Baseline), with differential privacy (DP), federated training

(FedAVG) and federated training with client-side differential

privacy (FedAVG-DP). Different explanation methods are finally

3 https://www.kaggle.com/patrickaudriaz/tobacco3482jpg
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applied to every model instance to compare their generated

explanations.

The subsequent sections provide details about the PPML

methods, the XAI methods and their evaluation metrics, as well as

the various deep learning models investigated in this work.

4.1 PPML methods

For practical reasons, the impact analysis in this work is limited

to Differential Privacy (DP) (Abadi et al., 2016), Federated Learning

(FedAVG) (Konečnỳ et al., 2016), and the combination of both

techniques (referred to as Differential Private Federated Learning

(FedAVG-DP) (Mercier et al., 2021).

4.1.1 Di�erential privacy
Differential Privacy (DP) (Dwork, 2006) is a generalized

framework for minimizing information release from any given

randomized algorithm, and by definition, provides strong

protection against several types of privacy attacks, such as,

membership inference (Shokri et al., 2017) and linkage attacks (Al-

Rubaie and Chang, 2019). Formally, DP can be defined as follows:

Definition 1. Let M : D 7→ R be a randomized algorithm with

domain D and rangeR.M satisfies (ε, δ)-Differential Privacy if for

all subsets S ⊆ R and for all datasets D,D′ ∈ D that differ only in

one record, as can be seen in Equation 1:

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S]+ δ (1)

In other words, the output of the algorithm M on any two

adjacent datasets D,D′ ∈ D should be indistinguishable with high

probability, up to a factor of eε and a delta δ. The lower the value

of ε, the lower the risk of private information being learned by the

models. Note that the definition of DP provided above is general

and applicable to any given task involving a randomized algorithm

M and a datasetD, and therefore the definition of dataset adjacency

may vary across tasks. Since this work primarily focuses on the

classification task involving paired data-label samples, the two

datasets are considered adjacent in this work if they differ in a single

data-label sample.

4.1.1.1 DP-SGD/Adam

DP-SGD (Abadi et al., 2016) is the primary algorithm when

it comes to training deep neural networks under global (ε, δ)-

DP. The main working principle of the algorithm is to clip the

per-sample model gradients to a fixed bound C and then add

noise n ∼N (0, σ 2C2) to them before the parameter updates, thus

preventing the leakage of information from each sample. Here,

the term σ denotes the noise scale that determines the overall

privacy strength, with higher values of σ resulting in stronger

privacy constraints (lower ε). In this work, the value of σ is

approximated for a given target privacy budget (ε, δ) using the

Renyí DP (RDP) privacy accountant (Abadi et al., 2016) that tracks

the privacy loss ε given the number of noisy update steps, and

a given data sampling rate q ≈ B
||D|| , where B is the training

batch size and D is the training dataset. On the other hand, δ is

selected as δ = 1
||D|| to ensure sufficient privacy. It is also worth

mentioning that DP-SGD (Abadi et al., 2016) necessitates the use

of Poisson sampling during training (in contrast to the standard

random sampling in a non-private setting), which ensures that each

training example is sampled with a fixed sampling probability of q.

Note that DP-SGD can be easily extended to DP-Adam simply by

substituting the update step with the update step of the standard

Adam optimizer (Kingma and Ba, 2014). This work utilizes both

DP-SGD and DP-Adam algorithms for training the models under

(ε, δ)-Differential Privacy, the complete pseudocodes of which are

provided in the Supplementary Appendix.

4.1.2 Federated Learning
Federated Learning refers to a class of privacy algorithms that

involve training a model on distributed data without requiring the

data to be centralized. This work investigates the most popular

widely used federated learning approach, namely, FedAVG. Given

a total of nc participants involved in the federated training process,

in each training round of the FedAVG algorithm, a fraction f of

clients is sampled, which train a local model instance on their own,

private data partition for a total of Elocal local training epochs. The

local model parameters are subsequently sent to a central server

after each round, which aggregates the parameters to create a global

model. The global model is then sent back to each client to continue

the local training in the next round. In this work, the federated

setting is simulated by partitioning each original dataset into its nc
homogeneous subsets Dlocal, such that, ||Dlocal|| =

||D||
nc

. The full

pseudocode for the FedAVG algorithm investigated in this work is

provided in the Supplementary Appendix.

4.1.3 Di�erentially private federated learning
Following the work of Mercier et al. (2021), this study

additionally investigates the FedAVG-DP privacy method, which

combines the two approaches, Differential Privacy (DP) and

Federated Learning, by training differentially private models within

the FedAVG framework. In particular, similar to the FedAVG,

FedAVG-DP utilizes a distributed training setup where a fraction

f of clients is sampled in each round to train a local model.

However, in each training round, each client trains the local model

instances in a private manner for Elocal training epochs using

the DP-SGD/Adam algorithm instead of following the standard

training process. Note that in this case, the local sampling rate for

each DP-SGD/Adam training round is computed as q ≈ B
||Dlocal||

.

Similarly, the n ∼N (0, σ 2C2) is independently computed for each

individual client for a local target privacy budget (ε, δ), where δ is

computed as δ = 1
||Dlocal||

. The full pseudocode for the FedAVG-

DP implementation investigated in this work is provided in the

Supplementary Appendix.

4.2 XAI methods

Some XAI methods pose specific requirements on the model

architecture or training procedure, complicating the application

of privacy-protection techniques. Therefore, this work solely
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focuses on the commonly used post-hoc explanations. Different

attribution methods vary considerably in their realization and

their associated underlying assumptions. Therefore, it was

decided to apply a broad range of diverse methods differing in

their implementations and theoretical foundations. The work

covers a total of nine XAI methods, including gradient-based

Saliency (Simonyan et al., 2013), InputXGradient (Shrikumar

et al., 2016), GuidedBackpropagation (Springenberg et al.,

2014), IntegratedGradients (Sundararajan et al., 2017),

DeepSHAP (Lundberg and Lee, 2017), and DeepLift (Shrikumar

et al., 2017), but also gradient-free methods such as

Occlusion (Zeiler and Fergus, 2013), LIME (Ribeiro et al.,

2016) and KernelSHAP (Lundberg and Lee, 2017). The following

sections briefly describe the XAI evaluation framework andmetrics

utilized in this work.

4.2.1 Evaluation framework
LetD = {(x1, y1), (x2, y2), . . . , (xN , yN)} denote an input dataset

of size N, where xi represents either an individual image sample

xi ∈ R
C×H×W of sizeW × H and C channels or an input sequence

xi ∈ R
C×L with length L and C channels, and yi ∈ C represents

its corresponding class label. Let f : x 7→ y be a black-box neural

network, which takes an input sample x and returns its predicted

class label ŷ ∈ C. Then, any given post-hoc attribution-based XAI

method X [f (x), x, ȳ] takes as input the model f (x), the input image

x for which to generate the explanation, and the target class label

ȳ ∈ C, and outputs an explanation matrix (e ∈ R
C×H×W for images

or e ∈ R
C×L for sequences), which highlights the importance of

each feature (pixel or sequence element) in the input regarding the

target label ȳ. All the XAI methods investigated in this study utilize

the above framework, where the target label ȳ for generating the

explanations is kept the same as the predicted label ŷi = f (xi) for

each input sample xi.

4.2.2 Evaluation metrics
Evaluating explanations and judging their quality is a common

problem not only in XAI research (Zhou et al., 2021), but

also in the social sciences (Miller, 2019). Multiple evaluation

dimensions have to be considered to make clear statements

about the impact of privacy-preserving model training on the

explainability of DL-based models. Human-centered evaluation

is laborious and requires domain experts. Instead, functionality-

groundedmethods are best suited for the domain- and dataset-wide

fair comparison and quality assessment of XAI and are therefore

utilized throughout this study.

In the experiments, the focus lies on the two main properties of

explanations as defined in Zhou et al. (2021), namely their Fidelity

and Interpretability. Fidelitymeasures soundness and completeness

to ensure that explanations accurately reflect a model’s decision-

making behavior. Interpretability refers to the clarity, parsimony,

and broadness of explanations, and therefore describes factors

related to the ease of communication on the interface of machines

and humans. Functionality-grounded methods make use of formal

mathematical definitions as proxies of perceived interpretability.

In this work, the Fidelity of explanations is quantified using the

evaluationmetrics Sensitivity (Yeh et al., 2019), Infidelity (Yeh et al.,

2019), Area Over the Perturbation Curve (Samek et al., 2016), and

Ground Truth Concordance.

4.2.2.1 Sensitivity

To measure the Sensitivity (Yeh et al., 2019), insignificant

perturbations are applied to the input, and the change in the

attribution map is measured. Small changes in the input should

not result in large changes in the attribution map. Thus, a smaller

Sensitivity (Yeh et al., 2019) value is better and corresponds

to higher fidelity. Formally, the Sensitivity S of an explanation

generated by a given XAI method X (f (x), x, y) is computed, as can

be seen in Equation 2:

S = max
‖x−x̂‖≤r

‖X (f (x), x, ȳ)− X (f (x), x̂, ȳ)‖ (2)

where f (x), x, and ȳ denote the black-box neural network, the

input sample and the target class label, respectively, as described

in Section 4.2.1, and r represents the noise perturbation radius.

In practice, Sensitivity S is measured by perturbing the input x

with noise drawn from the uniform distribution ∼U(−r, r) for a

fixed number of iterations, and the maximum measured value is

reported. In this work, Sensitivity (Yeh et al., 2019) is evaluated

for each XAI method by utilizing a noise perturbation radius of

r = 0.02 and a total of 50 perturbations per sample.

4.2.2.2 Infidelity

To measure Infidelity (Yeh et al., 2019), significant

perturbations are applied to both the input and the corresponding

attribution map. Then, the mean-squared error is computed

between the perturbed attribution map and the difference in the

model predictions of perturbed and unperturbed input. Intuitively,

the Infidelity (Yeh et al., 2019) of an explanation provides direct

correlation between the important features determined by the

attribution map and their impact on the model output. Formally,

the Infidelity (Yeh et al., 2019) of an explanation produced by

an XAI method X (f (x), x, y) is computed, as can be seen in

Equation 3:

I = EI∼N (0,σ 2)

[

(ITX (f (x), x, ȳ)− (f (x)− f (x− I)))2
]

(3)

where f (x) is the corresponding black-box neural network, x is the

input, ȳ is the target class label, and I ∼ N (0, σ 2) is the noisy

baseline which is utilized to perturb the inputs and the attribution

maps. In this work, a noise scale σ = 0.003 is used to generate

the noisy baseline I, with a total of 100 perturbation iterations per

sample utilized to compute the Infidelity (Yeh et al., 2019).

4.2.2.3 Area over the perturbation curve

The Area Over the Perturbation Curve (AOPC) (Samek et al.,

2016) measures the alignment between an attribution map’s

relevance values and the effect of perturbing the corresponding

input regions on the model prediction. Intuitively, removing

features with lower importance should affect the prediction less

than the deletion of important features. AOPC (Samek et al.,

2016) is computed by integrating the model’s output confidence

scores over the consecutive perturbations with either decreasing

(starting from the most relevant features, MoRF) or increasing

attribution importance (starting from the least relevant features,
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LeRF), relative to random perturbations. Therefore, higher values

for the MoRF case and lower values for the LeRF case indicate a

higher faithfulness of the attribution map. For both scenarios, the

AOPC metric for an explanation is formally computed, as can be

seen in Equation 4:

AOPCMoRF,LeRF =
1

L+ 1

1

N

N
∑

i=1

L
∑

k=1

f̂ (x0i,P, ȳ)− f̂ (xki,P, ȳ) (4)

where f̂ (x, ȳ) refers to the output confidence score of the black-box

neural network f (x) for the target label ȳ, N is the total number of

dataset samples, and L is the total number of perturbations applied

to the input starting from the most or least relevant features. In this

work, themean RGB perturbation (Samek et al., 2016) is applied for

generating the AOPC, where the input image samples are perturbed

by replacing square patches of size p × p with the mean of the

dataset. The patch sizes used for the resolutions 224 × 224 and

384×384 are 16×16 and 24×24, respectively, and a total of L = 100

feature removal steps are utilized to compute the AOPC metric. In

addition, to summarize the AOPC as a scalar value, in this work,

the final AOPC scores are generated as the total area between the

computed AOPCMoRF and the AOPCLeRF curves.

4.2.2.4 Ground truth concordance

Most fidelity measures evaluate the degree to which an

explanation is faithful to the local model behavior. Whether

the explanation is human-aligned, on the other hand, can only

be evaluated with ground truth explanations available. In this

study, Ground Truth Concordance is measured by computing the

overlap between the input region with the highest attribution

and the corresponding segmentation map of the ground truth

explanation. First, attribution is aggregated over the channels, and

only positive values are considered. All attributionmaps are blurred

before computing the concordance, to moderate the drawback of

gradient-based methods, which generate noisier explanations by

design. Binarization is performed in ten equidistant thresholding

steps on values normalized in the range [0, 1] to be independent

of any particular threshold value. In this study, Ground Truth

Concordance (GTC) is defined as the area of overlap between

the binarized attribution map and the ground truth explanation,

divided by the whole area of attribution after binarization. This

can also be expressed as the ratio of correctly predicted positive

observations to the total predicted positives, as can be seen in

Equation 5:

GTC =
TP

TP + FP
(5)

Note that this definition here coincides with that of the

standard Precision metric, differing in that GTC is specific to the

spatial comparison of an attribution map with a ground truth

segmentation.

4.2.2.5 Continuity

The Interpretability of explanations was measured using the

Continuitymetric. In general, humans have difficulties interpreting

information that is both high dimensional and scattered.Continuity

is defined as the sum of the absolute changes between two

consecutive importance scores in an attribution map. For time

series, the continuity is the absolute change between each

subsequent point in a sequence, whereas in the image domain, the

absolute changes are measured and aggregated separately in X and

Y directions. Better Interpretability is indicated by lower continuity

scores.

All evaluation metrics were computed on the respective test

datasets. The attribution maps were normalized to have zero

mean and unit standard deviation for a fair comparison across

methods and different privacy types. Due to computational and

time restrictions, the influence of PPML on attribution methods

was quantified using a subset of the respective test sets, limited

to a maximum of 1,000 examples. This work assumes that 1,000

randomly selected examples represent a sufficient quantity to

generalize the findings to the complete test datasets.

4.3 Critical di�erence diagrams

Intuitive visualization of high-dimensional data is particularly

challenging when the data origins from multiple distinct

configurations, as in this case. Critical Difference (CD) diagrams,

proposed by Demšar (2006), allow the high-level visualization of

complex experimental data intuitively and were therefore chosen to

present most quantitative results. Their ability to condense ordinal

information across different datasets, models, and attribution

methods extracts relevant information and helps to pick up

universal trends in a benchmark study. Moreover, the method

includes statistical tests, indicating the data’s significance.

CD diagrams report the exact average rank of a given item, in

a series of different settings. If the statistical significance for two

distinct items is not guaranteed, these items are connected by a

colored horizontal line and referred to as a “clique.” In this study,

the Friedman test is used to decide the statistical significance of

a group of different observations. The Holm-adjusted Wilcoxon’s

signed rank test is then applied for post-hoc analysis, as suggested

in Benavoli et al. (2016). For all statistical analyses, an α of 0.05 is

assumed.

4.4 Models

In time series analysis, InceptionTime (Ismail Fawaz et al.,

2020) and ResNet-50 (He et al., 2016) were used as representative

networks, achieving state-of-the-art performance for the used

datasets. ResNet-50 (He et al., 2016), NFNet (Brock et al., 2021)

and ConvNeXt (Liu et al., 2022) have been used for classification

of natural and medical images. Since document images differ

significantly from natural images, a different set of models has been

used for this domain, including AlexNet (Krizhevsky et al., 2017),

VGG-16 (Simonyan and Zisserman, 2014), ResNet-50 (He et al.,

2016), EfficientNet (Tan and Le, 2019), and ConvNeXt (Liu et al.,

2022), which have shown the best performance in the past.

4.5 Implementation details

Baseline networks were trained using the standard SGD or

ADAM optimizers with varying numbers of epochs per dataset,

to ensure convergence. For all other settings, training and
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TABLE 2 Test accuracies on all datasets for di�erent architectures and privacy-preserving training settings, divided by application domain.

Datasets and
models

AccBaseline AccDP/ǫ AccFedAVG AccFedAVG-DP/ǫ

T
im

e
se
ri
es

an
al
ys
is

Anomaly nc = 4 nc = 4

InceptionTime 98.74 92.87 / 5.0 98.77 89.50 / 5.0

ResNet-50 98.70 97.02 / 5.0 98.60 97.36 / 5.0

Character Traj. nc = 4 nc = 4

InceptionTime 99.44 91.85 / 5.0 98.82 87.26 / 50.0

68.73 / 5.0

ResNet-50 99.44 85.03 / 5.0 98.19 82.10 / 50.0

59.19 / 5.0

ECG5000 nc = 4 nc = 4

InceptionTime 94.38 89.07 / 5.0 93.36 89.29 / 5.0

ResNet-50 94.16 89.64 / 5.0 92.78 88.87 / 5.0

FordA nc = 4 nc = 4

InceptionTime 95.61 92.88 / 5.0 97.70 94.17 / 50.0

91.43 / 5.0

ResNet-50 94.32 86.14 / 5.0 93.94 87.12 / 50.0

76.44 / 5.0

Wafer nc = 4 nc = 4

InceptionTime 99.22 89.21 / 5.0 97.81 89.21 / 5.0

ResNet-50 98.75 89.21 / 5.0 89.21 89.21 / 5.0

D
o
cu
m
en

t
an

al
ys
is

RVL-CDIP nc = 8 nc = 8

AlexNet 87.90 70.30 / 4.5 85.54 61.35 / 5.3

VGG-16 91.00 69.67 / 4.4 89.41 62.38 / 5.4

ResNet-50 90.50 72.55 / 5.0 88.25 68.85 / 8.8

Efficientnet-B4 92.60 60.20 / 4.2 90.59 45.09 / 6.5

ConvNeXt-B 93.64 75.60 / 3.7 92.60 73.23 / 7.7

Tobacco3482 nc = 4 nc = 4

AlexNet 89.57 86.14 / 3.9 91.85 85.71 / 8.0

VGG-16 94.14 85.14 / 4.9 93.99 87.00 / 7.5

ResNet-50 92.57 75.42 / 2.7 92.14 78.43 / 7.3

Efficientnet-B4 94.42 89.42 / 4.4 93.99 88.57 / 8.0

ConvNeXt-B 94.71 87.14 / 4.8 94.85 85.42 / 6.0

N
at
u
ra
l
Im

ag
es

Caltech-256 nc = 4 nc = 4

ResNet-50 87.30 59.00 / 5.0 87.97 61.82 / 35.94

NFNet 88.50 60.17 / 5.0 91.39 75.28 / 35.13

ConvNeXt-B 91.57 78.32 / 5.0 93.74 79.86 / 14.85

RAF-database nc = 4 nc = 4

ResNet-50 81.91 67.42 / 5.0 80.82 64.43 / 13.23

NFNet 83.96 69.68 / 5.0 82.82 69.75 / 13.33

ConvNeXt-B 86.63 69.32 / 4.79 88.23 71.97 / 13.23

M
ed
ic
al

ISIC nc = 4 nc = 4

ResNet-50 86.08 71.09 / 4.66 82.15 70.89 / 8.09

NFNet 90.16 77.23 / 14.61 86.90 71.39 / 18.28

ConvNeXt-B 87.20 69.63 / 14.02 81.87 68.78 / 30.69

(Continued)
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TABLE 2 (Continued)

Datasets and
models

AccBaseline AccDP/ǫ AccFedAVG AccFedAVG-DP/ǫ

S
yn

th
et
ic

SCDB nc = 4 nc = 4

ResNet-50 90.20 86.20/4.60 92.19 85.13/60.00

NFNet 94.40 88.33/4.46 94.87 85.19/18.27

ConvNeXt-B 92.46 85.80/13.19 92.40 87.07/30.08

For configurations containing DP or FedAVG, the ǫ and nc values are provided, respectively. A lower ǫ corresponds to stronger privacy. nc represents the number of clients used to simulate the

federated settings.

privacy hyperparameters have been manually tuned to find a

good trade-off between privacy and model performance matching

the baseline. This is important to guarantee a sufficiently fair

comparison between the methods, since a significantly worse

network would also show worse attribution results. However, all

models were trained with overall comparable settings. Moreover,

fixed seeds were used to ensure reproducibility. The training data

was split between training and validation with a factor of 0.9,

wherever no validation dataset had been provided. The reported

performances correspond to the test accuracies achieved by the

models performing best on the validation sets.

5 Experimental results

5.1 E�ect of PPML on model performance

Privacy-preserving training techniques can have a significant

effect on themodel performances. The severity depends onmultiple

factors including model architecture, type of dataset, as well as

various hyperparameters for model training. Table 2 shows the

results on the respective test sets for all experiment configurations

when trained with different private training techniques. All results

are sorted by domains and datasets to provide a better overview.

Even in privacy-preserving training settings, all models

converged and demonstrated acceptable accuracies. However, the

best accuracies were usually achieved in Baseline or FedAVG

settings. Across all domains, it can be observed that DP has

a considerable impact on the models’ test performances. For

some configurations, a higher ǫ-value was required to achieve

comparable results (e.g., NFNet and ConvNeXt-B for ISIC).

However, no consistent pattern indicating higher robustness of one

model architecture over another, against noise introduced byDP, is

obvious. In contrast to DP, FedAVG always resulted in significantly

lower performance losses. The combination of FedAVG and DP

almost exclusively resulted in a lower performance, considering a

comparable ǫ-value.

The results from the time series domain for most datasets

indicate that InceptionTime is usually affected slightly less by

private training, in direct comparison with ResNet-50. The only

exception is the Anomaly dataset, which experienced almost no

performance loss with ResNet-50. One possible explanation for this

is the advanced architecture of InceptionTime including residual

connections and inception modules. This enables InceptionTime

to be more robust against noise and outliers. In the time

series domain, the two datasets FordA and Character Trajectories

considerably suffered from the combination of DP with FedAVG.

For these datasets, the ǫ-value had to be increased to achieve

adequate results.

The results from the image domain indicate similar findings.

Since the models for the Tobacco3482 dataset were trained after

being pretrained on the RVL-CDIP dataset, the models were able

to achieve higher performance even with DP and FedAVG-DP.

However, despite pretraining on Derm7pt, the impact of DP on

ISIC-trained models is still considerable. For all datasets in the

image domain, a moderately higher ǫ-value was also used for

experimentation, to improve the performance of the models for the

DP and FedAVG-DP cases. However, it did not seem to provide any

significant improvement inmost of the cases. It is worth noting that

for larger datasets (i.e., RVL-CDIP, Caltech-256, RAF-Database, and

ISIC), DP and FedAVG-DP severely degraded the performance of

themodels whereas the performance for FedAVG is still comparable

to the Baseline setting.

5.2 Qualitative impact analysis of PPML on
attribution methods

A visual inspection of individual explanations gives a first

impression of the influence privacy-preserving techniques can have

on the trained models. These local impressions are then further

validated on the dataset level through the qualitative analysis of

summary statistics.

For space reasons, we have limited ourselves to presenting

results based only on the widely used ResNet-50 architecture, if not

otherwise stated. The fact that this model is readily applicable to

both time-series and image domains made it particularly suitable.

Moreover, the overall results did not vary too much between the

different model architectures. Additional qualitative results are

presented in the Supplementary Appendix.

5.2.1 Analysis of individual sample attributions
Figures 2, 3 show explanations generated in the time series

domain using the Anomaly Detection and Character Trajectories

datasets, respectively. For the Anomaly Detection dataset, it

can be observed that there is a general overlap between the

explanations from different training settings, always highlighting

the anomaly. In some cases, DP increases the amount of noise in

the signal’s relevance around the anomaly, yielding unclear and

misleading explanations by highlighting distant points which do
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FIGURE 2

Examples of computed attributions for three samples using a ResNet-50 trained on the Anomaly Detection dataset. Each two consecutive rows show

the results for four explanation methods on one individual sample. DP-based training techniques tend to add additional noise and alter the

explanation. FedAVG, by contrast, is closer to the original attribution of the baseline.
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FIGURE 3

Examples of computed attributions for three samples using a ResNet-50 trained on the Character Trajectories dataset. Each two consecutive rows

show the results for four explanation methods on one individual sample. DP-based training techniques tend to add additional noise and alter the

explanation. FedAVG, by contrast, is closer to the original attribution of the baseline.
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not correspond to the anomaly at all. However, this is not the

case when additionally adding FedAVG in the FedAVG-DP setting.

By contrast, DP-trained models show remarkable deviations from

the original Baseline explanation when trained on the Character

Trajectories dataset. This observation holds not only true for

DP but also FedAVG-DP settings. FedAVG, on the other hand,

shows explanations close to the Baseline setting, with only minor

deviations.

Figure 4 shows samples from all image datasets along with

the generated Occlusion and Saliency explanations from ResNet-

50 models trained with and without privacy techniques. It can

be seen that different training settings yield heatmaps that visibly

differ. However, the areas of highest relevance roughly overlap

for most samples. Particularly for Saliency attributions, it can be

observed that DP and FedAVG-DP often add additional noise

to the generated explanations. In some cases, this can also be

observed in Occlusion. This is particularly striking in SCDB

samples in the last two rows, where both DP-based methods

highlight regions outside the decision-relevant area. Another

striking example is the second sample from RVL-CDIP. It can

be seen that both FedAVG attribution maps present smoother

and more focused heatmaps pointing to a specific location on

the image. On closer inspection of the samples from document

datasets, it was found that FedAVG prominently focused on

specific class-relevant cues such as dates, titles, figures, etc.

Moreover, comparing attribution maps from models trained in

the DP and FedAVG-DP settings, it can be observed that the

addition of FedAVG leads to less noise in the attribution for

some samples.

When observing the SCDB sample in the last row, it can

be observed that for the Occlusion method, the Baseline setting

highlights both rectangle and star shapes, whereas the model

trained with FedAVG only focuses on the rectangle shapes. In

SCDB, rectangles are exclusive markers for class two. However,

both star and star markers are also part of the decision-relevant

shape combination. FedAVG appears to have focused only on the

single relevant marker, whereas in the Baseline setting, multiple

relevant markers were highlighted. This is also evident from the

SCDB sample in the second last row, where FedAVG successfully

focused on the ellipse shape, which is exclusive for class one. It

has to be noted that the Occlusion attribution map shows two

relevant regions, where the most relevant region highlights the

edge of the big, green pentagon. This could be attributed to a

limitation of Occlusion, corresponding to distraction due to the

generation of out-of-distribution samples during perturbation.

Interestingly, Occlusion attribution maps for the Baseline and

FedAVG settings show different decision-relevant cues for the last

row’s sample, as compared to the corresponding Saliency maps.

The former highlights rectangle and star shapes, whereas the latter

most prominently highlights the star marker on the lower part of

the image. As already mentioned, star markers are also decision-

relevant for that sample. However, they are no exclusive markers

and could also indicate shape combinations appearing in class

one. Nevertheless, it has to be mentioned that for some individual

samples, these observations do not apply. For the second sample of

ISIC and the first sample of RAF-Database, for instance, Baseline

and FedAVG did not yield clearer heatmaps as compared to the

DP-based approaches. To capture overall trends and characteristics

in attribution maps of different configurations, further analysis

on dataset-level statistics of the generated attribution maps

was performed.

5.2.2 Dataset-wide analysis
Figure 5 shows the Pearson correlation of the explanations

generated by different training settings for the Anomaly Detection

dataset. Therefore, the correlation across the different training

approaches was computed using all available attribution maps.

Precisely speaking, the correlation between the corresponding

attribution maps was calculated and the average over the number

of samples was taken. The final correlation shows the score

averaged over the attribution methods and the samples. For both

architectures, InceptionTime and ResNet-50, it is evident that the

privacy methods significantly change the produced attribution

maps. However, FedAVG yields significantly higher correlation to

the Baseline setting as compared to the DP-based approaches.

Moreover, it is surprising that the correlation between DP and

FedAVG-DP is rather low. The remaining correlation matrices can

be found in the Supplementary Appendix, showing similar results.

SCDB is a synthetic dataset that, by design, carries all relevant

information in the center of the image. Figure 6 shows a visual

comparison of the overall impact of privacy on the distribution

of attribution in the explanations. For each setting, the attribution

maps are averaged across all test samples to highlight the frequency

with which regions were attributed as relevant. It is evident that

involving DP during training drastically increased the diffusion

of attribution values, also including image areas that are not

related to the actual classification task. Combining DP with

FedAVG, on the other hand, led to a moderation of the noise

added by DP. Interestingly, the results indicate that FedAVG alone

usually results in the cleanest and most focused heatmaps, even

improving the baseline. As the remaining datasets possess less

spatial standardization, it is not trivial to interpret their results in

the same way.

This qualitative analysis already drew an interesting initial

picture, proving that to some degree, any privacy-preserving

training technique has an impact on the generated explanations.

Furthermore, the results suggest that DP-trained models generate

explanations that tend to be noisier and cover potentially

unimportant regions, harboring the danger of misleading the

explainer. However, it is unclear whether noise added by DP

only concerns the explanations, or whether this reflects the model

decision (fidelity). First results also indicate that the FedAVG

approach can even improve explanations, leading to more focused,

and meaningful explanations in some instances.

5.3 Quantitative impact analysis of PPML
on attribution methods

The quantitative analysis serves to further verify the findings

from the previous section and allows the investigation of whether

privacy-preserving techniques impact only the explanations, or also

the underlying model behavior.
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FIGURE 4

Examples of perturbation- and gradient-based attribution maps computed on models trained in varying privacy configurations. Two random,

correctly classified samples are provided per dataset. Occlusion and Saliency attribution maps are computed on ResNet-50 models. Red regions

indicate positive attribution relevance. Images 5 and 6 are taken from Kaggle (https://www.kaggle.com/datasets/jessicali9530/caltech256). Images 7

and 8 are taken from the RAF-Database (http://www.whdeng.cn/raf/model1.html).

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2024.1236947
https://www.kaggle.com/datasets/jessicali9530/caltech256
http://www.whdeng.cn/raf/model1.html
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Saifullah et al. 10.3389/frai.2024.1236947

FIGURE 5

Average Pearson correlation of the attribution maps compared between the di�erent privacy approaches for the Anomaly Detection dataset. FedAVG

shows a higher similarity to the Baseline setting, as compared to the DP-based approaches. (A) InceptionTime. (B) ResNet.

FIGURE 6

Average attribution heatmaps over all samples and models trained on the SCDB dataset in Baseline, DP, FedAVG, and FedAVG-DP settings.

5.3.1 Continuity
Measuring the continuity of an explanation helps to understand

how difficult the interpretation of an explanation might be for an

explainer. Humans usually struggle when confronted with high-

dimensional, diffuse data.

The continuity for time series data is defined as the sum of the

absolute changes between each pair of subsequent points within the

attribution map. For image attributions, continuity is computed

as the sum of absolute gradients in both spatial directions of the

attribution map. A smoother map results in a lower continuity.

Figure 7 shows the CD diagrams for the Continuity across all

domains. For each domain, the ranked results are averaged over all

datasets and attribution methods.

The results for all domains clearly show that Baseline and

FedAVG settings yield better Continuity scores as compared to

the DP-based approaches. This confirms that DP-based private

models generate significantly more discontinuous attribution maps

compared to Non-DP training techniques. The only outlier to

this observation is EfficientNet-B4 trained on document images in

Figure 7B, where surprisingly, FedAVG-DP achieved the highest

rank. Comparing only Baseline and FedAVG models, it cannot

be clearly stated whether one is better than the other, as this

appears to be highly dependent on the exact model architecture and

domain combination. Moreover, FedAVG-DP achieved better ranks

as compared to DP in most configurations across all domains. DP

and Non-DP approaches even show a clear visual separation in the

CD diagram in most cases (i.e., document, natural, and medical).

For document image datasets, there are only minor differences

within the ranks ofDP andNon-DP regions, making it very difficult

to draw clear conclusions.
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FIGURE 7

Critical di�erence diagrams for Continuity. The black bar represents the rank of each of the four individual training settings averaged over all datasets

for an individual model. Each color represents a single architecture, and the exact rank for a particular combination is provided on the colored line.

Privacy results in less continuity and therefore noisier explanations. (A) Time series datasets. (B) Document image datasets. (C) Natural image

datasets. (D) Medical image datasets. (E) Synthetic image datasets.
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FIGURE 8

Critical di�erence diagrams for AOPC. The black bar represents the rank of each of the four individual training settings averaged over all datasets for

an individual architecture. Each color represents a single architecture, and the exact rank for a particular combination is provided on the colored line.

Statistical insignificance between two individual settings is indicated by a horizontal colored bar. (A) Time series datasets. (B) Document image

datasets. (C) Natural image datasets. (D) Medical image datasets. (E) Synthetic image datasets.
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5.3.2 Area over the perturbation curve
The AOPC measures how removing features deemed relevant

by the explanation affects local model predictions. This provides

important insights into the fidelity of the explanations. Intuitively,

removing features with lower importance should affect the

prediction less, whereas the deletion or perturbation of important

features should result in significant prediction changes. In this

experiment, features were removed sequentially starting with the

most important, as per the attribution map.

Figure 8 shows all critical difference diagrams for the AOPC

measure. Over all domains, the most prevalent pattern is that of

Non-DP-based settings occupying the higher ranks. In the time

series domain,ResNet-50 shows the clear superiority of Baseline and

FedAVG compared to DP and FedAVG-DP. However, the results

from the image domain indicate that a clear superiority of FedAVG

over Baseline cannot be reported. In contrast to other domains,

FedAVG-based approaches on average achieved higher ranks on

medical and synthetic images. For InceptionTime, DP surprisingly

achieved almost similar performance as compared to Baseline.

Apart from this outlier, DP almost exclusively ranked last in direct

comparison with all other training settings. The presented results

suggest that adding Differential Privacy during training decreases

the explanation’s fidelity.

5.3.3 Infidelity
The Infidelity measure provides information about an

explanation’s fidelity by evaluating a model’s adversarial robustness

in regions of varying explanation relevance. Perturbations are

both applied to the attribution map and the input image, while

comparing the predictions of the unperturbed and noisy input. It

is expected that the perturbation of a more important feature leads

to a larger change in prediction.

Figure 9 shows the Infidelity ranks for all configurations. In

the time series domain, approaches involving FedAVG achieved the

highest scores. Interestingly, the addition of DP to FedAVG settings

resulted in higher scores, whereas the sole use ofDP during training

led to the worst outcomes. For all image domains, again, results

depend on the architecture and the domain. However, there is an

overall tendency similar to the results of the time series domain,

with DP being the worst. Furthermore, FedAVG approaches being

the best performing approach for time series datasets. The Baseline

setting ranked highest in several configurations, such as ResNet-50

in medical and synthetic images, andNFNet in natural images. This

indicates that FedAVG increases adversarial robustness and fidelity,

while DP alone leads to lower fidelity.

5.3.4 Sensitivity
In contrast to the Infidelity, Sensitivity quantifies the fidelity

by perturbing the input directly. The change in the generated

explanation is measured before and after the input is insignificantly

perturbed. Small changes in the input should not result in large

changes in the attribution map.

Figure 10 shows the Sensitivity ranks for all configurations. For

the time series domain, Figure 10A shows a clear ranking with

Baseline and FedAVG being superior to FedAVG-DP, followed by

DP. However, no clear statistical distinction can be made between

Baseline, FedAVG, and FedAVG-DP for InceptionTime, and for

Baseline and FedAVG for ResNet-50. The superiority of Non-DP-

based over DP-based approaches is further confirmed by seven

more configurations within the different image domains, including

ResNet-50 in natural, medical, and synthetic images. Interestingly,

both DP-based methods ranked highest in combination with

ConvNeXt in all image-domains except for medical imaging.

5.3.5 Ground truth concordance
Measuring the concordance of attribution maps and ground

truth explanations is the best way to ensure the truthfulness of

explanations, but comes with some limitations. Ground Truth

Concordance can only be computed on synthetically constructed

datasets without ambiguous decision paths. Therefore, the SCDB

dataset was utilized, which provides segmentation maps for the

different visible shapes to construct ground truth explanation maps

containing only decision-relevant shapes for each image.

Figure 11 shows the critical difference diagram for the Ground

Truth Concordance computed over all attribution methods for the

SCDB dataset. The ranking clearly indicates the superiority of

Baseline and FedAVG settings over DP-based training techniques.

Moreover, it can be observed that the addition of FedAVG to

the DP-trained setting alleviates the divergence from the ground

truth explanations. Overall, it can be noted that DP-based methods

indeed reduce the fidelity of models, while there is promising

evidence that a DP-based training in a federated constellation can

mitigate its effects to a certain degree.

5.4 Impact of noise on di�erent settings

The results so far suggested that the introduction of DP

during the training process has a considerable impact on the

generated explanations. Moreover, it was found that using the

combination of FedAVG and DP can sometimes mitigate the

negative effects of the added noise during the training process. This

section covers an investigation whether the degree to which the

quality of explanations is affected, differs, for different attribution

methods and datasets. Therefore, the relative increase in continuity

score was measured when comparing the Baseline with the DP

training setting. A higher relative increase indicates a bigger impact,

resulting in a lower rank.

5.4.1 Impact of noise on di�erent attribution
methods

Figure 12 shows the ranks of different attribution methods

when applied to different architectures before and after adding

DP to the training, for the time series and image datasets. For

both modalities, a prominent separation of two distinct groups

can be noticed. In time series datasets, both KernelSHAP and

Occlusion are affected significantly less by differential privacy

as compared to the remaining, gradient-based methods. Within

the gradient-based methods, GuidedBackpropagation suffered less

from DP, followed by IntegratedGradients, InputXGradient, and

Saliency. The results do not indicate a clear advantage of using

one model architecture over the other. Similarly, KernelSHAP

and Occlusion clearly outperformed most other methods when

applied to the image datasets. DeepSHAP is the only exception,
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FIGURE 9

Critical di�erence diagrams for Infidelity. The black bar represents the rank of each of the four individual training settings averaged over all datasets

for an individual architecture. Each color represents a single architecture, and the exact rank for a particular combination is provided on the colored

line. Statistical insignificance between two individual settings is indicated by a horizontal colored bar. (A) Time series datasets. (B) Document image

datasets. (C) Natural image datasets. (D) Medical image datasets. (E) Synthetic image datasets.
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FIGURE 10

Critical di�erence diagrams for Sensitivity. The black bar represents the rank of each of the four individual training settings averaged over all datasets

for an individual architecture. Each color represents a single architecture, and the exact rank for a particular combination is provided on the colored

line. Statistical insignificance between two individual settings is indicated by a horizontal colored bar. (A) Time series datasets. (B) Document image

datasets. (C) Natural image datasets. (D) Medical image datasets. (E) Synthetic image datasets.
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FIGURE 11

Critical di�erence diagram for Ground Truth Concordance on the SCDB dataset. The black bar represents the rank of each of the four individual

training settings averaged over all architectures. The exact rank for a combination is provided on the line pointing to the setting. FedAVG and Baseline

settings clearly outperform DP-based techniques.

FIGURE 12

Critical di�erence diagrams, showing the impact of Di�erential Privacy on the quality of explanations generated by di�erent attribution methods. The

quality is measured in terms of relative increase in continuity before and after adding DP. The black bar represents the rank of each attribution

method averaged over all datasets for an individual architecture. Each color represents a single architecture, and the exact rank for a particular

combination is provided on the colored line. Statistical insignificance between two individual methods is indicated by a horizontal colored bar. (A)

Time series datasets. (B) image datasets.

achieving a similar score to Occlusion when applied to NFNet. By

approximating SHAP values using gradients (Lundberg and Lee,

2017), DeepSHAP achieved higher robustness compared to other

gradient-basedmethods for two out of threemodels. For ResNet-50,

InputXGradient and DeepLIFT slightly outperformed DeepSHAP.

Among all gradient-based methods, IntegratedGradients scored last

for most of the model architectures, whereas the other methods

do not paint a clear picture. Similar to the time-series results, the

values do not indicate the superiority of one model architecture

over another. Overall, the results clearly show that the selection of

the attributionmethod has a significant impact on the robustness of

the generated explanations under the influence of noise introduced

by DP.

5.4.2 Impact of noise on di�erent datasets
Figure 13 shows the impact ofDP on the quality of explanations

for different datasets. For the time series domain, it can be seen that

noise has the least impact on the Anomaly dataset, as the decision-

relevant anomaly is not affected much by the added noise. On

the other hand, Character Trajectories dataset is highly affected by

noise. This can be explained by the fact that the dataset consists

of raw sensor values that describe drawn letters. Slight noise

distributed over the time series can have a devastating influence

on the meaning of a given sample, as the error adds up over

time. In the image-domain, RAF-Database and Caltech-256 are

influenced less by noise, whereas ISIC, on average, shows a higher

susceptibility. This is understandable, as ISIC heavily relies on

fine-grained patterns and complex features, which might be more

susceptible to added noise as compared to coarse-grained features

used for emotion recognition and object detection. Surprisingly, the

results suggest a rather high impact on SCDB as well. At first, this

might seem unexpected due to the relevance of clean and uniform

shapes for classification. However, considering the low resolution

of input images, these shapes might be particularly fragile under

the influence of noise, as small perturbations can easily shift the

resemblance of one shape to another.
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FIGURE 13

Critical di�erence diagrams, showing the impact of Di�erential Privacy on the quality of explanations when applied to di�erent datasets. The quality

is measured in terms of relative increase in continuity before and after adding DP. The black bar represents the rank of the dataset averaged over all

attribution methods for an individual architecture. Each color represents a single architecture, and the exact rank for a particular combination is

provided on the colored line. (A) Time series datasets. (B) image datasets.

6 Discussion

In the last few years, explainability and data privacy are

drastically gaining importance in the field of Deep Learning. It

is therefore all the more important to take a closer look at their

interaction. The presented results revealed a significant impact of

privacy-preserving training techniques on generated explanations.

However, the influence on XAI strongly depends on the privacy

technique used, as well as other factors.

6.1 The disparate impact of PPML on
model convergence

First, it has been shown that not every PPML method

has the same impact on model performance. DP-based models

were shown to almost always deteriorate the test accuracy.

Moreover, experience showed that they drastically complicate

model convergence and hyperparameter search. FedAVG, on the

other hand, yielded accuracies similar to the Baseline setting,

sometimes even improving the results. It has to be mentioned,

though, that both DP and FedAVG follow different goals in the

domain of privacy. Whereas DP aims at preventing models to

capturing individual sample information, which could be used for

reconstruction, FedAVGmainly aims at minimizing the exposure of

sensitive information by keeping the training data local. Although

FedAVG also generates an aggregated model which might have less

vulnerability to reconstruction attacks due to averaging effects, it

still needs to transfer information about the local models to the

orchestration server. Therefore, the combination of FedAVG and

DP provide the highest privacy, often yielding similar performance

compared to only DP.

6.2 Di�erential privacy leads to noisy
attribution

The qualitative and quantitative analysis revealed various

interesting findings regarding the impact of different privacy-

preserving techniques on explanations. Differential Privacy, for

example, stood out in almost all configurations for its property

to add noise to the attribution maps. This has been reported in

many individual samples and could be confirmed by dataset level

analysis, as well as quantitative analysis, where DP-based methods

stood out for increased Continuity values. One possible reason

for this phenomenon is the addition of noise during the training

process withDP. The introduction of noise in the parameter update

most likely leads to contortions in the parameter space, which are

never completely compensated, and translate into the prediction

process. This effect might be counteracted by slightly tweaking the

optimization, such as fine-tuning public datasets, or by increasing

the batch sizes during training.

6.3 Perturbation-based attribution is more
robust

The degree to which noise is added has been investigated in

Section 5.4. The results suggest, that perturbation-based methods

are a lot less prone to changing their explanation’s Continuity under

influence of noise. Inspecting the individual examples, as well as the

average heatmaps in Figure 6, this finding can again be verified. The

difference between Occlusion and Saliency is particularly notable

in the contrast between areas of higher and lower relevance.

Whereas Saliency produces monotonous heatmaps, peaks and

areas of interest are much more prominently highlighted in
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the average Occlusion maps. The main reason that investigated

perturbation-based methods are less affected by noise in terms of

Continuity is that they aggregate relevance over patches, instead

of processing relevance pixel-wise. By neglecting fine nuances in

the relevance, the randomly introduced noise is likely canceled

out within a patch. However, Continuity is only a mathematical

approximation of an explanation’s interpretability. Figures 2–4

illustrate that Occlusion-based explanations are often significantly

changed when introducing DP during training. Furthermore, the

high interpretability of heatmaps is worthless if their fidelity is

not ensured. As reported in Section 5.3, DP exclusively led to the

deterioration of metrics indicating an explanationmethod’s fidelity.

Therefore, even when applying Occlusion, it needs to be clarified

how truthful the generated explanations remain to be.

6.4 Federated learning can improve
attributions

In contrast to DP, Federated Learning often resulted in

smoother attribution. Interestingly, combining FedAVG with DP

often times even led to more continuous attribution maps

compared to the Baseline setting, reducing the negative effects

introduced by DP alone. However, FedAVG-DP has also been

reported to decrease the fidelity of explanations in many cases.

Therefore, whenever XAI is required and Differential Privacy is

applied, it might be worth considering a combination of DP and

Federated Learning. This will also be possible in cases where

Federated Learning is not required, as the federated setting can

easily be simulated by dividing the dataset into chunks. Although

some outlier experiments report a better Continuity score for

Baseline settings, the fact that FedAVG leads to better Continuity

scores has a strong theoretical basis. Averaging models during

training inevitably prevents the final model from overemphasizing

granular features or noise.

6.5 The importance of task granularity

The present study also indicated that the influence of PPML

on XAI is not really dependent on the application domain, but

rather on the choice and feature scales of the dataset at hand. The

noise introduced by DP has, above all, a detrimental impact on

classification tasks that rely on fine-grained and nuanced features

or patterns. Simpler anomaly detection tasks or tasks focusing on

the detection of overall, coherent structures seem less affected by

privacy-preserving training techniques.

6.6 XAI as a privacy threat

Besides the different influences PPML has on XAI, there is

another fact that needs to be considered when combining both

techniques. No matter how private a system has been made,

exposing an explanation is in itself always a potential point of

attack for a system, revealing sensitive information about the

decision-making process. This is, for instance, particularly evident

with Saliency, which provides the raw gradients of a single input

instance. For truly critical applications, explanations should only

be issued to a small group of authorized users and only if really

required. Moreover, it might even be necessary to further obfuscate

the exact generation process of explanations for applications with

extremely high privacy requirements.

6.7 Limitations

This study revealed several general trends which will affect

explanations on a global scale when applying private training

strategies to DL-based models. However, one major limitation of

such studies is the examined basis of comparison.When comparing

explanations of separate model instances, there is always the risk

of obtaining different local minima, i.e., different classification

strategies. Previous research (Ilyas et al., 2019) suggests that

one dataset can have multiple, redundant, but fundamentally

different features. Therefore, even models with identical test

performance could have, in theory, picked up entirely different cues

to solve the same problem, hence yielding deviant explanations per

model. When training models using different training strategies, it

cannot be avoided to obtain models with deviating classification

strategies. This is also clearly reflected in the naturally lower model

performance of DP-based models.

Further limitations are related to the evaluation of the

explanation’s quality through quantitative metrics. As already

mentioned, quantitative quality metrics for XAI are simply

mathematical approximations of factors that could account

for human interpretability or test assumptions of fidelity that

should be satisfied by good explanations. Many such metrics

still have inherent limitations like AOPC, Sensitivity, and

Infidelity, introducing out-of-distribution samples through the

perturbation of samples. Ground Truth Concordance assumes

that, for each sample, there is exclusively one single decision

path, and therefore a ground truth explanation. To approach

this assumption, a synthetic dataset was utilized that allowed the

construction of ground truth segmentation maps, highlighting all

decision-relevant shapes. For somewhat complicated problems,

explanations are always redundant, as are the corresponding

human problem definitions. The human-made logic behind the

dataset postulates that a set of pre-defined shapes (i.e., star

or triangle) need to be present to associate a sample with a

class. However, instead of selecting the entirety of a shape,

networks could also simply define triangles by the angle of their

apexes. This way, the explanation would not need to cover the

complete shape, but only an arbitrarily small area around a

single apex.

7 Conclusion

Both eXplainable AI and privacy-preserving machine learning

constitute pivotal technologies for the safe translation of state-of-

the-art AI algorithms into everyday applications. It is particularly

important to get an early understanding of the effect of private

training on XAI, to actively develop countermeasures, and avoid

blind interpretations of explanations. This work showed that,
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although the exact effect on explanations depends on a multitude of

factors including the privacy technique, dataset, model architecture,

and XAI method, some overall trends can be identified. It

has been found that Differential Privacy, on average, decreases

both the Interpretability and Fidelity of heatmaps. However,

Federated Learning was found to moderate both effects when

used in combination. When used alone, FedAVG was even found

to sometimes improve the Interpretability of attribution maps

by generating more continuous heatmaps. The results suggest

considering Federated Learning before Differential Privacy, where

appropriate. Moreover, it is recommended always to choose

Differential Private Federated Learning as well as perturbation-

based XAI methods, if an application requires both privacy and

explainability. As the first work to investigate the impact of privacy

on XAI, this study opens up a series of interesting follow-up

questions, including the in-depth analysis of the trade-off between

privacy and interpretability under different privacy constraints, and

the impact of using privacy techniques beyond DP and FedAVG.

Moreover, the field would benefit from a more profound analysis of

the effect of privacy on the interpretation by human users through

application-grounded and human-grounded evaluation methods.

The union of PPML and XAI solves one of the remaining regulatory

and safety-critical hurdles, freeing the way for innovative and

high-performing AI-based applications that can bring significant

advancements in crucial domains of our everyday lives.
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